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This dissertation describes the underlying research, design and implementation for 

a Data Merge Engine (DME).  Specifically, we have developed a hierarchical clustering 

model as a new solution to speed up the merging of similar and overlapping data items 

from multiple information sources.  We use a tree-based heuristic algorithm for clustering 

data in a multi-dimensional metric space.  Equivalence of data objects within the 

individual clusters is determined using a number of distance functions that calculate the 

semantic distances among the objects based on their attribute values.  Because of the 

diversity of numbers of data items to be compared, we have developed a set of heuristics 

to appropriately reconcile data items.  The experimental results show that our approach is 

more efficient and provides more accurate results when compared with other existing 

approaches. 
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Given the immense popularity of the World Wide Web (Web), we focus mainly 

on reconciling semistructured data. Specifically, we use the Extensible Markup Language 

(XML) as our internal data model for representing heterogeneous data.  As part of our 

research, we have developed a comprehensive classification for schematic and semantic 

conflicts that can occur when merging data from related XML-based information sources.  

The research proposed here is conducted within the context of the Integration 

Wizard (IWIZ) system, which allows users to access and retrieve information from 

multiple sources through a consistent, integrated view.  To improve query response time, 

IWIZ uses a combined mediation/data warehousing approach to information integration.
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CHAPTER 1 
INTRODUCTION 

During the last decade, the use of the World Wide Web (Web) has dramatically 

increased.  The Web has become a very important information source that people can use 

to communicate, search for interesting information, and conduct business.  In a sense, the 

Web can be viewed as a loosely connected information system that consists of millions of 

individual data sources. The data sources can range from simple data files to conventional 

database systems (e.g., relational and object-oriented ones).  Integrating all these data 

sources and providing a single interface and data representation for users is a challenging 

problem since the sources are autonomous (i.e., independently managed), distributed (i.e., 

located in different places), and heterogeneous in nature (i.e., using different forms of 

representation). 

Challenges 

Turning the Web into a usable information system presents a major challenge. 

The challenge is caused by the heterogeneity.  Two aspects of heterogeneity are 

technological differences (e.g. hardware, system software and communication systems) 

and schematic and semantic differences that exist among related data in different sources.  

To help solve the former problem, standard protocols and middleware components, e.g., 

CORBA, DCOM, ODBC, JDBC, etc., have emerged to simplify remote access to many 

standard source systems.  To help solve the latter problem, so-called integration systems 

are introduced to overcome the schematic and semantic differences that exist among 
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cooperative data sources.  The main problems related to the integration of data sources 

with different schemas and data semantics are the identification and the solution of 

conflicts between schema and data [34].  

Although data integration problems have been investigated for several decades 

[12, 29, 35, 49], most work in this area has focused on integrating structured data (i.e., 

relational or object-oriented data). Recently, the concept of semistructured data, which 

can be represented using the eXtensible Markup Language (XML), was introduced [1].  

A popular source of semistructured information is the Web in general and Web-based e-

commerce in particular.  Using XML to represent this semistructured data allows Web 

sites capture and represent more of semantics than using HTML.  However, the data 

management involving semistructured data is relatively new.  For example, the main 

concepts underlying the semistructured data model, specifically XML, are elements, 

subelements, and theirs attributes, whereas the main concepts underlying the relational 

data model are relations, attributes and attribute values.  Because of the different 

characteristics of semistructured data, a new approach to integrate data sources 

containing semistructured data is needed. 

Data-Integration Scenario 

To show the need for an integration system, suppose an online shopping scenario 

where customers want to browse data on publications (e.g., books and articles) and 

related products (e.g., computer software).  The data are stored in online bibliographies, 

digital libraries, online catalogs, and other e-commerce sites.  For example, customers 

may want to access book information, pricing information and availability.  They may 
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also want to access other online sources for related background information such as the 

customers’ evaluation of the publications.  This situation is showed in Figure 1. 

Wrapper 1 Wrapper 2 Wrapper 3

Mediator Data 
Warehouse

. . . . . . .

World
Wide
Web

E-Commerce 
Sites

Digital Libraries Online Sources
(e.g., Catalog)

Personal 
Databases

Wrapper 4

User/Client 1 User/Client 2 User/Client N

 

Figure 1: Conceptual view of an integration system accessing data from multiple, 
heterogeneous information sources. The integration system must be able to address data 
translation (source wrappers) as well as data fusion (mediator). 

Typically, each source uses different tools and data modeling techniques to create 

and manage their data.  This means the same concept, for example, the entity 

software, may be described by a different term and different set of attributes in 

different sources (e.g., application, program etc.).  Also, there is no restriction on 

the underlying data model used to store and retrieve the source data.  To enumerate a few 

possibilities for data representation, catalogs can be tables in the relational model, 

persistent objects in object-oriented databases, XML documents published on the Web, or 

flat files kept by legacy systems.  Note that a consequence of the use of different data 



4 

 

models and systems to represent information is that sources provide different query 

capabilities [34]. 

In this online shopping scenario, users want to issue queries without being aware 

of which sources are available, where they are located, how they represent their data, and 

how they are individually queried.  Instead, users prefer the illusion that all the data have 

been retrieved from a single large repository.  In this scenario, such repository refers to 

the data warehouse storing frequently asked queries and their results.     

Although integration systems do not restrict the way sources create and manage 

their data, they are built to provide users with transparent, integrated access to a wide 

variety of heterogeneous data.  To accomplish this goal, the integration systems must deal 

with complex issues related to the fact that a real-world object can be represented 

differently in different data sources in terms of both structure and content of the object.  

For instance, one catalog listing computer books may represent author names as single 

character strings, whereas another source represents them as three distinct strings: first-

name, middle-name, and last-name.  In another example, the price of a book in one 

source may include shipping costs, whereas another source may separate base price and 

tax into different attributes [34].  In yet another example, a book in one source may 

consist of two authors, while the same book in another source may consist of only one 

author.  The first example illustrates a difference in the structure of the data.  The second 

example shows a difference in the domain of the data.  The last example describes a 

difference in the content of the data.  Differences in the structure and the domain of the 

data can be detected if we have knowledge about the schema of the data.  Differences in 

the content of the data can be detected if we have domain knowledge.  Detecting such 
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differences or discrepancies is important when we want to reconcile related data from 

multiple sources, as is the focus of this dissertation.   

Goal of the Dissertation 

To integrate the heterogeneous data sources, we are developing an integration 

system called Information Integration Wizard (IWIZ).  The IWIZ is currently being 

developed at the Database Research and Development Center at the University of Florida 

[34].  The IWIZ allows end-users to access and retrieve information from various sources 

without knowledge about the location, API, and data representation of the underlying 

sources.  At present, the sources are assumed to contain semistructured data in XML 

format.  In the future, the system will provide access to information in other formats such 

as text files, relational databases, and image archives via wrapper components for various 

data models [64].  The IWIZ applies a hybrid data warehousing-mediation approach.  The 

data warehouse is used as a cache storing the result of frequently asked queries.  The 

IWIZ contains several components.  Wrappers handle restructuring of the schema of the 

data sources.  The mediator component supports the reconciliation of the data.  The 

warehouse manager handles the users’ queries and controls access of data warehouse. 

This dissertation describes the design and implementation of Data Merge Engine 

(DME), a part of the mediator component of IWIZ system.  The main tasks of DME are 

reconciling the data returned from underlying wrappers, providing a single, clean result to 

the users of the system.  Inside DME, we apply a hierarchical clustering model to speed 

up the reconciliation of the data.  Our model and underlying technologies are flexible and 

general enough so that they can be used in other integration systems that want to integrate 

semistructured data.   
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The rest of the dissertation is organized as follows: Chapter 2 provides an 

overview of the research that is relevant to this dissertation. Chapter 3 contains 

background information about XML-related technologies that are used in the IWIZ 

system.  Chapter 4 presents the system design framework, the overall IWIZ architecture, 

the operational phases that are performed inside the mediator, and the place of DME in 

relation to other components. Chapter 5 describes one conflict classification for XML-

based semistructured data.  Chapter 6 explains the hierarchical clustering model and 

provides a framework for designing the clustering tree.  Chapter 7 describes the results of 

a detailed qualitative analysis of our clustering model.  Chapter 8 focuses on the 

implementation of DME.  Finally, Chapter 9 concludes the dissertation with a summary 

of our accomplishments and an outline of issues to be considered in future releases of 

DME. 
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CHAPTER 2 
RELATED RESEARCH 

The research related to the work in this dissertation falls into the following five 

categories: Spatial access methods and similarity searches; semantic heterogeneities and 

conflict resolution; ontologies and knowledge representation; meta-search engines; and 

mediation and data warehousing system. 

Spatial Access Methods and Similarity Searches 

One of the problems in information integration is that a real-world object can be 

represented differently in different sources.  To provide only one copy of an object 

acquired from the sources, we need to match all candidate objects and remove duplicate 

copies.  Matching the objects can be viewed as a similarity search problem: Given an 

object, find the objects that are similar to the given object.  Spatial access methods 

(SAMS) have been introduced to support similarity searches by indexing the spatial 

objects such as multidimensional points, lines, rectangles and other geometric objects 

[24].  Therefore, we can apply those methods for the element matching in our integration 

system.  However, the goal of SAMS is different from ours.  Spatial access methods aim 

to provide an index structure that is created at built-time and that can give a quick 

response to range queries and nearest neighbor queries.  We do not use SAMS as an 

index structure, but as a way of resolving data conflicts, which are explained in detail in 

Chapter 5. 

Several spatial access methods have been proposed, such as R-tree and its variants 

[7, 25, 32, 38, 61], TV-tree [50], X-tree [8], Metric-tree [65], MVP-tree [10], and M-tree 
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[13].  Those methods need a distance function that is used for comparing the data objects 

in the multi-dimensional space. The distance function measures the (dis)similarity 

between two objects.  It is defined for all attributes and sub-objects of the considered 

objects.  Dey et al. [20, 21] suggested several types of distance functions for different 

types of attribute values.  Zobel and Moffat [87] provided a set of standard similarity 

measures that include combining and weighting functions. 

In this research, M-trees are not used for indexing spatial data objects, but they 

are used for clustering data objects which are then reconcile.  Like B-trees and R-trees, 

M-trees grow in a bottom-up fashion and are balance.  The M-trees differ from B-trees in 

the fact that a node in M-trees is split when it is 100% full whereas a node in B-trees is 

split when its capacity reaches a certain threshold (usually when it is approximately 70% 

full).  The M-trees differ from R-trees in the fact that M-trees use a sphere-shape routing-

object to bound the objects that are close to one another in a particular space, whereas R-

trees use a minimum bounding rectangle for that purpose.  Another difference between 

M-trees and R-trees is the fact that M-trees compare objects in the Metric space, but R-

trees compare objects in the Euclidean space. 

In the Euclidean space, the distances between objects are uniformly defined.  An 

object with k attributes can be viewed as a point in k-dimensional space. A transformation 

function is used to map the object to a point in the Euclidean space. Then, a distance 

function (e.g., Euclidean function) is used to compare the objects.  In the Metric space, 

the distance between two objects is defined as relative without transforming the object.  

Let x, y and z be objects in the metric space and d(x, y) be the distance from object x to 

object y.  The distance function d must satisfy the following properties: 

(I) Symmetry:   d(x, y) = d( y, x) 
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(II) Non-Negativity:  0 < d(x, y) < ∞, where x ≠ y and  d(x, x) = 0 

(III) Triangular Inequality:  d(x, y) ≤  d(x, z) + d(z, y)   

 
The X-tree, the TV-tree and the R-tree and its variants are suitable for indexing 

spatial objects in the Euclidean space.  The Metric-tree, the MVP-tree, and the M-tree are 

suitable for indexing spatial objects in the Metric space. 

Because of the characteristics of the semistructured data whose schema is flexible, 

we realize that matching elements in Metric space is more appropriate than matching 

elements in Euclidean space.  Therefore, we evaluate those trees that compare elements 

in Metric space.  Those trees belong to the family of metric-trees.  Here, we will refer to 

“metric-trees” as trees that compare objects in the Metric space by applying a distance 

function that satisfies the symmetry, non-negativity and triangular inequality properties.   

The shape of metric trees depends on a decomposition strategy used for adding 

elements into a cluster.  Two basic strategies are Ball Decomposition and Generalized 

Hyperplane Decomposition [65]. 

The main idea of the Ball Decomposition is the following: Given a set of 

elements, arbitrarily pick one element from the set.  We refer to that element as the pivot 

element.  Then, calculate and keep the median of the distances from the pivot element to 

all other elements in the set.  Next, partition the set of elements into two clusters.  One 

cluster contains every element that is farther from the pivot element than the median.  

Another contains the remainder of the element in the original set.  Finally, the process is 

applied recursively until all elements have been placed. 

The main idea of the Generalized Hyperplane Decomposition is as follows: Given 

a set of elements, arbitrarily pick two different elements, for example x and y, from the 

set.   The set is partitioned into three subsets.  The first subset contains every element z 
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that is closer to x than to y.   The second subset contains every element z that is closer to y 

than to x.  The third subset contains the remainder of the elements in the original set. 

We apply the tactic, namely picking one or more pivots, used in those two 

decomposition strategies as a framework for building our clustering tree.  The tree is used 

to detect conflicts among semistructured data items and reconcile the items as a part of an 

integration system.  Our integration system is explained in Chapter 4.  Our decomposition 

strategy is described in Chapter 6. 

Semantic Heterogeneities and Conflict Resolution 

Information integration and sharing refer to the process of retrieving related 

information from multiple information contexts and using the combined information in a 

context (global view) that differs from the original context. Before one can share 

information in this way, four hurdles must be overcome: (1) understanding the meaning 

of the source data, (2) relating it to the global schema, (3) translating the values from the 

source context to the target context, and (4) merging related data.  All of these hurdles are 

caused by heterogeneities between source and target, which exist at various levels of 

abstraction.  Primarily, one is faced with heterogeneities at the system level (i.e., 

differences in the underlying hardware architecture, network protocol, operating system), 

at the data management level (i.e., differences in the data model, access commands), and 

at the semantic level (i.e., differences in the way related or similar data is represented in 

different sources). 

We specified a new classification scheme for structural and semantic conflicts 

among XML-based data sources [56].  As one of our goals, we expect to resolve those 

conflicts in IWIZ.  The main classes of conflicts are structural, domain and data conflicts.  

Structural conflicts arise when the schemas of the data sources that will be integrated 
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exhibit discrepancies.  Domain conflicts arise when the schemas and domains of the data 

source that will be integrated exhibit discrepancies. Data conflicts arise when the 

semantic of the data sources that will be integrated exhibit discrepancies.  The capability 

of resolving the structural and domain conflicts is hooked in the wrappers [64].  The 

capability of resolving the data conflicts is functioned in the mediator. 

Most of the progress so far has been made in overcoming heterogeneities at the 

system and data-management level using translators and adapters.  Kashyap and Sheth 

[39] proposed a formal model of similarity between objects in databases and classified 

conflicts based on such a model.  Batini et al. [6] analyzed conflicts based on the ER 

model and propose a framework for the problem of schema integration.  Kim et al. [42] 

promoted a Multidatabase language to resolve schematic conflicts among relational, 

object-oriented and Multidatabases.  Dayal and Hwang [18] proposed a generalization 

technique to resolve discrepancies and inconsistencies found in multiple heterogeneous 

databases, including the use of an extended functional data model to model the databases.  

Kent [41] applied an object-oriented database programming language to resolve domain 

and schema mismatches.  Lakshmanan et al. [47] and Miller [52] introduced a language 

derived from SQL to resolve schematic discrepancies.  Siegel and Madnick [63] and 

Sciore et al. [60] used the metadata approach by attaching context information and 

resolved semantic conflicts based on the context. 

Dey et al. [20, 21] proposed the probabilistic and distance-based decision models 

to resolve entity heterogeneity, which occurs when a real-world entity is presented 

differently in two databases in terms of its identifier.  Specifically, Dey et al. applied the 

Hungarian method [45, 48, 55] to find the solution of the matching between two entity 

sets.  The worst-case complexity of the method as a whole is O(N3) where N is the 
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maximum number between the numbers of the entities in those two sets.  Even though the 

algorithm takes polynomial time, it is not practical for matching large data sets due to the 

high degree of complexity.  Moreover, based on the experiment, the original decision 

model gives about 35% errors of matching two entity sets.   

Like Dey et al., we aim to develop methodologies for efficient data merging.   

However, the run-time of our method is significantly faster.  In our method, we use a 

clustering tree for resolving object reconciliation problem.  Most of the run-time of our 

method was spent building the tree.  Using the clustering tree, we found that the number 

of matching errors was between 1% and 5% depending on cluster size and the expected 

number of duplicates that can be found in the given data set. 

Ontologies and Knowledge Representation 

In order to create a basis for reasoning about the meaning of and relationships 

among concepts, we need a common metadata knowledgebase that is generally 

understood. It will provide a standard for the meaning of concepts. Such a 

knowledgebase is called ontology [31].  Ontologies are application-specific and dynamic:  

Application-specific because each contains most of the commonly used terms and their 

definitions for a particular domain; dynamic because the knowledgebase can grow as the 

need arises to contain new and updated terms.  Ontologies have existed for many years 

and rules and guidelines have been worked out for their standardization.  In addition, 

there exist many support tools for creating, editing, and sharing ontologies (e.g., ontology 

editors [26]).  Ontologies are based on first order logic, making them powerful vehicles 

for reasoning about relationships.  Not all definitions have to reside in a single ontology 

because there are various algebras for manipulating the contents of ontologies (see work 

on ontology algebras [82]).  The Stanford Knowledge Sharing Group [44] is an excellent 
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source for comprehensive ontologies for many different applications.  We envision that 

sharing ontologies will someday be as commonplace as exchanging docume nts or e-mail. 

It is generally accepted that a domain-specific ontology is needed for data 

integration and data interchange. Several organizations (e.g., RosettaNet [58], 

CommerceOne [17], SchemaNet [59], XML/EDI [83] etc.) are working to specify 

standard ontology in the Business-to-Business (B2B) application domain.  Farquhar et al. 

[26] introduced a web-based tool for ontology construction and provide an online 

ontology repository managed by the ontology server [43].  Maluf and Wiederhold [51] 

provided the basic concepts of constructing ontology using knowledge representations 

and the interoperation approach. 

Mediation and Data Warehousing Systems 

The query system used in our system, IWIZ, combines the mediation and data 

warehousing approaches.  The data warehousing approach uses logically centralized, 

persistent storage to manage frequently accessed data and results of OLAP queries for 

faster retrieval.  The mediation approach is used to support on-demand querying of the 

underlying sources in case the desired data are not available in the warehouse.  The 

conceptual architectures of the mediation and warehousing systems are shown in Figure 2 

and Figure 3, respectively. 

In the mediation system, the information is extracted from the sources on-the-fly 

(i.e., only when queries are posed).  For each user or application, the mediator receives an 

input query and decomposes it into subqueries to access the appropriate set of 

information sources.  The mediator also merges the results of subqueries after the 

wrappers translate and filter the source information.  After the merging, the mediator 

returns the query result to the user or application.  Note that there is no persistent 
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repository to store the results of queries that may be posed multiple times; hence, it is 

inefficient in processing of frequently asked queries.  This approach may incur the delay 

in query processing due to the traffic of the network during the integration process.  

However, the mediation approach is suitable when the sources change rapidly and when 

clients pose ad-hoc queries. 

Source 1 Source 2 Source 3

Wrapper 1 Wrapper 2 Wrapper 3

Mediator 1 Mediator 2

User/Application 1 User/Application 2

Internal Views

Integrated Views

 

Figure 2: Schematic description of a mediation system architecture 

In the data warehousing approach, the information of interest is extracted from the 

source in advance and materialized in the warehouse for future use.  The wrappers 

translate and filter the source information. The integrator merges the relevant information 

from the sources and stores it in the warehouse.  The warehouse provides a uniform 

access of information; hence, clients can create their views via the view manager without 

considering how data are managed in each source.  The warehousing approach is suitable 
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when clients require high-performance of query processing, but do not require the most 

up-to-date information. 

Source 1 Source 2 Source 3

Wrapper/Monitor 1 Wrapper/Monitor 2 Wrapper/Monitor 3

Integrator

User/Application 1

Integrated View

Data 
Warehouse

View Manager
User/Application 2

Internal Views

 

Figure 3: Schematic description of a data warehousing system architecture 

In addition to the query system, other related research issues that need to be 

considered to design and build an integration system are global schema, common data 

models and representation, and mediation language. 

Global schema.  The purpose of the global schema is to provide a unified, 

integrated representation of relevant data from multiple sources.  Using the global view, 

users and applications, henceforth referred to as clients, can indirectly formulate queries 

against the underlying sources without having to understand the actual source schemas 

[34].  An integration system can use a global schema in three different ways.  The system 

can (a) have no global schema at all, (b) contain a single global schema, or (c) allow 

multiple global views, so-called federated schemas.  If the integration system has a global 
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schema, that schema can be either derived from the sources, so-called the integrated 

schema, or predefined by clients and/or the system administrator.  The TSIMMIS [12] 

mediation system has no global schema.  Instead, a client defines a view based on the 

source schemas.  The OASIS [57] and STRUDEL [27] warehousing systems allow 

multiple global views.  The Infomaster [23], MIX [5], and WHIRL [16] are mediation 

systems with a predefined, single global schema.  The MOMIS [9], WHIPS [46], and 

H2O [86] have a single global schema that is integrated from the source schemas.  The 

IWIZ hybrid system has a single global schema that is a set of hierarchical concepts 

derived from a set of ontology.  We assume that, in each application domain, a domain 

expert acting as a standards body has defined the ontology. 

Two different approaches for defining the global schema are global-as-view and 

local-as-view.  In the global-as-view approach, the global schema is defined as a view of 

local schemas.  In the local-as-view approach, each local schema is defined as a view of 

the global schema meaning that the data in each source should be defined in terms of the 

global schema and no the other way around.  The IWIZ system follows the local-as-view 

approach [34].  

Common Data Model and Representation. The choice of data model and 

representation is one of the most important issues for researchers in the information 

integration area.  Many proposals for data models are suitable for representing 

information in an integration system.  The model can be in the class of structured or 

semistructured data.  Structured data models include the ODMG’s object model, the 

relational data model, the logic-based model as well as combinations of the above.  

Semistructured data models include the Stanford’s Object Exchange Model (OEM), the 

graph-based data model, the XML-based data model and the like.  The ODMG’s object 



17 

 

model is used in Garlic [33], OASIS, MOMIS and WHIPS.  Infomaster uses the 

Knowledge Interchange Format (KIF), which is a logic-based model.  A frame logic-

based (i.e., deductive object-oriented) data model is used in the COIN system [11].  The 

OEM is used in the TSIMMIS and Information Manifold [49].  The graph-based data 

model is used in STRUDEL and WHIRL.  More recently, MIX [5] and IWIZ use the 

Document Object Model (DOM) [66] and XML [72] as the common data model and data 

representation, respectively.  The reason for using XML and DOM is that they can 

capture and represent in a convenient manner a wide variety of loosely structured 

information that is available on the Web. 

Mediation Language.  The data model and data representation affect the choice of 

mediation language used in the integration system.  There are many proposals for the 

language used in the mediator.  Description logics and their variants are used in the SIMS 

project [2], Information Manifold, and TSIMMIS.  The ODMG’s object definition 

language and its variants (e.g., ODL , GDL, MOQL, and Ulixes) are used in MOMIS, 

Garlic, OASIS and Araneus [4].  The XML-QL [19] is used in MIX. 

Many components and capabilities in IWIZ resemble those in MIX.  Both systems 

focus on XML-based source information.  They have a single predefined global view that 

clients can browse and query through a graphical user interface.  They have wrappers and 

mediator that translate, restructure, and reconcile source information. However, important 

differences exist between those two systems.  For example, MIX applies the mediation 

approach whereas IWIZ uses the hybrid data warehousing/mediation approach.  In other 

words, views in IWIZ can be materialized in a persistent storage, i.e., data warehouse, 

while those in MIX are virtual.  In addition, IWIZ focuses more on automating conflict 

resolution on the schematic and semantic levels with the help of existing information and 
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tools such as the ontology and standard dictionary.  In MIX, a “mediator engineer” looks 

at the source schemas and information and pre-defines the single global view based on 

those schemas and information; hence, the resolution of potential conflicts is manually 

specified when the global view is built.  In IWIZ, the global view is defined 

independently from the source schemas using the ontology structure.  Therefore, the 

mapping of the global view and the source schemas is needed and it can be done 

automatically with verification from the system administrator.  In other words, IWIZ 

reduces the system administrator’s tasks of building the global view.  In MIX, the 

mediator only contains modules for query processing, query planning and query 

optimization.  In IWIZ, the mediator is capable of conventional query evaluation and can 

learn how to fuse, cleanse, and reconcile information. 

Meta-Search Engines 

A Meta-Search Engine (MSE) is a tool that accesses multiple (local) search 

engines [22, 84, 85].  It retrieves documents and ranks them according to their relevancy 

to the search phrase provided by the user.  This meta-search engine is built on top of 

multiple local search engines (e.g., AltaVista, Yahoo, Infoseek). 

The IWIZ, on the other hand, is an information integration system that provides 

an interface for users to access multiple heterogeneous sources: the user provides a query, 

and data is retrieved from one or more sources, merged and returned to the user.  

However, what constitutes a query in MSE is different from that in IWIZ.  In MSE, a 

query (which is really more like a request and not a query) contains a list of keywords 

describing the contents of the desired documents (e.g., in form of Web pages) each of 

which is represented as a vector.  In IWIZ, queries are represented using a formal query 
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language (e.g., XML-QL, SQL) and describe not only the desired contents but also the 

structure in which the results are to be returned. 

In addition, MSE and IWIZ differ in the way that they treat and process the input 

data and query result.  In IWIZ, we are focusing on sources that contain mainly 

semistructured data.  The data are represented in the form of records (e.g., elements 

inside an XML document, records in an RDBMS, or individual facts in a text document) 

which can be fetched and returned to the user.  In the case of MSE, the smallest level of 

granularity is a text document and the decision whether or not to return a particular 

document as part of the answer depends on the occurrence of search key values in the 

document.  In IWIZ, a result is made up of one or more facts, whereas in MSE a result is 

made up of one or more documents that may or may not contain the desired facts. 

Furthermore, the query results of IWIZ are represented using the schema or 

structure specified in the query.  In other words, facts are integrated based on a user-

defined schema.  This is different from MSE whose query result is a ranked list of one or 

more retrieved documents.  No integration is performed.  

The IWIZ contains several components.  The two important ones relevant to the 

work discussed here are the mediator, responsible for multi-source query processing, and 

one or more wrappers for source-specific data access.  In a sense, the IWIZ mediator 

plays the role of the MSE, whereas wrappers play the roles of the local search engines.  

However, the way queries and results are processed inside the mediator and the MSE are 

different.   

Given a user query, in IWIZ, the mediator decomposes the query into a set of 

mediated queries that will be sent to wrappers to access the requested data from the 

sources.  Each query is specifically tailored to the results and query capabilities of the 
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underlying wrapper/source combination. The query decomposition is based on 

knowledge about the sources and the mediation specification that outlines the order and 

fashion in which the subqueries are to be processed.  In MSE, given a user query, the 

MSE forwards the query to one or more local search engines to retrieve data in the form 

of documents.  Note that the query is not decomposed. 

In IWIZ, after a given query is decomposed, the mediator sends queries to the 

wrappers associated with the data sources to access the data objects.  The schema or 

structure of the data from the source may be different from the user-defined structure 

specified in the query.  Hence, the data from the sources needs to be restructured.  In 

MSE, after selecting data sources, the meta-search engine invokes the local search 

engines associated with the selected data sources to access a set of useful documents.  

The local search engines may have to retrieve substantially more documents in order to 

guarantee that the desired documents are included in the result [84].  In addition, due to 

heterogeneities of sources, different local search engines may have different term-

weighting schemes and different similarity functions. Therefore, the results from different 

local search engines may be incomparable and improperly ranked.  In general, the search 

engines are autonomous and do not reveal the term-weighting schemes and the similarity 

functions they use [84].    

In MSE, when the documents from different sources are retrieved, the meta-

search engine compares the distances between the query and the retrieved documents 

(i.e., it computes the global similarity or score) and sorts them in a non-increasing order 

in a single ranked list which is returned to the user.  In IWIZ, when the data objects from 

different sources are returned, the mediator merges the results into one integrated final 

result after cleansing the data (e.g., correcting inconsistencies) and eliminating duplicates. 
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After the data is integrated at the mediator, the result may need to be restructured again to 

conform to the user view specified in the query (since the global view used by the IWIZ 

mediator may not be identical to the view specified by the user).  

A clustering technique is used for merging data.  The data objects are clustered 

based on a distance function that is derived from several similarity functions that are 

provided for different types of data objects.  The distance function specifies how likely it 

is that two data objects represent the same real world object.  Each object can have sub-

objects (attributes).  The distance function between two objects of the same type is 

derived from the distances of corresponding sub-objects (attributes) and a set of weights 

associated with each sub-objects (attributes).  The weight indicates how the sub-object 

(attribute) affects the clustering and can be adjusted ma nually by users (semi-automatic 

approach). 

To make these assignments totally automated, we add a learning capability in the 

mediator.  We can apply the same approach that is introduced in MSE and that is used for 

estimating a term-weight scheme, a local similarity function, and a threshold in each local 

search engine.  The mediator sends probe queries to the sources.  When the data are 

returned from the sources, the mediator cleanses, clusters and fuses the data using the 

distance function and preset values of the weight and other parameters.  Then, users 

evaluate the merged result and provide feedback.  Based on the feedback, the mediator 

adjusts the weight value and other parameters. Note that with this approach, different 

users can provide different feedback. This approach can be performed at built-time to 

accelerate the run-time query process.   

In conclusion, both MSE and IWIZ mediator are tools to access data from 

multiple sources. However, they differ in (a) the format of the user query, (b) the 
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representation of the retrieved data sources, (c) the representation of the query result, and 

(d) the details of query processing and result merging.  Although similarity functions are 

used in both MSE and IWIZ, in MSE, they are classified as global and local ones and are 

used for database and document selections, respectively.  In IWIZ, the similarity function 

together with a set of parameters form a distance function that is used to determine how 

likely it is that two data objects represent the same real world concept. A learning 

capability is added into the IWIZ mediator to automatically assign an appropriate value 

for each parameter.  A probe query is sent to the source to get a sampling data set.   This 

approach is similar to that in MSE.  Unlike MSE, the IWIZ mediator merges the results, 

returns it to the user, and waits for feedback.  Finally, based on the feedback, the values 

of each parameter are adjusted. 
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CHAPTER 3 
EXTENSIBLE-MARKUP-LANGUAGE-RELATED TECHNOLOGY 

The work in this dissertation focuses on XML-based, semistructured data whose 

schema may vary.  The concept of using XML to represent and manage data is relatively 

new.  Many proposals involving XML-related components have been submitted to the 

World Wide Web Consortium (W3C) and are being revised.  Some of those proposals 

have been approved and recommended by the W3C.  With respect to W3C’s 

recommendations, this Chapter is dedicated to provide the reader with brief introduction 

and background information on XML and its related technologies. 

Extensible Markup Language (XML) 

Extensible Markup Language describes a class of data objects called XML 

documents [72].  Data object instances are declared in an XML document (DOC) file.  

The structure of a document is defined by an optional Document Type Definition (DTD).  

The DTD can be either included in the DOC file or stored in a separate DTD file which is 

referred to by the corresponding DOC file.  If they are in the same file, the DTD must be 

declared in the beginning of the document before the actual contents start (i.e., in the 

prolog portion).  An XML document is well-formed if it meets requirements outlined in 

[36, 37, 72].  One way of verifying a well-formed XML document is using Internet 

Explorer 5.0.  The document is valid if it is well-formed and associated with at least one 

DTD describing the structure of the document.  
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The XML was introduced as a way to capture and represent more of the semantics 

than HTML to facilitate the exchange of information.  Goldman et al. [30] argue that 

XML should not be considered as a true data model since its specification does not define 

how to translate an XML document into data structures.  Using this viewpoint, XML can 

be regarded as a language for representing information with data semantics.  However, 

the World Wide Web Consortium (W3C) introduces the Document Object Model (DOM) 

[66] as a data model for XML.  Moreover, the consortium provides working drafts of 

related XML components.  For example, the eXtensible Stylesheet Language (XSL) [73] 

provides a framework for transforming XML and expressing stylesheets of a particular 

XML document.  The XML Linking Language (XLink) [75] provides a framework for 

linking related XML documents, for linking the XML documents and metadata, and for 

linking multiple databases that reside in a location separate from the linked resources.  

The XML Pointer Language (XPointer) [76] provides a framework for addressing the 

internal structures of XML documents.  The concept of XML Namespace [74] allows the 

identification and specification of elements and attributes across XML documents. The 

identification and specification is a collection of names that are used in XML documents 

as element types and attribute names.  The XML Schema [78-80] provides a richer and 

more specific way for defining a database schema than the XML DTD Core structure.  In 

addition, XML Schema is an extension of XML meaning that the underlying structure of 

a data schema that is specified by XML Schema is the XML DTD Core structure.  

However, by the time we started developing the IWIZ system, the tools (e.g., document 

parser) to manage XML Schema were not yet available.   
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Document Object Model (DOM) 

As mentioned previously, DOM is introduced to be a data model for XML.  We 

refer to DOM as a DOM Core structure.  There are several extensions of DOM such as 

DOM Views [70], DOM Events [68], and DOM Styles [69] that build on the Core 

structure and that we are not using.  At the time of writing this dissertation, there are 

three levels of DOM.  The recommendations for DOM level 1 and 2 have been approved, 

whereas that for DOM level 3 [71] currently under revision.  Basically, DOM level 3 

builds on DOM level 2 [67], which builds on DOM level 1 [66].  The DOM 

recommendations mainly contain a set of platform- and language-neutral interfaces to 

create and manipulate the structure and contents of a document.  The document that we 

refer to can be HTML, XML or any other document that contains semistructured data that 

can be parsed into the DOM structure.  

The atomic DOM structure is a Node object. The Attr, Element, Document, 

Text and other objects are special types of Node object. The Document object 

represents the entire document which can be considered a hierarchy of Node objects.   

The Element object represents an XML element which can contain other elements 

including associated attributes.  The Attr object represents an XML attribute of a 

particular element.  The Text object represents either an attribute value or the data value 

for a particular element. 

Query Language for XML 

The availability of large amounts of data on the Web creates a need for tools for 

querying, extracting, transforming, and integrating data from documents [19].  The 

Structured Query Language (SQL) and Object Query Language (OQL) are standard 
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query languages for manipulating data from relational databases and object-oriented 

databases, respectively. For semistructured database, several research groups have 

proposed query languages such as Lorel [1, 30] and YaTL [14, 15].  However, each of 

those languages was originally designed for manipulating only data that was represented 

in a data model, which is different from the XML-based data model.  Because of the 

popularity of using XML to represent data on the Web, the functionality of manipulating 

XML data was added to those languages.  Since then, many more query languages for 

XML data such as XML-QL [19], XSLT [81] and XML Query Algebra [77] have been 

proposed.   

Although Lorel, YaTL and XML-QL were developed independently by different 

research groups, they have similarities in their design approach and similarities of 

capability for querying XML documents.  The similarities and differences among those 

three query languages are outlined in [28].  Like SQL, XML-QL has a SELECT-WHERE 

construct which comes in form of WHERE and CONSTRUCT clauses.  The WHERE 

clause has two parts. The first part specifies input data, its schema, and location.  The 

second part, which is optional, indicates a set of filters or conditions.  The CONSTRUCT 

clause identifies the structures of user-defined views.  Inside both WHERE and 

CONSTRUCT clauses, the schema is declared as the hierarchy of tags, the fundamental 

component in XML.  Since XML-QL is more syntactically related to XML than Lorel 

and YaTL, IWIZ follows syntax of XML-QL for the design of the system query 

language.   

XSLT was originally designed for use as part of XSL, which is a stylesheet 

language for XML [73, 81].  One can view XSLT as a query language for XML because 
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it can transform one XML document to another XML document.  XSLT uses the 

formatting vocabulary included in XSL to describe how the document is transformed into 

another XML document.  The transformation is specified in the form of rules.  Not only 

do users need to know the schema or structure of view and input data, but they also need 

to understand the predefined, formatting vocabulary, like HTML, to create an XSLT rule. 

Users who understand only the schema of the input data can easily and quickly write an 

XML-QL query rather than XSLT rules to generate their own view. 

B

VT U

?? *

<B> --> Set1
  <V>v2a</V>
  <V>v2b</V>
  <V>v3b</V>
</B>
<B> --> Set2
  <T>t3</T>
  <V>v3a</V>
  <V>v3b</V>
</B>
<B> --> Set3
  <T>t4</T>
  <U>u4</U>
  <V>v4</V>
</B>

WHERE
  <B>
    <T>$t</>
    <V>$v</>
  </> IN SRC
CONSTRUCT
  <B>
    <T>$t</>
    <V>$v</>
  </>

WHERE
  <B>$b</> IN SRC
</>
CONSTRUCT
  <B>
    {WHERE <T>$t</> IN $b 
     CONSTRUCT <T>$t</>
    {WHERE <V>$v</> IN $b 
     CONSTRUCT <V>$v</>}
  </>

<B>
  <T>t3</T>
  <V>v3a</V>
</B>
<B>
  <T>t3</T>
  <V>v3b</V>
</B>
<B>
  <T>t4</T>
  <V>v4</V>
</B>

Ontology

Source Data

XML-QL query from the 
perspective of the user (Q1)

Query Result (R1)

<B>
  <T>t3</T>
  <V>v3a</V>
  <V>v3b</V>
</B>
<B>
  <T>t4</T>
  <V>v4</T>
</B>

Same query written in the 
perspective of the IWIZ system  (Q2)

Query Result (R2)

 

Figure 4: Two different representation of the same XML-QL query. 

Recently, the XML Query Algebra (QA) was introduced as a formal basis for an 

XML query language [77].  Theoretically, QA is as powerful as all other query languages 

mentioned above. Unlike XML-QL, QA does not use XML, but a mathematics-like 

notation for expressing query.  Since QA is only a recommendation to the XML 
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standards committees at this point, no QA query processor has been implemented at the 

time of this writing.   

As we mentioned earlier, IWIZ follows the syntax of XML-QL for the design of 

the system query language.  Semantically, however, IWIZ’s query language is different 

from XML-QL.  To show the differences in query processing between XML-QL and 

IWIZ, a scenario is given in Figure 4.  Suppose an XML source contains three sets of 

elements of type B whose schema can be described as follows: Each element of type B 

consists of zero-or-one element of type T, zero-or-one element of type U, or zero-or-more 

elements of type V.  Let us assume that, the first set contains one element of type B that 

has three elements of type V; the second set contains one element of type B that has one 

element of type T and two elements of type V; the last set contains one element of type B 

that has one element of type T, one element of type U, and one element of type V.  

Assume further that users want to query for elements of type B in the second set without 

changing the contents of each element of type B.  If users write a single, non-nested query 

(refer to Q1 in Figure 4) to the XML-QL processor, the processor will return the result 

(refer to R1 in Figure 4) containing a Cartesian product of subelements of the root 

element of type B from the second set of the source data (shown at the bottom left corner 

of Figure 4).  The result R1 is incorrect in IWIZ environment in which each data source 

may contain partial information.  To get the correct result (refer to R2 in Figure 4), users 

need to write the nested query (refer to Q2 in Figure 4) instead.  Note that the more 

hierarchical the structure of the subtree root element, the higher the degree of nesting of 

the query.  In IWIZ, we simplify the task of our users by allowing them to send the non-

nested query (Q1) to IWIZ.  The result (R2) corresponding to the nested query (Q2) is 
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returned.  To make this happen, IWIZ has its own query processor which is extended 

from the original XML-QL processor.  IWIZ’s version of the query processor is 

partitioned into three modules each of which is encapsulated in different IWIZ 

components (Warehouse Manager, Mediator and Wrapper.)  The detail of IWIZ 

architecture is provided in Chapter 4. 

Another goal of IWIZ is to shield users from source details (e.g., API, schema, 

vocabulary).  Therefore, the IWIZ query processor needs to collect all partial results from 

the sources and merge the results, whereas XML-QL processor will access only the full 

result (i.e., elements that satisfy the input query) from the sources, and ignore partial 

results at the sources.  As shown in Figure 4, with respect to query Q1, XML-QL will not 

return the element of type B in the first set since the element contains incomplete 

information (i.e., the user asks for elements of type T and V in element of type B, but the 

first set contains only elements of type V.), whereas IWIZ will internally access from the 

source such incomplete elements which can possibly be merged to other incomplete 

elements that come from other sources. 

Parser for XML 

Extensible Markup Language is a language that is used for representing data 

objects which are declared in an XML document (i.e., text file).  Like other languages 

(e.g., HTML, VRML, C, Pascal, etc.), XML needs a parser to parse the objects declared 

in the document and store those objects into a data structure so that we can easily 

manipulate them.  The parsers for XML can be categorized into two groups, SAX 

(Simple API for XML) and DOM, depending on the underlying data model the parser 
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uses.  Both SAX and DOM parsers provide a set of APIs for manipulating XML 

documents.   

The most important difference between SAX and DOM is that DOM represents a 

document as a tree of nodes, whereas SAX represents a document as a sequence of events 

(i.e., it calls a handler function as each chunk of XML syntax is parsed and recognized).  

Because of the event-based approach, a drawback of SAX is that it does not support 

random-access manipulation of documents as is supported by DOM, which allows 

random-access to any node in the document tree.  On the other hand, SAX allows users to 

create their own custom object model by constructing a class that listens to SAX events, 

whereas DOM already provides an object model for users.  

In IWIZ, we are using a DOM parser to parse XML documents, since it provides 

a set of utility routines to manipulate the objects declared in the documents.  In addition, 

the DOM parser is also used inside the XML-QL query processor that is invoked by each 

IWIZ component.  Two DOM parsers are used in IWIZ: IBM’s and Oracle’s DOM 

parsers. Both provide the same basic APIs that has been recommended by W3C.  

However, by the time we started building the IWIZ system, Oracle’s parser provides a set 

of APIs that allows us not only to parse an XML document but also to individually parse 

an XML DTD file.  In IWIZ, it is very important to have such functionality since we have 

to annotate the ontology which is defined in an XML DTD file.  Therefore, Oracle’s 

parser is used in each IWIZ component, as opposed to XML-QL query processor which 

uses a parser from IBM. 
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CHAPTER 4 
INFORMATION INTEGRATION FRAMEWORK 

A basic problem of integrating heterogeneous data sources is that a real-world 

object is represented differently in different data sources in terms of both structure and 

semantics of the data.  To resolve this problem, we are developing an integration system 

which contains components to resolve the conflicts that can occur when two data sources 

containing related and overlapping information are accessed simultaneously.  The system, 

called Integration Wizard (IWIZ), combines existing mediation and warehousing 

approaches to improve performance and functionality of traditional integration systems. 

The data warehousing approach uses a logically centralized, persistent data store for 

frequently accessed data and results of OLAP queries to speed up retrieval.  The 

mediation approach supports on-demand querying of the underlying sources in case the 

desired data is not available in the warehouse.    

The design of the system is based on the following two premises.  First, a user can 

browse the global ontology, which is defined by a domain expert as a set of hierarchical 

concepts for a particular application, without knowing where the actual data are stored 

and in which native format they are represented.  The user can query the data based on 

the schema in the global ontology. We envision that the users will put together the 

structure and associated data constraints that specify the desired result by pointing and 

clicking through the concept hierarchies in the ontology using a GUI.  
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Second, the result for a user query is stored in a data warehouse to provide a) 

persistence, b) efficient support for frequently asked queries including the ability to let 

the user refine the result further without having to go back to the sources, and c) 

automatic maintenance of the result in light of changes to the sources.  We envision that 

sources can come and go which means that there will always be a lag-time between what 

the system “thinks” is available and what is indeed available.   

Integration Wizard System Architecture 

An overview of the IWIZ system is shown in Figure 5.  System components can 

be classified into two categories: Storage and control. Storage components include the 

sources, the warehouse, and the metadata repository.  Control components include the 

wrappers, the mediator, the warehouse manager, and the querying and browsing 

interface.  In addition to those components, there is a set of information flow in the 

system not shown in the figure. This information flow refers to global schema, query and 

data.  

We relate the Global schema (GS), for a particular application, to a set of 

hierarchical concepts derived from the system ontology.  We assume that, in each 

application domain, a domain expert is responsible to define the ontology.   

The system manipulates the data through a set of queries.  There are four types of 

query: User query, warehouse query, mediated query, and restructured query.  The users 

generate user queries through the user interface.  The warehouse manager creates 

warehouse queries to access data from the warehouse and to request the mediator to 

collect data from the sources.  The mediator produces mediated queries to request data 
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from the sources via the restructuring engine.  Inside each wrapper, the restructuring 

engine generates restructured queries to access the source. 
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Figure 5: Schematic description of the IWIZ architecture and its main components 

In IWIZ, data are represented as a set of XML documents.  The name of the type 

of data is based upon which controlling component produces the data.  The sources 

provide the requested source data to be integrated.  The wrappers translate and restructure 

the source data into the restructured data and provide them to the mediator.  The mediator 

produces the mediated data to answer a warehouse query by fusing the restructured data 

and cleaning the redundant and overlapping data.  The query result refers to the final 

answer for a given user query. 

Now we are ready to identify the components in IWIZ starting from storage to 

control components:  
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Sources. Ideally, the sources can be structured (e.g., relational and object-

oriented), unstructured (e.g., text document), or semistructured (e.g., Web data).  

However, XML-based, semistructured sources are the current focus of this research.  We 

refer to the XML-based, semistructured information as the underlying source 

information.  We assume that all data are represented using XML together with the 

corresponding DTD which explains the schema of the data.  If the underlying sources 

have no explicitly defined DTD, one must be generated.   

Warehouse (WH). It is a repository that stores user-query results.  It provides fast 

access for frequently asked queries and persistence for XML documents.  To warehouse 

data items that are declared in an XML document, a data model is needed.  Although 

Document Object Model (DOM) is the data model that is more related to XML data than 

the relational or object-oriented data model, there are few systems for persistently storing 

DOM objects.  Therefore, an alternative is to use an existing database management 

system, such as a Relational Database Management System (RDBMS), an Object-

oriented Database Management System (ODBMS), or an Object-Relational Database 

Management System (ORDBMS). We are using the Oracle’s XSU (XML SQL Utility for 

Java) to persistently store data items. The XSU provides a Java API to store and access 

XML documents using Oracle8i’s relational database manager.      

Metadata Repository (MR). It serves as a persistent repository for storing 

auxiliary data such as global schema, information about sources, internal information, 

and restructuring and mediation specifications. To manage the metadata, the management 

system used to maintain the WH can be applied.  
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Wrapper. Its tasks are to 1) map underlying data model used in the underlying 

sources into a common data model used in the integration system, 2) map the structure of 

data represented in the underlying sources, i.e., the source schema, into semantically 

equivalent concepts defined in the ontology, 3) take a mediated query and transform it to 

a restructured query to access the underlying source with the help of the mapping 

generated in the first task, and 4) restructure the underlying source data.  

Mediator. Its tasks are to 1) collect metadata and information about underlying 

sources and store them into the metadata repository, 2) transform a warehouse query into 

a set of mediated queries and send them to corresponding wrappers, and 3) merge 

restructured data and return them to users via the warehouse manager. 

Warehouse Manager. Its tasks are to 1) take a user query and analyze whether or 

not the requested data are in the warehouse, and 2) return a result that can be either found 

in the warehouse or acquired from the mediator to users via the Querying and Browsing 

Interface. 

Querying and Browsing Interface. Its tasks are to 1) provide a graphical user 

interface to allow users to query and browse information in the system, and 2) show the 

query result of a user query in easy-to-understand form. 

Information Reconciliation 

In the previous section, we provided a design framework for an information 

integration system and explained the functions in each component inside the system.  In 

this section, we present an operational approach to integrate heterogeneous data sources.  

Our approach is applicable not only to our integration system, IWIZ, but also to other 
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integration systems having similar components.  Therefore, by default, we will refer to 

IWIZ as a generic integration system unless we specifically indicate otherwise. 

We differentiate our integration system into three operational phases: Metadata 

Construction (MC), Data Access (DA), and Metadata and Warehouse Maintenance 

(MWM).  They are executed at build-time, run-time and maintenance-time, respectively.  

The main focus of the MC phase is to analyze the schema of the underlying source data 

and to collect all information about the sources.  The main focus of the DA phase is to 

analyze information about the sources in order to accelerate and automate the 

restructuring and merging of similar and overlapping information. Finally, the main focus 

of the MWM phase is to update in periodic intervals the information about the sources 

and revisiting the process of analyzing the source schema and to revise the process of 

analyzing the source schema, when the data and the sources are changed.  

The MC phase is very important since we envision that all metadata that we 

constructed in this phase will automate and accelerate the integration process in the DA 

phase.  This approach is different from other approaches in that we emphasize the 

significance of the built-time activities.  We refer to the metadata collected in the MC 

phase as a set of specification information.  However, to decide what kinds of metadata 

should be constructed at built-time, we need to understand the overall integration process 

at run-time.  In addition, we need to be aware of how to manage the metadata so that it 

can be easily accessed, updated and manipulated at both run-time and maintenance-time.   

Note that, inside each system component (e.g., Wrapper, Mediator, etc.), those 

three phases operate sequentially. However, if we consider the entire system, they are not 

totally sequential.  For example, at built-time, the mediator is responsible for collecting 
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all information about the sources and the data residing in the sources.  To do so, the 

mediator may need to send sample queries to the wrappers to get the data to be 

integrated.  Each wrapper can automatically process the query as long as it has the 

specification that must be constructed beforehand.  That means the MC phase of the 

mediator includes executing the specification in each wrapper against the query from the 

mediator to get the data that has been restructured and ready to be analyzed. 

The focus of this research is to develop more efficient and accurate algorithms for 

reconciling data inside the mediator. Therefore, the next sections will emphasize the 

details of each operational phase in the mediator.  For the whole system, the overview of 

each operational phase can be found in [34]. 

Metadata Construction  

As a whole, the primary goal of the Metadata Construction (MC) phase is to 

generate two different sets of rules for converting source data from its native 

representation into the integrated format specified by the ontology (recall that we refer to 

the ontology as a set of concept hierarchies for a particular application):  (a) for each 

source, a source-specific restructuring specification for carrying out the schema 

alignment, and (b) a single mediated specification for carrying out the query processing 

and data merging.  The rule sets for both activities are generated into subsequent steps 

and will be used as inputs to the restructuring engine (a module inside the wrapper) and 

the mediator respectively of the data access phase at run-time. 

The ultimate goal of the MC phase is to populate the integrated schema with 

relevant data and store them into the data warehouse for future fast access.  We envision 

that there is a set of queries whose (partial) results can be derived from a more general 

query (i.e., the answer of the query with a constraint is a part of the answer of the query 
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without the constraint).  For example, the queries, “given ISBN number of a book, show me 

all information about the book.” and “given an author of a book, show me the name and ISBN of 

the book.” can be answered by projecting the answer of the query “show me all information 

about the book.”  We can see that the last query is more general than the first two queries.  

We use the warehousing approach to reduce the time of processing the query and access 

the data at run-time.  
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Figure 6: Metadata construction inside the IWIZ mediator 

Initially, we assume the warehouse is empty (i.e., no integrated data is stored in 

the warehouse).  We also assume that there exists a global schema derived from a set of 

one or more ontologies.  The global schema describes a set of concept hierarchies of the 

application area of interest. It is stored in the Metadata Repository (MR). For example, 

suppose we have configured IWIZ to access bibliography data on-line. We assume that 

there is an ontology containing concepts of book, article, proceedings and other type of 

publications. We refer to a global schema as a set of structural definitions of each concept 
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in the ontology. The global schema is sometimes also referred to as target schema during 

the built-time restructuring and merging process. 

Figure 6 shows the processes for the Metadata Construction phase of the 

mediator.  They can be explained as follows: First, the mediator sends a set of sample 

queries to each wrapper to poll sample data set as well as the information about the 

sources such as the availability and reliability of each source (i.e., which underlying 

source contains which subsets of the hierarchical concepts defined in the ontology, and 

which source is more reliable if the sources contain overlapped data).  Second, each 

wrapper returns a training set of the restructured XML documents (DOCR in Figure 6). 

Based on the global schema (DTD* in Figure 6), the mediator analyzes those documents 

and resolves the conflicts among them by merging the documents. The outcomes of this 

process are the clustering-decision tree (see Chapter 7) and a draft of the mediation 

specification.  Next, the system administrator verifies the draft of the mediation 

specification and the hierarchical clustering tree. Finally, the approved mediation 

specification and the hierarchical clustering tree are stored in the metadata repository for 

future use. 

Data Access  

As a whole, the goal of the data access phase is to allow the end-users to browse 

the concept hierarchies and access the integrated data that are either stored persistently in 

the data warehouse or requested from the underlying sources without knowing which 

source(s) they come from and in which native format they are represented.  In this 

situation, the data warehouse (DWH) and the metadata repository (MR) have been set up 

during the built-time.  The MR stores the global schema information, the restructuring 
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specification and the mediation specification.  The system will use such information to 

process the user query and give the result to the user.   

Input Query

Mediated 
Query

(MQ) #1

Mediation
Specification

Mediation
Specification

Metadata
Repository

Query 
Decomposition 

Aligned 
Source 1

XML
DocR

Mediator’s QRE

Mediated 
Query

(MQ) #n
…

Aligned 
Source n

XML
DocR

Mediator’s DME

Data 
Composition 

…

Query Result

XML
DocM

 

Figure 7: Data access inside the IWIZ mediator 

Figure 7 shows two processes in the Data Access phase of the mediator.  Those 

two processes are Query Decomposition (QD) and Data Composition (DC) each of which 

is performed inside two sub-components of the mediator, namely Query Rewrite Engine 

(QRE) and Data Merge Engine (DME).   

In the QD process, the Query Rewrite Engine inside the mediator takes an input 

query from the warehouse manager.  Then, based on the mediation specification, the 

mediator decomposes the input query into a set of mediated queries (MQs).  In the mean 

time, it also generates the query plan that specifies the sequences of join operators for 

combining partial result from the individual sources.  Finally, each MQ is sent to the 
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wrappers that will restructure the query and process the query to access the underlying 

sources.    

The DC process starts when the result of each MQ is returned from the wrappers 

as a set of restructured XML documents (DOCR).  By following the mediation 

specification and the query plan given by the Query Rewrite Engine, the Data Merge 

Engine fuses those documents, and resolves the conflicts caused by the overlap of similar 

and related that data.  The outcome of this process is the query result represented as a 

merged document (DOCM).  

The details of our algorithm for reconciling data inside the mediator are provided 

in Chapter 6. A classification of conflicts that must be resolved is given in the next 

Chapter. 
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CHAPTER 5 
CONFLICT CLASSIFICATION FOR XML-BASED SEMISTRUCTURED DATA 

 
In the previous chapter, we proposed an operational approach to accomplish the 

information reconciliation in the mediator and its data merge engine.   In this chapter, we 

classify the conflicts that can occur among XML-based, semistructured data into three 

main classes: Structural, domain and data conflicts.  Structural conflicts arise when the 

schemas of the data sources that will be integrated exhibit discrepancies.  Domain 

conflicts arise when the schemas and domains of the data sources that will be integrated 

exhibit discrepancies. Data conflicts arise when the semantics of the data sources that 

will be integrated exhibit discrepancies. The class of structural conflicts includes 

generalization conflicts, aggregation conflicts, internal path discrepancy, missing items, 

element ordering, constraint and type mismatch, and naming conflicts for elements and 

attributes.  The class of domain conflicts includes schematic discrepancies, scale or unit 

discrepancies, discrepancies with precision, and data representation conflicts.  The class 

of data conflicts includes the ID-value conflicts, missing data, incorrect spelling, and 

naming conflicts for element contents and attribute values.  In our integration system, 

resolving structural and domain conflicts is the responsibility of the wrappers and has 

been described in a related research effort [53, 64].  Resolving data conflicts is the 

responsibility of the mediator.  A detailed treatment of structural and domain conflicts 

among related XML data sources is provided in our technical report [56]. 
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The basic problem that must be resolved in the mediator is to identify the same 

real-world object that is differently (and partially) represented in the sources.  To 

illustrate the problem, consider the two Book elements shown in Figure 8. 
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Figure 8: Two Book Elements from Two Different Sources 

Both Book elements are from two different XML-documents (i.e., sources).  In 

the real world, they represent the same book.  Therefore, when a user queries for this 

book, the system should return only one copy of this element in the query result.  

However, mapping these two elements may not be straightforward, since both elements 

contain several conflicts.  The figure shows several types of data conflicts.  The Name of 

the first Author of the bottom Book, “Henry”, is misspelled as “Herry”; hence, 

misspelling conflict occurs.  The Names of the second Author of each Book, 

“Abraham Silberschartz” and “A. Silberschartz”, represent a synonym conflict since they 
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represent the same person but are expressed in different values.  The ISBN for the top 

Book is missing; a missing item conflict is created.  The Publisher, “MGH”, of the 

bottom Book is an acronym for the Publisher, “McGraw-Hill”, of the top Book; an 

acronym conflict is created.  Last but not least, all first Author values of each Book 

refer to the same person, but they have different id values; an ID-value conflict is 

created. 

Note that both Book elements have the same underlying structure.  In other 

words, each Book contains the subelements Author, Title, ISBN and Publisher.  

This is the result of the schema restructuring that is performed by IWIZ wrappers which 

transform elements whose structure is defined in the source schema into elements whose 

structure is defined in the target schema. Consequently, all elements provided to the 

mediator have the same structure as the one defined by the global schema.  However, in 

the global schema, the substructure of an element may also be associated with some 

constraint e.g., exactly-one, one-or-more, zero-or-more, and zero-or-one.  For example, 

the global schema defines the structure of the Book element to contain at least one 

Author. Different Book elements represented in an XML document may have different 

number of Author subelements. One Book may have two Author subelements, 

whereas another Book may have only one Author subeleme nt.  Thus, the missing item 

conflicts occur.  

In Figure 8, we only show the data conflicts between sub-elements (e.g., 

Author, ISBN, and Publisher) of a particular element (e.g., Book). The data 

conflicts can occur between attributes associated to a particular element as well. For 

example, in Figure 8, if both sources represent a Publisher as an attribute of Book 
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element, instead of a sub-element of Book element, the acronym conflicts still exists.  In 

conclusion, all data conflicts arise when contents of two elements or attributes exhibit 

discrepancies.   

In the next chapter, we describe a new hierarchical clustering model as a part of 

resolving the data conflicts that we have mentioned.   The model considers the case that 

an element in one source partially agrees (on common attributes, and/or subelements) 

with other elements in the other sources.  
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CHAPTER 6 
HIERARCHICAL CLUSTERING MODEL 

To resolve data conflicts such as those described in the previous chapter, we have 

developed a new hierarchical clustering (HC) model. The model considers the case that 

an element in one source partially agrees (on common attributes and/or subelements) with 

other elements in the other sources.  In the example in Figure 8, both Book elements 

agree on all subelements except ISBN whose value is missing from the top Book 

instance.  In addition, the HC model does not assume that elements from the same source 

must be distinct (i.e., we allow the case where elements occurring in the same source can 

represent the same real-world element).  

Generally speaking, the hierarchical clustering model contains a set of distance 

functions and a clustering tree.  The distance functions define the closeness of two 

(XML) elements based on their subelements and attribute values.  The clustering tree is 

the hierarchical structure of a set of clusters.  In the following sections, we will explain 

the framework of choosing the clustering tree, defining the distance functions, as well as 

the clustering strategies that we have developed for carrying out the data reconciliation.   

A Framework for Clustering Trees  

The concept of clustering elements is not new, especially in the spatial database 

and data mining communities.  However, it has never been applied to data integration.  

Many clustering trees have been proposed such as the R-tree and its variants, the Metric-

tree and its variants, as well as the classification tree. For our own hierarchical clustering 
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model, the question whether to construct a new tree or choose an existing tree originally 

applied in other research areas was one of the driving forces behind this dissertation 

work.    

The clustering tree is a tree that contains a set of clusters.  Each cluster contains a 

set of elements that are related to each other.  The most suitable tree structures for this 

dissertation work are those that have a small run-time complexity for the construction 

phase and that result in a low percentage of the errors during element matching.  By 

small run-time complexity, we mean that the tree should be built in polynomial degree 

time.  By low percentage of errors during matching, we generally aim to 10% or less.   

There are two types of errors when matching elements.  A False alarm arises 

when the integration system indicates that two elements match, although they are 

unrelated in the real world.  A false dismissal arises when two elements, which are 

related in the real world, are mismatched.  The number of false alarms is counted from 

the number of comparisons between two elements, which represent different real-world 

entities, in the same cluster. The number of false dismissals is counted from the number 

of comparisons between two elements, which represent the same real-world entities, from 

different clusters. The total number of errors is obtained by accumulating the number of 

false alarms and false dismissals.  Finding an appropriate trade-off between false alarms 

and false dismissal is a research problem.  

As we mentioned, constructing a new tree or choosing an existing tree originally 

applied in other research areas is another important research problem.  The following 

defined our framework in which we have designed our clustering tree: 
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Distribution of Data  

Data can be uniformly distributed or highly correlated.   Uniform distribution 

means that the data are distributed evenly across all dimensions.  High correlation means 

that the data occupy only some subspace of a high-dimensional space.  In the data 

integration domain, the data are non-uniformly distributed but may be highly correlated.  

However, related data elements may occupy different subspaces of the high-dimensional 

space, and unrelated data elements may occupy the same subspace in the high-

dimensional space.  For example, in Figure 8, two Book elements are related since they 

represent the same book, but one has an ISBN number, whereas the other does not.  In 

addition, let us assume that there is another element of type Proceedings that has the 

same structure as the Book element except Proceedings does not have an ISBN.  

When we map those elements into the high-dimensional space (each dimension represent 

the subelement of the elements), the first Book element having no ISBN may be closer 

to the Proceedings element than the second Book element containing the ISBN.  

Thus, in the data integration domain, the distribution of the data is correlated due to 

overlapping of data values.   

Types of Data   

A data object is considered to be a spatial data item when it can be mapped to a 

point in a multi-dimensional space.  In the data integration domain, data objects may not 

be easily mapped to a point in a multi-dimensional space.  For example, when mapping 

two text values, one normally uses edit distances as a measure of how closely related they 

are, instead of transforming those values into the points in multidimensional space.   
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Characteristics of the Input Data Set 

Some of the existing tree structures, such as the X-tree, work very well for 

dynamic data sets because the tree is robust under insertion (i.e., it reorganizes the 

directory to avoid repeated disk accesses for searching).  In the data integration domain, 

the input data set is static meaning that, at the data merging process, the size of the input 

data is known in order to construct the proper size tree. After the merging process, the 

tree is removed from the memory or temporary disk space.  

Domain Spaces 

As we mentioned early, the matching of the objects can be performed in either 

Euclidean space or Metric space. In the Euclidean space, the distance between two 

objects is measured by using the Euclidean function.  In the Metric space, the distance 

between two objects is measured by using a function that satisfies symmetry, non-

negativity, and triangular inequality properties.  Each existing tree (e.g., M-tree, R-tree) 

was designed to suite for different object spaces.  In the data integration domain, the tree 

should be optimized to this particular application domain; namely it should support object 

clustering in the Metric space, because we are matching the semistructured data objects 

(i.e., XML elements) that are correlated and whose schema is flexible. 

Cluster Size   

Cluster size determines the number of elements in a cluster.  Should the size of 

each cluster be uniform (i.e., every cluster have the same number of elements)?   Can the 

size of each cluster be variable (i.e., each cluster can have a different number of 

elements)?  These and other questions need to be considered since the size of the cluster 

is parameter that indicates the number of errors as well as the difficulty of an algorithm 

for generating a clustering tree.  If the size of each cluster is uniform, the algorithm for 
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generating a clustering tree is straightforward, since the number clusters in the tree is the 

ratio of the number of data items and the cluster size.  If the size of each cluster is 

variable, the algorithm for generating a clustering tree is complicated since the number of 

clusters cannot be predicted.  However, the variation of cluster size may be able to 

provide more accurate results because of a greater probability of placing data items that 

represent the same real-world entities into the same cluster and that represent the 

different real-world entities into different clusters.  

Tree Operations 

The most common operations on a tree are insertion and deletion.  In the data 

integration domain, we need to consider trees that provide fast construction time i.e., the 

insertion of an element into the tree should be fast.  Deletion of an element is not a major 

concern.  

Design Approach 

The tree can be built in either top-down or bottom-up fashion.  In the top-down 

approach, as the first step, all elements are in one single cluster.  The single cluster is 

decomposed into two or more sub-clusters based on the similarity of the object.  Then, 

each sub-cluster is recursively decomposed until no cluster can be decomposed further 

(i.e., until the number of elements in each cluster is less than or equal to the maximum 

cluster size).   In the bottom-up approach, as the first step, if there are N elements, there 

are N clusters each of which contains only one element.  Next, clusters that are closed to 

each other (i.e., clusters of which distances between center points is below some 

threshold) are merged into bigger clusters. This process proceeds recursively until all 

elements are in a single cluster. In this research, we have considered both design 

approaches.  Using the top-down approach, building a clustering tree can be expensive 
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because the comparisons between elements are repeated every iteration for decomposing 

a single cluster.  Using the bottom-up approach, building a clustering tree can avoid 

repeating of comparison between elements since a new element can be located in a 

cluster as soon as it has been compared to an element in that cluster and the two elements 

are closed to each other (i.e., elements of which distances between them is below some 

threshold).  However, the implementation of algorithm for building a clustering tree using 

the bottom-up approach is usually more complicated than that using the top-down 

approach.    

Overlapping Clusters   

A more complex situation arises when clusters overlap.  Does the tree allow 

overlapping of clusters?  Are elements restricted to membership in one cluster or can they 

exist in multiple clusters simultaneously? Those are some of the questions that we had to 

address.  If we allow overlapping clusters, this situation may affect the computation time 

and the number of errors.  Overlapping clusters can reduce false alarms (because they 

increase the probability that data items representing the same real-world object are in the 

same cluster).  However, it can increase false dismissals because the same item can 

appear in different clusters; hence the overall error, which consists of both false 

dismissals and false alarms, may increase.  Additional comparisons among elements in 

the overlapping areas may have to be performed to reduce error.   

Split/Decomposition Strategies   

The term “split” is normally used for trees that are designed in a bottom-up 

fashion whereas the term “decomposition” is normally used for trees that are designed in 

a top-down fashion.  In the top-down approach, the decomposition strategy designates the 

shape (structure) of the trees.  In the bottom-up approach, the split strategy must give the 
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split result that satisfies the tree properties (e.g., every node in the tree contains entries no 

more than 70% of the node capacity). The split/decomposition strategies are very 

important because they account for most of the construction time of the tree.  Different 

strategies can have different goals.  For example, the ball decomposition guarantees the 

balance of the tree for top-down construction.  Most strategies used in the bottom-up 

construction attempt to achieve minimum-volume (size) and minimum-overlap of the 

clusters.  As the first step of the decomposition, a focal object, called a pivot object, is 

selected.  Some split strategy such as generalized hyperplane may need more than one 

pivot object.  The pivot object(s) can be selected randomly from the objects in the same 

cluster.  Second, the distance from the pivot object(s) to all other objects in the same 

cluster are calculated.  Then, the cluster is decomposed based on some heuristic.  For 

example, one heuristic is to randomly pick the distance that has been calculated in the 

second step.  Another heuristic is to pick the median of the distances that has been 

calculated in the second step.  More complicated heuristics can be applied as well.   

The framework explained above will be used to investigate and evaluate 

heuristics for building our clustering tree. As we have mentioned, our hierarchical 

clustering model contains a clustering tree and a set of distance functions.  In the next 

section, we will provide the detailed implementation of distance functions in our 

hierarchical clustering model. 

Distance Functions 

The original purpose of the metric-tree is to provide an index structure to speed up 

range and nearest neighbor queries.  The implementation of the distance functions for the 

metric-trees is considered as a black box meaning that different sets of distance functions 
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can be implemented differently in different application domains. Choosing an appropriate 

distance functions is very important since it is used to measure the (dis)similarity 

between two elements.  Distance functions are sensitive to their application domain and 

need to be chosen based on the types of comparisons made.   

For those trees that operate in the Euclidean space, selecting a distance function is 

trivial since the Euclidean function itself can be applied.  Instead, the problem is how to 

select an appropriate transformation function that transforms an object into a point in the 

Euclidean space.  A good transformation function should preserve the original distance 

between two objects after they have been mapped into points in the Euclidean space.  

For those trees that operate in the Metric space, the distance function must satisfy 

the symmetry, non-negativity and triangular inequality properties as described in Chapter 

2.  To satisfy the symmetry property, the distance from an object x to an object y must be 

equal to the distance from object y to object x.  To satisfy the non-negativity property, the 

distance for each pair of different objects must be positive and the distance from an 

object to itself must be zero.   To satisfy the triangular inequality property, the distance 

from an object x to an object y must not be greater than the sum of the distances from 

object x to another object z and the distance from object z to object y.   

Since we use a metric-tree to match objects, finding appropriate distance 

functions that are well suited for the metric space is a major focus.  The objects that we 

are dealing with can be primitive or complex. A primitive object is an object that contains 

a single value.  A complex object is an object that contains one or more objects which can 

be either primitive or complex.  Therefore, suitable distance functions can be classified 

into two categories: Primitive distance functions, and complex distance functions.   
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Primitive Distance Functions 

The distance between two primitive objects can be defined based on the type of 

the data value.  For binary data types (e.g., yes/no, female/male), the distance between 

two primitive objects may be defined as 0 or 1 depending on their values.  For numeric 

data types (e.g., integer, float), the distance between two primitive objects may be defined 

as the absolute value of the difference of the their values.  For nominal data types (e.g., 

color can be either blue, brown or black), the distance between two primitive objects 

must be obtained from the user based on the user’s viewpoint for matching the values of 

the objects. For string data types, the distance between two primitive objects may be their 

edit distance which can obtained by counting the number of insertions, deletions, and 

changes of the characters that separate the two strings.  The distance between two strings 

representing English terms can be defined based on synonym, homonym, and acronym 

relationships between the two strings.  In addition, the distance between two strings can 

also be defined based on a typographical error.   

For our research, since the data we are dealing with are semi-structured and are 

represented in XML format, the type of data values inside primitive objects are strings.  

Hence, we are using the edit distance function to measure the similarity of two 

semistructured objects. Other distance functions for other data types may be applied in 

the future. The edit distance can be obtained by finding the longest common subsequence 

of characters.  

Complex Distance Functions 

The distance between two complex object instances can be recursively derived 

from the distances between the corresponding sub-objects.  Unlike structured data objects 

whose schema (i.e., structure) is rigid, semistructured data objects have flexible 
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structures.  Therefore, the distance function for complex object instances must capture the 

features that compare the contents of such complex object instances and that can compare 

those instances whose contents are partially equivalent.  In XML terminology, we refer to 

an object instance as element which can contain other elements and which can have a set 

of associated attributes.  The object instances are declared in a document as element 

instances, whereas their structures can be defined in an accompanying DTD which may 

be stored in the same document or in a different file.   

Let C1 and C2 be two element instances of a complex element C.  Let p
iS  be the 

element instance of element Sp for some running numbers p and i. The element p
iS forms 

the content of element C.  Let q
iA be the value of attribute Aq, for some running numbers 

q and j. The attribute Aq is associated with element C.  We model the distance function 

between instances C1 and C2 based on a weighting scheme of element C.  Let EWp and 

AWp be the weight values associated with element Sp and attribute Ap of element C, 

respectively.  In general, the distance function, ∆ , between the two instances of the 

complex element C is defined as follows: 
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If element Sp is a complex element, pS∆ is defined in the same way as C∆ . Otherwise, 

the element Sp is a primitive element; thus, a primitive distance function is applied (e.g., 

an edit distance function is applied when the element Sp is type of string).  The distance, 

qA∆ , between two attribute values is defined as a primitive distance function for a 

particular attribute type (e.g., numeric, binary, string, qualitative). 
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In XML, there are four types of element constraints e.g., zero-or-one, one-or-

more, zero-or-more, and exactly-one, and four types of attribute constraints e.g. 

#IMPLIED, #REQUIRED, #FIXED and DEFAULT.  Because of variations of element 

and attribute constraints, the distance function for each type of constraint is provided as 

follows.  Consider a complex element C that contains a list of elements one of which is 

element S1.  Element instances C1 and C2 are of type C.  If the constraint associated with 

element S1  is “exactly-one” (i.e., an instance of element C must contain exactly one 

instance of S1), the distance between C1 and C2 can be computed as follows:  

...)*(),( 11
21 +∆=∆= SWCCCDist E     

If the constraint associated with element S1 is “zero-or-one”, and the instances of S1 are 

declared inside both C1 and C2, the distance between C1 and C2 is the same as in the case 

of the exactly-one constraint.  However, if there is only one instance of S1 which is 

declared inside one of the two element instances, say C1, the distance between C1 and C2 

can be computed as 

...)*(),( 21 +∆+=∆= pp
E SWCCCDist θ  ,   

where θ  is equal to 0, if pp
E SW ∆* ≠ 0, for ∃p∈Ν and  p ≠ 1.  Otherwise, it is equal to 

infinity. We will use the notation element1.element2 to denote the fact that 

element2 is a child of element1.  Let C1.
iS1 and C2.

iS1 be the ith instances of S1 

declared in C1 and C2, respectively.  If the constraint associated with element S1 is “one-

or-more”, the distance between C1 and C2 is as follows: 

...))}.,.({min*(),( 1
2

1
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1
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If the constraint associated with element S1 is “zero-or-more”, the distance between C1  

and C2 is derived from the cases for one-or-more and zero-or-one constraints. 

In case of attribute constraints, consider attribute A1 of element C.  Let 1
1A and 1

2A  

be attributes declared inside C1 and C2, respectively.  Let 1
1V and 1

2V  be values of the two 

attributes. Let AW1 be the weight of attribute A1. If the constraint of A1 is “#REQUIRED”, 

the distance between C1 and C2 is as follows: 

...),(*),( 2
2

1
1

1
21 += VVDistWCCDist A .      

Note that the distance function for attribute values is primitive.  If the constraint of A1 is 

“#IMPLIED”, and if one of the two attribute values is null, the distance between C1 and 

C2 is as follows: 

...)*(),( 21 +∆+=∆= qq
A AWCCCDist θ  ,   

where θ  is equal to 0, if qq
A AW ∆* ≠ 0, for ∃q∈Ν and  q ≠ 1.  Otherwise, it is equal to 

infinity.  If the constraint of A1 is “#FIXED”, 1
1V and 1

2V  must be fixed and both are 

identical; hence, the distance between the two values is always zero.   If the constraint of 

A1 is DEFAULT, and if one of the two values is not declared, the default value will be 

used; hence, the distance is obtained by comparing the default value with the other. 

To compare object instances in the Metric space, it is required that the distance 

functions that we use must satisfy the symmetry, non-negativity, and triangular 

properties. Since we are using the edit distance function, the argument that this distance 

function satisfies the first two properties is straightforward.  We currently use the edit 

distance function for comparing primitive objects.  The distance between two string 

values is always non-negative.  In addition, the distance from the first string to the second 

string is equal to the distance from the second string to the first string.  The edit distance 
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function also preserves the triangular property. Our distance function for complex 

elements is derived from primitive distance functions.  It contains only the weighted 

summation and multiplication of primitive distances.  Since underlying primitive function 

never produces negative values, the non-negativity property is satisfied.  Moreover, since 

the primitive function preserves the triangular property, so does the function for 

comparing complex elements.  The distance from one complex element instance to 

another is equivalent to the reverse distance. Thus, the symmetry property is also 

preserved.  

One component in our clustering model is a set of distance functions that can be 

either a primitive or a complex distance function.  Another component in our clustering 

model is a clustering tree for which a framework has been explained in the first section of 

this chapter.  Choosing an appropriate clustering tree to conform data items depends on a 

heuristic that is used to build the clustering tree.  In the next section, we will introduce a 

set of heuristics that we have investigated, evaluated and implemented.  

Clustering Heuristics 

In this research project, we provide three heuristics for building the clustering 

tree.  They are All-Pair-Comparisons-based heuristic (AC), Selected-Comparison-based 

heuristic (SC), and M-tree-based heuristic (MT). The algorithms for building the 

clustering tree using these heuristics are provided in this section.  The qualitative analysis 

of those heuristics is deferred to the next chapter.   
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All-Pair-Comparisons-Based Heuristic (AC) 

When this heuristic is used to build the clustering tree, the distances for every pair 

of items are calculated.  Given a set of N items and the maximum number k of items that 

can be placed into the same cluster. The clustering tree is constructed as follows: 

1. For each pair of items, calculate the distance between them.  Let D be the list 

of all distances.  Since the distance from item i to item j is equal to the 

distance from item j to item i, the size of the list is N(N+1)/2. 

2. Sort the distances in D.  Let D* be the sorted list.  Each entry of D* contains 

the distance between two items. 

3. Based on the sorted list D* and the maximum cluster size k, generate the 

clustering tree containing N/k clusters.  Let A be a list of size N.  The jth 

entry of A indicates the cluster to which item j belongs.  Initially, each entry of 

A is null (i.e., no cluster is assigned for each item).  For each entry in D*, 

extract the identification number of items i, and j.  By starting from cluster 1, 

if the current cluster is not full, and both items i and j are not assigned into a 

cluster, place them into the current cluster. Otherwise, place them into the 

next cluster.  Update the assignment list.  

Theoretically, the run-time complexity of this algorithm is O(N2logN) time; the space 

complexity is O(N2).  The time taken in Step 2 dominates the time taken in other steps.  

The space for the distance list D indicates the overall space used in the algorithm. 
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Selected-Comparisons-Based Heuristic (SC) 

Unlike the AC heuristic, SC randomly picks a set of items, called pivots. Then, it 

compares all other items to these pivots.  Each pivot is the representative of each cluster 

that will be generated.  Using the SC heuristic, the clustering tree is created as follows: 

1. Given N items and maximum cluster size k, pick N/k pivots from the item 

set.  Calculate the distance from each pivot to all other items in the set.  Let D 

be a matrix of size N × N/k that stores the distances between items and the 

pivots.  Each row of matrix D represents an item.  Each column of the ma trix 

D represents a pivot.  

2. Sort the distances for each column of matrix D; then, sort the distances for 

each row.  Let D* be the sorted matrix.   

3. Allocate the clustering tree containing N/k clusters. Each cluster will contain 

exactly k items except the last cluster that will contain (N mod k) items. 

4. For each row i of matrix D*, look for column j such that D*[i,j] is a minimum. 

Let [p,q] be the original position of D*[i,j] in matrix D.  If the cluster q is not 

full, assign item p to cluster q.  Otherwise, find the next minimum value in 

row i of matrix D*, whose original position in matrix D is [p,r] and cluster r is 

not full.  Assign item p to cluster r.  For every item p that is assigned to cluster 

q, record the assignment into an assignment list, A, of size N.  The pth entry of 

A indicates the cluster which item p belongs to.  Initially, each entry of A is 

null (i.e., no cluster is assigned to an item).   
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5. For each entry i in A, if A[i] is null, assign item i to the last cluster (i.e., the 

N/kth cluster.) 

Theoretically, the run-time complexity of the algorithm is O([N2logN]/k) time; the space 

complexity is O(N2/k).  The time taken in Step 2 dominates the time taken in other steps.  

The space for the matrix D indicates the overall space used in the algorithm.  Note that 

the algorithm that uses the SC heuristic is faster and uses less space with the factor of k 

than the AC-heuristic based algorithm. 

M-tree-Based Heuristic (MT) 

Originally, the M-tree [13] was introduced as an index structure for large spatial 

data sets to speed up data comparisons in the Metric space.  As an index structure, the M-

tree is used to support range and k-nearest-neighbor queries and to speed up the response 

time for searching and querying the data in the set.  We are using the M-tree as a 

clustering tree to reconcile data.  The tree should be built fast and must fit into memory.   

An M-tree consists of a set of nodes each of which contains a list of entries and a 

pointer to its parent. Each entry of an internal node of M-tree stores a routing-object that 

is used for searching a place in the tree to insert a new object (note that we are only 

focusing on insertion of the new objects).  In addition, the entry of the internal node 

contains a pointer to the root of the sub-tree, covering radius of the routing-object and the 

distance of the routing-object to its parent.  The covering radius is the maximum distance 

of the distances from the routing-object to its children.  Each entry in a leaf node of an 

M-tree stores an object or a pointer to the object and the distance from the object to the 

(routing-) object stored in the parent node.   
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The M-tree can be built by inserting the first object into an empty tree and 

continuing to insert new objects into a node of the tree, starting from the root and using 

the routing-object to obtain the path to the target node where the new object should be 

stored.  During the insertion, if the target node is a full leaf node, the node overflows and 

it must be split.  Splitting the overflow node creates a new node at the same level of the 

overflow node.  Some entries inside the overflow node are transferred to the new node 

with using a partitioning criterion; hence, the overflow node becomes a non-empty node.   

After that, the new node is promoted to its parent.  If the parent node is full, it must be 

split as well.  If the source node that is supposed to be split is the root, a new root node is 

allocated and stores into the new root the source node and the other node obtained from 

splitting.   

The performance of the M-tree with respect to indexing or clustering data objects 

depends on the policy that is used for splitting the tree.  Ideally, the split policy should 

promote the routing-objects and partition other objects so that a routing-object has a 

small covering radius and has small overlap with other routing-objects.  Ciacia et al. [13] 

introduce several strategies for picking routing objects.  Our M-tree uses random strategy 

to pick two routing objects from the set of object in the overflow node.  This strategy is 

very fast, simple and easy to implement.  For the partitioning objects from the overflow 

node, the experimental made by Ciacia et al. [13] showed that the generalized hyperplane 

decomposition performs very well with the random strategy for splitting the overflow 

nodes; thus, we decided to use the generalized hyperplane in connection with our M-tree.  

Recall that, using the generalized hyperplane decomposition, objects are conceptually 

partitioned into three sets based on two pivots.  The first set contains objects each of 



63 

 

which is closer to the first pivot.  The second set contains objects each of which is closer 

to the second pivot.  The third set contains the remains.  However, since splitting an M-

tree node requires two output nodes, we combine together the second and the third sets of 

the partition generated by the generalized hyperplane decomposition  

Based on the framework for choosing a clustering tree that we described in the 

first section of this chapter, we investigated clustering strategies that exist in data mining 

and spatial access methods, such as M-tree [13], and came up with two new heuristics, 

which are the All-pair-comparison-based heuristic and Selected-comparison-based 

heuristic. We have developed the three heuristics which are appropriate for constructing a 

clustering tree in the data integration domain where the data items are in a multi-

dimensional space and may be highly correlated.  Note that the original M-tree is 

implemented using C++; we adopted the algorithm of constructing an M-tree and 

implemented it using Java.  Clustering trees that are constructed by each of the three 

heuristics do not contain an overlapping cluster. The implementation of the three 

heuristics assumes that the clustering tree and all data items in a given data set must be fit 

into memory.  Two data items are compared using both primitive and complex distance 

functions depending on the structure of the data items.  The distance between two 

complex data items involves weight values that are associated with sub-structure of those 

data items.  The weight values are one of parameters that are used during the clustering 

process, and defined within a complex distance function.  The distance functions we use 

suit for comparing data items in Metric space where the distance functions must satisfy 

the symmetry, non-negativity, and triangular inequality properties, as described in 

Chapter 2. Using the All-pair-comparison-based and Selected-comparison-based 
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heuristics, a clustering tree is built in a top-down fashion because, as the first step, all 

elements are in one single cluster.  Using the M-tree based heuristic, a clustering tree is 

built in a bottom-up fashion because, at the beginning, each element is in an individual 

cluster.      

Our hierarchical clustering model is actually part of an overall framework for 

resolving conflicts as described in our technical report [56].  It is introduced to resolve 

data conflicts such as synonyms, homonyms, acronyms, ID-values, missing data, and 

spelling mistakes.  In our integration system, the wrappers resolve structural and domain 

conflicts such as aggregation, generalization, scale/unit and precision conflicts.  After 

that, the mediator compares the similarity among elements using both primitive and 

complex distance functions.  Then, the clustering tree is built.  At the end of building the 

tree, all objects from two or more sources are in one of the clusters that are at the leaf 

level of the tree.  Next, further matching among the elements in a leaf cluster may 

proceed.  If the matching continues, the shortest distance of each pair of elements 

indicates the similarity.  Otherwise, we assume all objects in the same cluster are 

matched.  

  



 

65 

CHAPTER 7 
QUALITATIVE ANALYSIS OF THE OBJECT MATCH TECHNIQUES  

In this chapter, we provide experimental results on the performance of the three 

heuristics mentioned in the previous chapter. The experiments evaluate the time 

complexity of the algorithms for constructing a clustering tree and the accuracy of the 

result of the element matching using the clustering tree. The accuracy is obtained by 

counting the number of false alarms and false dismissals. Based on our framework 

mentioned in the previous chapter, the experiments measure not only the efficiency of the 

algorithms but also the size of cluster (i.e., the maximum number of elements that can be 

in the same cluster) and the size of input data (i.e., the number of input elements.) 

Description of the Test Data 

The data used in our experiments was modified from a sample bibliography data 

set that was enclosed in the package of the XML-QL processor [3] developed at the 

AT&T Research Lab.  The original bibliography data set contains 722 journal articles, 

247 books, 6 book chapters, 100 collections, 635 proceedings articles, 23 manuals, 2 

Master’s theses, 40 Ph.D.’s dissertations, and 145 technical reports.  This data set is used 

as one of the data sources for our integration system prototype. Each publication is 

represented as an XML element.  Note that the data set contains no duplicate elements.  

Since the purpose of the experiments is to evaluate the efficiency of our hierarchical 

clustering model for data reconciliation (e.g., matching the elements and remove all the 

duplicates), we made the following changes: We chose two subsets of the bibliography 
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data set and generated duplicates including some variations of the data values (e.g., 

adding extra characters for each #PCDATA element) to simulate the fact that data values 

representing the same real-world concept from different sources may not match exactly.  

The first data set described above contains 20 Ph.D. dissertations.   

In addition, we changed the structure of Ph.D. dissertation elements to make it 

consistent with the structure of Ph.D. dissertation elements defined in the global 

Ontology DTD (see Appendix A for the full definition) that is used in our IWIZ 

integration system.  In IWIZ, this task is conducted by the wrappers which extract data 

from sources and convert them into the IWIZ internal data model of application schema. 

The structure of Ph.D. dissertation elements is shown in Figure 9, and contains one of 

Author, Title, School, and Year, respectively, as well as zero-or-one of 

Address, Month, Type and Note, respectively. Each Author contains one 

Lastname as well as an optional Firstname and an optional Address. 

<!ELEMENT PhdThesis (Author, Title,  
School, Address?,
Year,   Month?,
Type?,  Note?  )>

<!ELEMENT Address (#PCDATA)>
<!ELEMENT Author (Firstname?, Lastname, Address?)>
<!ELEMENT Firstname (#PCDATA)>
<!ELEMENT Lastname (#PCDATA)>
<!ELEMENT Month (#PCDATA) >
<!ELEMENT Note (#PCDATA) >
<!ELEMENT School (#PCDATA) >
<!ELEMENT Title (#PCDATA) >
<!ELEMENT Type (#PCDATA) >
<!ELEMENT Year (#PCDATA) >

 

Figure 9: Sample DTD describing the structure of the concept “Ph.D. Thesis” 

Our second data set is also a bibliography data set and contains 20 articles.  The 

structure of an Article element is shown in Figure 10.  Each Article element 
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contains one or more elements of type Author, one element each of type Title, Year 

and Journal, and zero-or-one element of type Address, Month, Type and Note. 

Each Author contains one Lastname and optional Firstname and Address.  Each 

Journal contains one Title, and optional Year, Month, Volume and Number.  

<!ELEMENT Article ( Author+, Title, Year, Month?,
Pages?, Note?, Journal )>

<!ELEMENT Address (#PCDATA)>
<!ELEMENT Author (Firstname?, Lastname, Address?)>
<!ELEMENT Firstname (#PCDATA)>
<!ELEMENT Lastname (#PCDATA)>
<!ELEMENT Journal (Title, Year?, Month?, 

Volume?, Number? )>
<!ELEMENT Month (#PCDATA) >
<!ELEMENT Note (#PCDATA) >
<!ELEMENT Number (#PCDATA) >
<!ELEMENT Title (#PCDATA) >
<!ELEMENT Type (#PCDATA) >
<!ELEMENT Volume (#PCDATA) >
<!ELEMENT Year (#PCDATA) >

 

Figure 10: Sample DTD describing the structure of the concept “Article”  

After creating the two data sets containing elements whose structure corresponds 

to the ontology, we first assigned a unique identifier to each element instances in each 

data set. The identifier number will help us to measure the accuracy of our clustering 

model.  

Using the sample base data sets, we synthesized six different data, which contain 

50, 100, 150, 200, 300, and 400 data elements, respectively.  In each data source, each 

element is duplicated by 5% of the total size (e.g., in data set of size 100, there are 5 

copies of each data element).  For each duplicate, we add two variations of the data 

values (i.e., two extra characters for each PCDATA values.)  For each synthetic data set, 

we calculate the minimum upper bound percentage of errors, as shown in Column 4 of 

Table 1.  That percentage indicates the number of matching errors relative to the total 
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number of data elements with no removal.  That percentage number is used as a basis for 

our evaluation.   

Table 1: Characteristics of data sets 
Data set  Size of data set 

(items) 
Average number of duplicates per 
element (items) 

Base error 
(in %) 

PhdThesis 50 2.5 4.00 
PhdThesis 100 5.0 4.79 
PhdThesis 150 7.5 4.76 
PhdThesis 200 10.0 4.86 
PhdThesis 300 15.0 4.98 
PhdThesis 400 20.0 4.96 
Article 50 2.5 4.16 
Article 100 5.0 4.67 
Article 150 7.5 4.85 
Article 200 10.0 4.93 
Article 300 15.0 4.94 
Article 400 20.0 4.90 

 
 
 

Experimental Results and Discussion 

In this section, we provide experimental results on performance and accuracy of 

our hierarchical clustering model.  We tested all three heuristics – All-Pair-Comparison-

based heuristic, Selected-Comparison-based heuristic, and M-tree-based heuristics – that 

are described in the previous chapter.  The experiments were based on the synthetic data 

sets described in the previous section.  The complete results of the following experiments 

are summarized in Appendix B.  In this chapter, we summarize our analysis of the 

experiments, focusing on several key experiments that illustrate the characteristics of the 

different clustering techniques. 
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Table 2: Results on “PhdThesis” data sets for all-pair-comparison-based (AC), selected-
comparison-based (SC), and M-tree-base (MT) heuristics with uniform weights using 
terms that are separated by no more than two variations in the spelling 

Time (sec) False alarm (%) False dismissal (%) Error (%) 
Test Description 

AC SC MT AC SC MT AC SC MT AC SC MT 
  50 items   3% cluster size 4 4 3 0.24 0.76 0.63 2.29 2.71 3.45 2.53 3.47 4.08
  50 items   5% cluster size 4 2 2 0.33 2.31 1.49 2.29 2.31 3.12 2.61 4.61 4.61
  50 items   7% cluster size 4 2 2 4.24 3.88 2.12 2.29 1.92 2.49 6.53 5.80 4.61
  50 items 10% cluster size 4 1 2 4.24 6.35 2.98 2.29 2.18 2.18 6.53 8.53 5.16
  50 items 15% cluster size 4 1 2 12.08 11.55 6.76 2.29 1.76 1.57 14.37 13.31 8.33
  50 items 20% cluster size 4 1 1 15.92 15.73 9.02 2.29 1.37 1.51 18.20 17.10 10.53
100 items   2% cluster size 14 14 6 0.14 0.25 0.34 3.92 4.03 4.52 4.06 4.27 4.86
100 items   3% cluster size 14 9 5 0.14 0.63 0.59 3.92 3.41 4.11 4.06 4.04 4.70
100 items   5% cluster size 14 5 4 1.76 1.93 1.15 3.52 2.68 3.31 5.27 4.62 4.46
100 items   7% cluster size 14 4 3 5.64 4.35 2.35 3.52 2.23 2.53 9.15 6.59 4.88
100 items 10% cluster size 14 3 3 7.58 6.56 3.58 3.27 2.25 2.01 10.85 8.81 5.59
100 items 15% cluster size 14 2 3 11.29 11.20 6.13 3.19 2.35 1.73 14.48 13.55 7.85
100 items 20% cluster size 14 1 2 17.56 16.47 10.42 3.15 2.07 1.39 20.71 18.55 11.81
150 items   2% cluster size 34 22 8 0.04 0.32 0.31 4.13 3.74 4.24 4.18 4.07 4.55
150 items   3% cluster size 34 14 8 1.33 0.84 0.81 4.10 2.91 3.79 5.43 3.75 4.61
150 items   5% cluster size 34 8 6 3.91 2.21 1.15 4.03 2.33 2.81 7.94 4.55 3.96
150 items   7% cluster size 34 6 6 5.27 3.75 2.02 3.99 1.93 2.06 9.26 5.68 4.09
150 items 10% cluster size 34 4 6 7.63 6.68 3.27 3.85 2.04 1.58 11.48 8.72 4.85
150 items 15% cluster size 34 3 4 12.55 11.59 6.81 3.54 2.17 1.43 16.10 13.76 8.25
150 items 20% cluster size 34 2 3 17.54 16.36 9.92 3.10 1.66 1.33 20.64 18.02 11.25
200 items   2% cluster size 62 30 11 0.88 0.28 0.32 4.25 3.63 4.22 5.14 3.91 4.54
200 items   3% cluster size 62 21 10 1.84 0.76 0.52 4.21 3.13 3.73 6.06 3.89 4.25
200 items   5% cluster size 62 13 9 3.85 1.76 1.16 4.23 2.10 2.81 8.08 3.86 3.97
200 items   7% cluster size 62 8 8 5.62 4.73 2.12 4.05 2.68 2.25 9.67 7.42 4.37
200 items 10% cluster size 62 6 8 8.52 6.64 3.42 3.93 1.95 1.65 12.45 8.60 5.07
200 items 15% cluster size 63 4 6 12.92 11.63 7.30 3.71 2.42 1.54 16.63 14.05 8.84
200 items 20% cluster size 63 3 5 17.94 16.04 9.90 3.40 1.31 1.13 21.34 17.35 11.03
300 items   2% cluster size 123 39 16 1.13 0.36 0.25 4.44 3.66 4.13 5.58 4.02 4.38
300 items   3% cluster size 124 28 14 1.64 0.68 0.58 4.30 3.00 3.69 5.94 3.68 4.27
300 items   5% cluster size 123 16 13 3.52 2.08 1.04 4.20 2.37 2.68 7.72 4.45 3.72
300 items   7% cluster size 121 11 13 5.87 4.22 2.14 3.95 2.30 2.50 9.81 6.52 4.65
300 items 10% cluster size 121 8 10 8.53 6.73 3.79 3.81 2.01 1.91 12.35 8.75 5.71
300 items 15% cluster size 122 6 8 12.54 11.41 6.94 3.46 2.18 2.03 16.00 13.59 8.97
300 items 20% cluster size 121 4 7 17.92 16.78 9.60 3.17 2.03 1.87 21.09 18.80 11.46
400 items   2% cluster size 233 57 23 1.24 0.40 0.30 4.45 3.61 4.09 5.69 4.01 4.39
400 items   3% cluster size 232 39 22 2.14 0.83 0.51 4.36 3.05 3.60 6.50 3.88 4.11
400 items   5% cluster size 232 23 20 4.04 1.77 1.25 4.27 1.97 2.66 8.31 3.73 3.91
400 items   7% cluster size 232 17 17 5.86 4.45 2.21 4.15 2.48 1.99 10.01 6.93 4.20
400 items 10% cluster size 232 12 14 8.71 6.71 3.46 3.95 1.90 1.58 12.66 8.61 5.04
400 items 15% cluster size 233 8 11 12.90 11.32 6.97 3.58 2.00 1.93 16.48 13.32 8.90
400 items 20% cluster size 234 5 9 18.07 16.49 10.71 3.33 1.65 1.15 21.40 18.14 11.86
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Table 3: Results on “Article” data sets for all-pair-comparison-based (AC), selected-
comparison-based (SC), and M-tree-base (MT) heuristics with uniform weights using 
terms that are separated by no more than two variations in the spelling 

Time (sec) False alarm (%) False dismissal (%) Error (%) 
Test Description 

AC SC MT AC SC MT AC SC MT AC SC MT 
  50 items   3% cluster size 7 7 5 0.65 0.98 0.76 2.78 3.10 3.67 3.43 4.08 4.43
  50 items   5% cluster size 7 5 4 0.65 2.45 1.76 2.78 2.61 3.45 3.43 5.06 5.20
  50 items   7% cluster size 7 3 3 4.57 4.29 2.69 2.78 2.49 3.08 7.35 6.78 5.78
  50 items 10% cluster size 7 3 3 4.57 6.27 3.78 2.78 2.27 2.80 7.35 8.53 6.57
  50 items 15% cluster size 7 2 2 12.41 11.73 9.14 2.78 2.10 1.92 15.18 13.84 11.06
  50 items 20% cluster size 7 1 2 16.49 16.51 9.47 2.29 2.31 2.00 18.78 18.82 11.47
100 items   2% cluster size 27 27 10 0.16 0.39 0.37 3.82 4.05 4.41 3.98 4.44 4.78
100 items   3% cluster size 27 18 8 0.16 0.97 0.68 3.82 3.64 4.01 3.98 4.61 4.68
100 items   5% cluster size 27 10 7 2.06 2.53 1.55 3.70 3.16 3.62 5.76 5.69 5.16
100 items   7% cluster size 27 7 5 5.82 5.25 3.38 3.58 3.01 2.93 9.39 8.25 6.32
100 items 10% cluster size 27 5 6 7.84 7.02 4.03 3.41 2.60 2.51 11.25 9.62 6.53
100 items 15% cluster size 27 4 5 11.66 11.74 7.55 3.43 2.77 2.09 15.09 14.52 9.64
100 items 20% cluster size 27 2 4 17.66 17.41 11.13 3.13 2.89 2.06 20.79 20.30 13.19
150 items   2% cluster size 63 42 15 0.11 0.50 0.41 4.29 4.01 4.42 4.39 4.51 4.82
150 items   3% cluster size 64 24 13 1.32 1.05 0.78 4.17 3.22 3.86 5.49 4.27 4.64
150 items   5% cluster size 64 16 13 3.79 2.42 1.51 3.99 2.63 3.07 7.78 5.05 4.58
150 items   7% cluster size 64 11 10 5.25 4.00 2.65 4.06 2.26 2.85 9.32 6.26 5.50
150 items 10% cluster size 63 8 10 7.49 7.03 4.48 3.79 2.49 2.75 11.28 9.52 7.23
150 items 15% cluster size 63 6 7 12.55 11.68 7.38 3.62 2.36 2.05 16.17 14.04 9.43
150 items 20% cluster size 63 4 7 18.19 16.85 10.81 3.58 2.23 2.20 21.77 19.08 13.01
200 items   2% cluster size 109 53 17 0.89 0.49 0.44 4.33 3.92 4.37 5.22 4.42 4.81
200 items   3% cluster size 109 35 16 1.90 0.86 0.70 4.34 3.30 3.89 6.24 4.16 4.59
200 items   5% cluster size 109 21 15 3.80 2.16 1.49 4.26 2.57 3.23 8.07 4.72 4.72
200 items   7% cluster size 109 15 14 5.60 4.76 2.59 4.11 2.78 2.74 9.71 7.54 5.33
200 items 10% cluster size 109 10 14 8.42 6.79 3.84 3.90 2.17 2.24 12.32 8.96 6.08
200 items 15% cluster size 108 7 9 12.89 11.36 8.40 3.75 2.22 2.97 16.64 13.58 11.38
200 items 20% cluster size 109 5 8 17.83 16.75 10.89 3.36 2.08 2.14 21.19 18.83 13.04
300 items   2% cluster size 256 84 28 1.13 0.55 0.38 4.40 3.81 4.20 5.53 4.36 4.58
300 items   3% cluster size 257 57 26 1.71 0.93 0.67 4.31 3.21 3.76 6.02 4.14 4.43
300 items   5% cluster size 257 31 25 3.53 2.36 1.64 4.15 2.61 3.29 7.68 4.97 4.92
300 items   7% cluster size 257 22 23 5.87 4.37 2.54 3.91 2.41 2.69 9.77 6.79 5.23
300 items 10% cluster size 258 16 20 8.50 7.33 4.66 3.80 2.57 2.45 12.30 9.90 7.10
300 items 15% cluster size 259 11 14 12.58 12.03 7.81 3.46 2.75 2.20 16.04 14.78 10.02
300 items 20% cluster size 259 7 12 17.86 17.00 12.47 3.20 2.20 2.79 21.06 19.20 15.26
400 items   2% cluster size 437 108 36 1.22 0.78 0.39 4.38 3.93 4.09 5.60 4.70 4.48
400 items   3% cluster size 439 70 34 2.10 1.53 0.67 4.28 3.70 3.68 6.38 5.22 4.34
400 items   5% cluster size 437 42 31 3.84 3.55 2.25 4.01 3.69 3.70 7.86 7.24 5.95
400 items   7% cluster size 435 28 33 5.77 5.55 2.73 3.98 3.52 2.84 9.76 9.07 5.58
400 items 10% cluster size 436 21 24 8.39 8.35 5.36 3.57 3.48 3.31 11.97 11.83 8.67
400 items 15% cluster size 435 14 18 12.86 12.74 9.13 3.48 3.36 3.21 16.33 16.10 12.34
400 items 20% cluster size 439 9 16 18.03 17.88 13.17 3.23 2.99 3.05 21.26 20.87 16.22
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There are two parts to the analysis of the experiments.  The first part concentrates 

on time complexity.  The second part concentrates on accuracy of the heuristics as it 

relates to the size of the data set.     

Table 2 shows the results of testing the All-Pair-Comparison-based (AC), 

Selected-Comparison-based (SC), M-tree-based (MT) heuristics on various “PhdThesis” 

data sets with uniform weights, using duplicate terms that are separated by no more than 

two variations in spelling.  Table 3 shows the results of testing the All-Pair-Comparison-

based (AC), Selected-Comparison-based (SC), M-tree-based (MT) heuristics on various 

“Article” data sets with uniform weights, using terms that are separated by no more than 

two variations in spelling.  The size of the data sets varies from 50 to 400 elements.  The 

maximum cluster size varies from 2% to 20% of the total data set.  We did not perform 

tests on data sets of size 50 with cluster size of 2% since each cluster would contain only 

one element and duplicates are not removed; hence, the query result is immediately 

returned without removing the duplicates.   
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Figure 11: Time complexity of each clustering heuristic using 2% of the total data set as 
cluster size on “PhdThesis” (left) and “Article” (right) data sets  
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cluster size = 3% of the size of data set
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Figure 12: Time complexity of each clustering heuristic using 3% of the total data set as 
cluster size on “PhdThesis” (left) and “Article” (right) data sets 
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Figure 13: Time complexity of each clustering heuristic using 5% of the total data set as 
cluster size on “PhdThesis” (left) and “Article” (right) data sets 

Let us consider the time complexity for each heuristic separately.   Figure 11 

through 13 show the time complexity of all three heuristics using cluster sizes of 2%, 3% 

and 5% of the total data set.  The results on both “PhdThesis” and “Article” data sets 

exhibit the same trend although more time is spent on the “Article” data sets due to the 

more complex structure and higher number of data values in the data sets.  In each case, 
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the MT heuristic performs fastest followed by the SC and the AC heuristics.  For small 

data set (i.e., data sets of size 50 items), Figure 14 zooms in on time complexity for each 

heuristic while varying the cluster size.   
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Figure 14: Time complexity for each heuristic on data set of size 50 items with variation 
in the cluster size on “PhdThesis” (left) and “Article” (right) data sets 
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Figure 15: Time complexity for the All-pair-Comparison-based heuristic on small data 
sets with variation in the cluster size for “PhdThesis” (left) and “Article” (right) data sets 

Figure 15 shows the time complexity for the AC heuristic on small data sets with 

variation in the cluster size.  The time for constructing a clustering tree mainly depends 
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on the number of element comparisons.  By using the AC heuristic, all elements are 

compared no matter how large the cluster size is.  As we can see from Figure 15, the time 

it takes to construct a clustering tree using the AC heuristic is constant for the same data 

set and is not affected by the cluster size.   
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Figure 16: Time complexity for the Selected-Comparison-based heuristic on data sets of 
medium size with variation in the cluster size for “PhdThesis” (left) and “Article” (right) 
data sets 

Figure 16 shows the time complexity for the SC heuristic on data sets of medium 

size with variation in the cluster size.  We can see that the SC heuristic is very sensitive 

to the cluster size.  In other words, the larger cluster size, the less amount of time it takes 

to construct the clustering tree using the SC heuristic.  The time for constructing a 

clustering tree mainly depends on the number of element comparisons.  By using the SC 

heuristic, the number of comparisons depends on the number of pivots, and the number of 

pivots is derived from the ratio of the size of data set to the cluster size.  As a result, for a 

data set of fixed size, the time it takes to construct a clustering tree using SC heuristic is 

related to the cluster size. 
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M-tree-based heuristic (MT)
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Figure 17: Time complexity for the M-tree-based heuristic on large data sets with 
variations in the cluster size for “PhdThesis” (left) and “Article” (right) data sets 

Figure 17 shows the time complexity for the MT heuristic on large data sets with 

variation in the cluster size.  As we expect, the larger the cluster size, the faster the 

element matching. This is because when the cluster size increases, the number of 

comparisons of elements decreases.  The time complexity for each heuristic with 

variation of cluster size is shown in Figure 14.  The figure only shows the result for data 

sets of size 50.   We can see that the SC heuristic performs faster than the MT heuristic 

on the large cluster sizes.    

The time complexities for the MT, SC and AC are O(NlogN), O([N2logN]/k) and 

O(N2logN) respectively, where N is the size of the data set and k is the number of 

clusters.  The time it takes to construct a clustering tree using the SC heuristic is 

obviously related to the cluster size as supported by our experimental result shown in 

Figure 16.  In addition, our experimental result in Figure 15 supports the fact that the time 

it takes to construct a clustering tree using the AC heuristic is unrelated to the cluster 

size.  Although, in theory, the time of constructing a clustering using MT heuristic does 
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not show that it is related to the cluster size, our experimental result in Figure 17 

indicates the contrary.  This is because the cluster size affects the maximum number of 

entries in an M-tree node.  When inserting a new entry into a node, if the size of the node 

is large, the possibility that the node is full is small; hence the total time it takes to split a 

full node is reduced.  

In theory, we expect that the SC should perform faster than the AC by a factor of 

k.  However, according to the experiments in Table 2 and 3 we see that the SC executes 

run k/2 times faster than the AC.  For example, on the “PhdThesis” data set,  if the size of 

data set is 100 items with the cluster size 3% of the total size, the absolute value of the 

cluster size is 3.  In this case, SC takes 9 seconds while AC takes 14 seconds.  This is 

because both heuristics spend most of their time on comparing elements.  The number of 

comparison for the SC heuristic is kN2 whereas that for the AC heuristic is N(N+1)/2.  
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Figure 18: Number of false alarms produced by each clustering heuristic using 2% of the 
total data set as cluster size on “PhdThesis” (left) and “Article” (right) data sets 
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Figure 19: Number of false alarms produced by each clustering heuristic using 3% of the 
total data set as cluster size on “PhdThesis” (left) and “Article” (right) data sets 
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Figure 20: Number of false alarms produced by each clustering heuristic using 5% of the 
total data set as cluster size on “PhdThesis” (left) and “Article” (right) data sets 

In the second part of analysis, we have concentrated on the accuracy of the three 

heuristics.  Figure 18 through 20 show percentages of false alarms produced by each 

heuristic under different cluster sizes.  The results show that, when the cluster size is less 

than 5% of the total data set size, the AC heuristic produces the fewest false alarms for 

data sets of size between 50 and 100 items.  Note that when the size of data set exceeds 
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than 100 items, the number of false alarms produced by the AC heuristic significantly 

increases.  Note also that on “PhdThesis” data sets the number of false alarms produced 

by the MT and SC seems stable when the size of the data set increases.  The reason is that 

the data set contains elements whose duplicates are in random order and both MT and SC 

heuristics partition the elements based on a number of pivots that are randomly picked 

form the elements in the set.  The AC heuristic, on the other hand, partitions the elements 

based on the sorted order of the distances between two elements.  Such distances were 

obtained with respect to the order of the elements in the data set. Therefore, the 

probability that the elements are mismatched when using the AC heuristic is higher than 

that when using either MT or SC heuristic.     
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Figure 21: Number of false dismissals produced by each clustering heuristic using 2% of 
the total data set as cluster size on “PhdThesis” (left) and “Article” (right) data sets 

Notice that, on the “Article” data set, the MT heuristic is superior in every case.  

On the “PhdThesis” data set, the SC heuristic sometimes produces fewer false alarms 

than the MT heuristic for data set sizes between 50 and 200 items when using 2% and 3% 

of the size of data set as cluster size.  However, when the size of the data set increases, 
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MT tends to give a better result.  In case that cluster size is 5% of the size of data set, the 

MT comes up ahead for every data set.  This is because SC has a fixed cluster size, 

whereas MT allows cluster size to vary; hence, MT can produce more clusters.  The more 

clusters, the more choices for putting an element into a cluster; thus, the number of false 

alarms decreases.  Although increasing cluster size causes a decrease in the number of 

clusters, the MT heuristic can still produce more clusters when compared with the SC 

heuristic, which is very sensitive to the cluster size. 
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Figure 22: Number of false dismissals produced by each clustering heuristic using 3% of 
the total data set as cluster size on “PhdThesis” (left) and “Article” (right) data sets 

Figure 21 through 23 show percentages of false dismissals produced by each 

heuristic under different cluster size.  A false dismissal occurs when an element is placed 

into one cluster and its duplicate is placed into another cluster.  Observe that the AC 

heuristic produces the fewest false dismissals for a small data set (i.e., data sets of size 

100 items or less).  It also produces more false dismissals than the other two heuristics on 

large data sets.  This is because in SC and MT heuristics each element may not be 

compared to all duplicates of such element.  For example, in SC heuristic, the element 
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and its duplicates were not compared to each other but to the pivots that are picked at 

random.  In MT heuristic, each element is compared to the routing objects which may not 

be one of the duplicates of the element.  Note that there is a higher probability of 

comparing the element and its duplicates when using MT heuristic than when using SC 

heuristic; thus, the SC heuristic produces fewer false dismissals than the MT heuristic.  

The SC heuristic produces the fewest false dismissals for a data set whose size is larger 

than 100 items.   
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Figure 23: Number of false dismissals produced by each clustering heuristic using 5% of 
the total data set as cluster size on “PhdThesis” (left) and “Article” (right) data sets 

Another observation is that when the size of the data set increases, the number of 

false dismissals increases for the AC heuristic.  This is because the AC places a pair of 

elements into a cluster in the order of the distances between those two elements.  The 

scenario can occur as follows: A pair of elements (e.g., the element and one of its 

duplicates) is placed into a non-empty cluster which fills the cluster.  Other copies of the 

element are then forced to be in another cluster.  
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Figure 24: Matching errors for each clustering heuristic using 2% of the total data set as 
cluster size on “PhdThesis” (left) and “Article” (right) data sets 
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Figure 25: Matching errors for each clustering heuristic using 3% of the total data set as 
cluster size on “PhdThesis” (left) and “Article” (right) data sets 

Figure 24 through 26 show percentages of errors produced by each heuristic on 

different cluster sizes.  The total number of errors includes the number of false alarms 

and the number of false dismissals.  Figure 24 through 26 have shown that, for any data 

set whose size is greater than 200 items, SC and MT heuristics can provide more accurate 

matching results than the AC heuristic.   However, for a small data set (i.e., the data set of 
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size less than 100 items), the AC heuristic provides a more accurate result than the other 

two.  Another observation is that both SC and MT heuristics can reduce the total numbers 

of errors for data sets of size larger than 100 items when the cluster size is less than the 

percentage of the base error. We measure base error from the number of matching errors 

relative to the total number of data elements with no removal. In addition, the SC 

heuristic performs well when the cluster size is small (e.g., 2% of the size of data set), 

whereas the MT heuristic performs better when the cluster size is larger (e.g., 5% of the 

size of data set). 
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Figure 26: Matching errors for each clustering heuristic using 5% of the total data set as 
cluster size on “PhdThesis” (left) and “Article” (right) data sets 

Figure 27 shows the number of false alarms, false dismissals and errors, which is 

the sum of the number of false alarms and false dismissals, when AC heuristic is used for 

data sets of size 50 items with variation in cluster size.  According to the figure, the AC 

heuristic provides the most accurate matching result when the cluster size is between 3% 

and 5% of the size of data set.  The number of errors is reduced by 18% and 36% with 

respect to base error for the “Article” and “PhdThesis” data sets, respectively.   
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Figure 27: Matching errors produced by the All-Pair-Comparison-based heuristic with 
variations in the cluster size for data set of size 50 items on “PhdThesis” (left) and 
“Article” (right) data sets 
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Figure 28: Matching errors produced by the Selected-Comparison-based heuristic with 
variations in the cluster size for data set of size 150 items on “PhdThesis” (left) and 
“Article” (right) data sets 

Figure 28 shows the number of false alarms, false dismissals and errors, which is 

the sum of number of false alarms and false dismissals, when using SC heuristic for data 

sets of size 150 items with variation in cluster size.  According to the figure, the SC 

heuristic provides the most accurate matching result when the cluster size is 3% of the 

size of data set.  The number of errors is reduced by 12% and 21% with respect to the 

base error for the “Article” and “PhdThesis” data sets, respectively. 
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MT heuristic on 300 items in the data set
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Figure 29: Matching errors produced by the M-tree-based heuristic with variations in the 
cluster size for data set of size 300 items on “PhdThesis” (left) and “Article” (right) data 
sets  

Figure 29 shows the number of false alarms, false dismissals and errors, which is 

the sum of number of false alarms and false dismissals, when using MT heuristic for data 

sets of size 300 items with variation in cluster size.  According to the figure, the MT 

heuristic provides the most accurate matching result when the cluster size is between 3% 

and 5% of the size of data set.  The number of errors is reduced by 10% and 25% with 

respect to the base error for the “Article” and “PhdThesis” data sets, respectively. 

In Figure 27 through 29, observe that when the cluster size increases, the number 

of false alarms increases as well, but the number of false dismissals decreases.  The 

reason is that increasing the cluster size forces more elements into the same cluster, 

which increases the probability that an element and its duplicates are co-located. This 

reduces the number of false alarms.  It also increases the probability that two different 

types of elements are co-located, which increases the number of false dismissals.  The 

smallest number of errors is produced when the cluster size is less than 5% of the size of 

the data set.  It is interesting to note that the base error is also about 5% of the size of data 
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set.  Recall that the base error was measured from the number of matching errors relative 

to the total number of data elements with no removal.  Therefore, the appropriate cluster 

size should be no larger than the base error.  Note also that all data sets used for the 

experiments contain 5% duplicates. Hence, the base error can be estimated from the 

expected number of duplicates that can occur in the data set.  For example, assume a data 

set that contains items that are obtained from multiple sources.  If we assume that all the 

duplicates in the data set are from different sources (i.e., each sources provides a subset 

of distinct items), the expected number of duplicates is equal to the number of sources 

that provide the data items.  Therefore, the base error is the ratio of the number of sources 

to the total number of data items obtained from every source.   If some duplicates can be 

from the same source, we need statistical information about the source (e.g., the expected 

number of duplicates in each source) to estimate the base error.  As we apply the 

clustering techniques to speed up the matching process at run-time, the statistics can be 

obtained during the built-time process.  The detail of the processes at built-time and run-

time are described in the next chapter.  

From these results, the AC heuristic provides the best performance and accuracy 

when matching elements for a small data set (i.e., data sets of size no larger than 100 

items).  For a large data set (i.e., data sets of size larger than 300 items), MT is the 

preferred choice.  For data sets of size between 100 and 300 items, MT performs faster 

than SC, but overall SC provides more accurate results.  Choosing a heuristic is a trade-

off between the time it takes to complete the matching and the accuracy of the result.   

Based on the experimental results, our integration system supports all three 

heuristics for matching elements under different conditions. The system will 
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automatically pick the heuristic that performs best with respect to the size of the data set.  

However, the system also allows users to manually select a heuristic and to customize the 

clustering parameters such as cluster size.   
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CHAPTER 8 
IMPLEMENTATION OF THE DATA MERGE ENGINE 

The Data Merge Engine (DME) is one of the two major components located in the 

mediator which is a part of the middleware layer of the Integration Wizard (IWIZ) 

system. In chapter 4, we have already discussed the architecture of IWIZ system 

including the mediator and the other important system components.  In this chapter, we 

will describe the implementation details of DME.   

The Data Merge Engine is tightly-coupled with the Query Rewrite Engine (QRE), 

which is the focus of a related project [62].  The QRE provides the DME a query plan 

that specifies the sequences of join operators for combining partial results from individual 

sources. The task of the DME is to perform the join sequences on the partial results and 

to merge the restructured data from the individual sources (i.e., the restructured XML 

documents representing the individual, source-specific results) into one integrated result 

as requested by the user query. An important part of this fusion step is the reconciliation 

of conflicts that may exist in overlapping data that come from multiple sources.  

The two main functions carried out by DME are generation of the merging 

specification (as a part of mediation specifications) at built-time and merging the similar 

data items obtained from one or more wrappers at run-time.  Figure 30 and 31 show run-

time and built-time control flows, respectively, between the components inside DME.  

Darker shaded entities represent DME components; lighter entities represent input/output 

for each component.  In Figure 31, the Query Rewrite Engine and the wrappers are not 
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parts of DME.  The entities shown as flowchart-documents represent XML document 

files.  The rectangular and circular entities represent internal data structures inside DME 

or from other components inside the mediator (e.g., query plan and annotated ontology 

tree.)  The block arrows represent the entry and exit points for DME. 

The major run-time components of DME are the Data Cleaner, the Data Joiner, 

the Cluster Generator, the Data Unifier, and the Data Filter.  The first three components 

are also used as built-time components.  There are four more built-time components: the 

Probe Query Generator, the Result Evaluator, the Parameter Adjuster, and the 

Specification Generator.  Each DME component corresponds to a Java class.  The DME 

prototype is implemented using Java (SDK 1.3) from Sun Microsystems.  Other major 

software tools used in our implementation are the Oracle XML Parser version 2.0.2.9 

[54] and the XML-QL processor version 0.9 from AT&T Research Lab [3].   

At built-time, we refer to users as special users (e.g., a system administrator) who 

understand well the data reconciling process.  At run-time, we refer to users as font-end 

users who only understand interfaces for accessing data that they want. 
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Figure 30: Run-time Control Flow among Components inside DME 
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Figure 31: Built-time Control Flow among Components inside DME 

Data Cleaner 

When DME receives an XML document containing the result of a mediated query 

from a wrapper, the Data Cleaner (DC) is invoked.  The DC prepares the document (e.g., 

removing extra white spaces) for processing by other components.  Note that the wrapper 

only deals with the transformation of the schema, not the data contents.  Since the data 

are from multiple sources, different sources may have different ways of specifying data 

values; hence, data conflicts occur.  The DC provides several options for cleaning data.  

Users are allowed to fine tune the cleaning options as follows:   

The case-sensitivity option indicates whether or not the DC should convert data 

value of type string into upper or lower cases.  The space-removal option specifies that 

the DC should remove extra white spaces that may appear.  The spell-check option 

indicates whether or not the DC should collect any data value so that their spelling 



90 

 

conforms to some standard dictionary.  Likewise, the thesaurus option lets users specify 

whether or not the DC should spell-check data value using an external thesaurus.  The 

stemming option lets users specify whether or not the DC should remove suffix or prefix 

in order to transform individual words into theirs root (e.g., “kindness” is transformed 

into “kind”.)  Finally, the tokenizing option lets users specify whether or not the DC 

should remove common function words (e.g., the, of, as, etc.)  Those options are 

provided as a way to help users resolve synonym, acronym, and spelling conflicts. 

The DC takes an XML document as an input and produces a new XML document 

that contains the data items whose contents have been cleaned with respect to the 

specified cleaning options.  After that, the new XML document is forwarded to the Data 

Joiner. 

Data Joiner 

After all documents, each of which contains an answer set of data elements for a 

particular user query, have been cleaned, the Data Joiner (DJ) joins related data elements.  

To achieve this task, the DJ follows the query plan (QP) that is provided by the Query 

Rewrite Engine.  Figure 32 shows a sample query plan.  The QP contains a forest of 

execution trees.  Each execution tree consists of a reference to a query file (e.g., 

“0001.et1.xmlql”) containing a join query (e.g., an XML-QL query shown at the 

bottom of Figure 32) and the name of query processor (e.g., “xmlql.cmd”) that must be 

invoked to execute the join query.  In its current version, the DJ can invoke the XML-QL 

processor and processes any XML-QL queries.  

The DJ takes as input a set of files each of which can contain partial results for a 

particular query.  The DJ carries out another set of files each of which contains a set of 
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data elements.  Each data element fully answers a particular query and may have extra 

information (e.g., join items) that is not needed for the result, but that was obtained 

during joining process.  The latter set of files is forwarded to the Cluster Generator. 

<?xml version="1.0"?>  
<!DOCTYPE QueryPlan SYSTEM "QueryPlan.dtd"> 
<QueryPlan uquID="0001" forElement="Ontology.Bib.Article.Title">

<ExecutionTree queryProcessor="xmlql.cmd" 
queryFileName="0001.et1.xmlql" />

</QueryPlan>

/* 0001.et1.xmlql */
function query() {
WHERE

<Ontology><Bib><Article><Title><PCDATA>$med_Title2</></></></></>
IN “source1.xml”,
<Ontology><Bib><Article><Title><PCDATA>$med_Title1</></></></></>
IN “source2.xml” , 
$med_Title1 = $med_Title2

CONSTRUCT
<Ontology><Bib><Article><Title><PCDATA>$med_Title1</></></></></>

}
 

Figure 32: A sample query plan (top) and a join query (bottom) that is referenced in the 
query plan 

Cluster Generator 

The Cluster Generator (CG) collects data elements from the files containing the 

full (joined) result sets for the user query.  It clusters those data elements and generates a 

clustering tree.  The tree is constructed using one of the heuristics described in Chapter 6.  

Based on our experimental results, an appropriate heuristic is chosen with respect to the 

number of data elements to be clustered.   

The CG creates a clustering tree.  Each leaf of the tree represents a cluster 

containing a set of data elements that are tentatively equivalent (i.e., represents the same 

real world element).  During the built-time phase, every cluster is provided to a human 

via the Result Evaluator to estimate errors of matching result.   During the run-time 
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phase, every cluster is provided to the Data Unifier who is responsible for fusing data 

items that are in the same cluster.  

Data Unifier 

Based on the assumption that data elements in the same cluster are tentatively 

equivalent, the Data Unifier (DU) fuses those elements together using the threshold and 

the constraint information, both obtained from the annotated ontology tree.  Let Ei be the 

ith element of type E.  All elements in the same cluster are being unified.  Let Si be an 

element of type S and be a subelement of Ei.  The data unifying process is as follows: 

1. For all subelements Si of Ei whose constraint is exactly-one, if Si contains a 

value, count the frequency for all possible value for Si.  Then, pick the element 

that has the highest frequency.  If there is a tie and Si is a complex element, 

pick one of the subelements, say Sj, of Ej such that Ej contains more 

information than other elements Ei where i ≠ j.  Element Ej is selected as a 

base element.  If there is a tie and Si is not a complex element, randomly pick 

one of the tie elements.  This is based on the assumption that the elements 

containing more information tend to be more complete.     

2. For all subelements Si of Ei whose constraint is zero-or-one, if there is no such 

subelement, do nothing.  If there is only subelements, place it into the result 

element.  Otherwise, select subelement Sj from the base element Ej. If there is 

no such element, select subelement Sk from element Ek such that Ek is the 

closest element to Ej.  
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3. For all subelements Si of Ei whose constraint is one-or-more or zero-or-more, 

compare all of them to subelements Sj of the base element Ej.  For any pair (Si, 

Sj), if the distance between them is greater than or equal to the given 

threshold, which can be obtained from the annotated ontology tree, place Si 

into the result element.  This is based on the assumption that Si is different 

from Sj.   If the distance between them is less than the threshold, discard Sj. 

4. Repeat steps 1 – 3 recursively on any complex element.   

Figure 33 illustrates the result of unifying two Book elements.  The two Book 

elements are at the top left and right corner of the figure, and the resulting Book element 

is at the bottom.  Let us assume that each Book can have only one Title. Note that the 

Titles of the two Books are not identical.  One of the two Titles must be chosen.  

We pick the Title of the top right Book since this Book contains more information 

than the other.  Therefore, the top right Book is chosen as a base element. 

<Book>
<Title>Data Base System Concepts</Title>
<Author>

<LastName>Silberchartz</LastName>
</Author>
<Year>1991</Year>

</Book>

<Book>
<Title>Database System Concepts</Title>
<Author>

<FirstName>Henry</FirstName>
<LastName>Korth</LastName>

</Author>
<Author>

<FirstName>Abraham</FirstName>
<LastName>Silberchartz</LastName>

</Author>

<Book>
<Title>Database System Concepts</Title>
<Author>
<FirstName>Henry</FirstName>
<LastName>Korth</LastName>

</Author>
<Author>
<FirstName>Abraham</FirstName>
<LastName>Silberchartz</LastName>

</Author>
<Year>1991</Year>

</Book>

 

Figure 33: Conceptual unification of two incomplete book instances into one 
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Let us assume that each Book can have zero-or-one Year subelement.  Since the 

top right Book does not have a Year whereas the top left Book does, the Year of the 

second Book is chosen.  If both two Books have Year, the Year of the top right Book 

will be chosen since the top right Book was chosen as a base.  Let us assume that each 

Book can have one-or-more Authors.  We compare all Authors of the first Book 

against all Authors of the base element Book.   Pick the Author of the base element 

Book and others Authors whose distance is greater than the threshold.  In this scenario, 

there exists no other Authors whose distance is greater than the threshold. 

The Data Unifier takes as input a set of clusters, each of which contains data 

elements, and produces a set of the unified elements. Those unified elements are provided 

to the Data Filter. 

Data Filter 

Each unified element obtained from the Data Unifier may contain extra 

information which is non-requested information that is used for joining elements. This 

extra information is obtained from the sources to be able to form the full result for the 

answer set; hence, this extra information needs to be filtered out to provide the correct 

result.  To achieve this goal, the original input query to the mediator is needed.  The Data 

Filter only invokes a query processor to execute the original input query against the set of 

unified elements.  Currently, since the user query is an XML-QL query, the DME 

invokes the XML-QL processor to execute the query against the set of unified elements 

that are stored in an XML document.  
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Result Evaluator 

The Result Evaluator (RE) is invoked during the built-time phrase after the 

Cluster Generator has produced a set of clusters.  Using a GUI, the RE provides the result 

of clustering data elements and the values of parameters for data cleaning and clustering.  

The interface allows users to evaluate and verify the clustering process by moving the 

data elements from one cluster to another. Then, the RE automatically calculates the 

percentage error of the result compared to the changes made by users.  Users can choose 

not to modify the parameters of the hierarchical clustering model if the percentage of 

errors is acceptable; and the values of parameters will be stored in a persistent storage by 

the Specification Generator and used in the clustering process at run-time.  We refer to 

the values of parameters as a Merge Specification.  However, users can choose to browse 

and change the value of any of those parameters.  After browsing and changing those 

parameters, the Parameter Adjuster is invoked to internally modify the value of 

parameters accordingly and to restart the clustering process using the new values of 

parameters.   

Parameter Adjuster 

After the result of element matching has been evaluated by users via the Result 

Evaluator interface, and the users decide to change the value of parameters of the 

clustering process, the Parameter Adjuster (PA) is invoked.  The PA maintains the history 

of the parameter adjustments.  The history is used for references and allows users to 

backtrack and fine-tune the parameters.  After the parameters have been modified, the PA 

will invoke either the Cluster Generator or the Data Cleaner depending on the 

components that the modified parameters involve.  If a parameter for Data Cleaner is 
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changed, the process will restart at the cleaning step.  If a parameter for Cluster Generator 

is changed, the process will restart at the clustering step.  

Specification Generator 

When the clustering is completed and verified by the users, the Specification 

Generator is invoked to store the values of clustering parameters based on the input from 

the users.  We refer to those parameter values as Merge Specification (MS).  The MS is a 

part of the mediation specification (as shown in Figure 7) that contains information about 

sources (e.g., location, availability, and reliability) used by the Query Rewriting Engine; 

it also contains other information used by the Data Merge Engine for reconciling data 

items from multiple sources.  We implement a data structure to store the MS and a list of 

concepts for users to browse and to create a query based on those concepts.  Such 

structure is called the annotated ontology tree.  The MS contains information that will be 

used for reconciling data items.  The information is associated with nodes and edges 

inside the annotated ontology tree.  Such information consists of a set of parame ters for 

data cleaning, data clustering, and data unifying.  The data cleaning parameters contain 

information regarding case-sensitivity, space-removal, spell-check, thesaurus, stemming, 

and tokenizing.  The data clustering parameters are weight values that are used during the 

clustering process as a factor to determine the distance between two elements.  The data 

unifying parameters are threshold values that are used during the unifying process.  

Probe Query Generator 

A very important built-time process inside the DME is the generation of probe 

queries.  A probe query is generated with respect to a concept defined in the ontology. 

The query simulates an input query that will be handled by the Query Rewrite Engine.  
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The purpose of generating a probe query is to poll from each wrapper a set of sample data 

as well as the information about the sources such as the availability and reliability of each 

source (i.e., which underlying source contains which subsets of the hierarchical concepts 

defined in the ontology, and which source is the most reliable if the sources contain 

overlapping data).  We refer to the sample sets returned from wrappers as training sets. A 

training set is a set of the restructured XML documents.  After receiving the training set 

from all wrappers, the built-time merging process continues.  The Data Cleaner and other 

built-time components are invoked.  The built-time merging process produces a draft of 

the merge specification which is validated by the users.   The process finishes with the 

final version of the merge specification that has been verified.  The process may contain 

multiple transactions, each of which is for each probe query, and may enclose multiple 

iterations due to the user inputs during the verification of the merge specification.  

However, the built-time merge process is carried out once for a given combination of 

source and ontology schemas.   

The number of probe queries that are generated by the Probe Query Generator 

(PG) is bounded by the number of concepts defined in the global ontology.  As we 

mentioned, a probe query simulates an input query.  However, the difference between the 

probe query and the actual input query is that the actual input query is not required to 

contain information for sampling data sources.  Such information could speed up the 

built-time process, since it could reduce the size of the result from each wrapper.  The 

sampling parameters involve the size of the training set.  The appropriate values of the 

parameters should be indicated so that the merge specification can be generated properly.   

Although the PG creates a probe query with proper sampling parameters, the sampling 
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process should be performed at the wrappers since the wrappers are tightly-coupled with 

the sources.   

Currently, the PG only generates a probe query without sampling parameters.  We 

plan to provide a full function of supporting a sampling query in the next version of our 

integration system (i.e., IWIZ system).   To achieve the goal, two major tasks must be 

carried out.  First, the query language parser must be modified so that it can correctly 

interpret the query with sampling parameters.  Second, the data-sampling component 

should be added inside the wrapper.    
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CHAPTER 9 
CONCLUSTION  

In the integration and management of modern information systems, overcoming 

data heterogeneities efficiently and automatically is a major, ongoing concern.  

Heterogeneities can arise due to schematic and semantic differences that exist among 

related data items in different sources.  The intent of this dissertation is to advance the 

state-of-the-art in automatic conflict resolution and reconciliation.   

In this dissertation, we have addressed the problem of merging similar and 

overlapping data items from multiple information sources.  We have presented a 

hierarchical clustering model for object reconciliation that semi-automatically merges 

similar and overlapping information.  The methodology addresses the general object 

reconciliation problem – a real-world object can be represented in many different ways in 

different sources [40].  Our model is based on a set of clustering trees and a set of 

distance functions.  A distance function specifies the semantic distance between any pair 

of objects.  A clustering tree contains a set of clusters each of which contains a set of 

objects that are related to each other.  We have described a framework for designing 

optimal clustering trees.  The framework takes into account the characteristics of the data 

items to be reconciled (e.g., the data distribution), the domain spaces (e.g., Euclidean and 

Metric), and the characteristics of the tree (e.g., balanced/unbalanced, size of the cluster, 

overlapping of clusters, split/decomposition strategies).  We have implemented several 

heuristics – All-Pair Comparison, Selected Comparison and M-tree – to create clustering 
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trees.  Our experimental results have verified our expectations that different heuristics are 

suited for different characteristics of data sets (e.g., the size of the data set and the 

expected number of duplicate objects).  Given the maximum cluster size with respect to 

the expected number of duplicate objects in the data set, all three heuristics perform very 

well in terms of computation time and provide accurate results with respect to object 

matching.  Among the three heuristics, for a small data set (e.g., data set containing no 

more than 100 data items), the All-Pair-Comparison-based heuristic generates the most 

accurate results.  For a large data set (e.g., the data set containing more than 300 data 

items), the M-tree-based heuristic is the fastest in obtaining the most accurate results.  For 

a medium data set (e.g., the data set containing between 100 and 300 data items), the 

Selected-Comparison-based heuristic provides the most accurate results.  

Our research is couched within the Integration Wizard (IWIZ) system. The system 

allows end-users to access and retrieve information from multiple sources through a 

consistent, integrated view. To enhance performance, the system uses a combined 

mediation/data warehousing approach to information integration. 

Our hierarchical clustering model is implemented inside the Data Merge Engine 

(DME), an integral component of the IWIZ mediator, which constitutes the middle ware.  

Given the popularity of the Web, we focus on reconciling XML-based, semistructured 

data.  The DME takes as input a set of XML documents from underlying wrappers.  Each 

document contains a set of data items from each source.  The DME uses the clustering 

model to discover related data items from multiple sources. Related data items are unified 

and returned as the query result.  
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We assume that the data from the sources may be incomplete and contain errors, 

e.g., inconsistencies, misspellings, etc. We have classified these potential conflicts into 

three categories [56]: (1) Structural conflicts, which arise when the schemas of the data 

sources exhibit discrepancies, (2) domain conflicts, which arise when the schemas and 

domains of the data source exhibit discrepancies, and (3) data conflicts, which arise when 

the semantic of the data sources exhibit discrepancies 

Contributions 

This dissertation work contributes to the state-of-the-art in information integration 

in the following four ways. First, we specify a new classification for structural and 

semantic conflicts among XML-based data sources [56].  Second, we present a 

hierarchical clustering model as a new solution to speed up the merging of similar and 

overlapping information.  We design and implement a number of heuristics for 

constructing the clustering tree inside our clustering model and provide a distance 

function for measuring the semantic distance between objects in a cluster.  Third, we 

perform qualitative analysis of the performance of the hierarchical clustering model 

including the distance functions and provide the optimal values of the parameters for 

constructing the hierarchical structure.  The evaluation is based on (a) time complexity of 

the algorithms using the heuristics, (b) the number of false alarms that arise when two 

elements are matched although they are unmatched in the real-world situation, and (c) the 

number of false dismissals that arise when two elements representing the same real-world 

element are mismatched.  Finally, we design and implement a prototype of the IWIZ 

information integration system.  The design and implementation of the Data Merge 

Engine is described in Chapter 8.  Other IWIZ components have been developed and 
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being developed by other colleagues in Database Research and Development Center at 

University of Florida.  All IWIZ components communicate to one another using a set of 

Remote Method Invocation (RMI) interfaces  

Future Challenges 

The concept of clustering data items is relatively new in the context of data 

integration.  To provide a theoretical underlying support, a formal description of the 

hierarchical clustering model for data reconciliation can be expanded. In addition, 

although our integration system using the clustering model currently supports several 

heuristics for constructing the clustering tree, we can extend the system and make it more 

scalable and flexible for users by providing more varieties of heuristics.  By using 

heuristics that the system currently provides, the clustering tree is built under the 

assumption that the tree structure and all data items to be reconciled can be fit into 

memory.  Therefore, the future works should take into account reconciling data items on 

a disk or other secondary storages.    

In the current situation, the Data Merge Engine (DME) contains one-step 

(supervised) learning capability in such a way that, at built-time, it allows a user to verify 

the merge specification that contains values of parameters for cleaning, clustering and 

unifying data items, after the DME merges data items with an initial value of each 

parameter.  We can extend the learning capability to DME by keeping track of user 

feedback for each query result and using such information to automatically adjust the 

values of parameters for merging data items.  

During built-time phase of DME, the Probe Query Generator creates a set of 

probe queries based on concepts in ontology.  The probe queries are sent to wrappers to 
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poll a set of sample data as well as to obtain information about sources such as 

availability and reliability of each source.  In the current situation, each wrapper returns 

the mediator a full set of data as a query result that answers a probe query; the returning 

of full data set involves the communication time between wrappers and mediator as well 

as the memory (or disk) space that is used in the mediator to merge data items from 

multiple sources. To reduce the communication time and memory space, we can extend 

our integration system to support data sampling.  In other words, a subset of data from 

each wrapper to mediator, called a training set, is returned.  Data sampling should occur 

in both mediator and wrappers.  In the mediator, a probe query is created and attached 

with sampling parameters that specify percentage of returned data items relative to the 

total size of data set.   In each wrapper, the sampling parameters is interpreted; the probe 

query is executed; a training set is obtained based on the value of sampling parameters 

and the training set is returned to the mediator. 

In the current situation, our integration system prototype is focusing on XML-

based semistructured data.  The prototype can be extended to support more varieties of 

data such as relational or object oriented data. All the data items are currently represented 

in an XML document and their schema is defined in a DTD.  Due to the rapid evolving of 

XML and its related technology, the next version of the prototype should be aware of the 

trend of the XML technologies.  Most of the XML technologies are carried out in form of 

recommendations from W3C, the leading organization coordinating the research and 

development efforts of the XML community.   

Last but not least, XML query processing is a very important issue.  The current 

query processor in IWIZ is built on the top of XML-QL processor.  The difficulty of 
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learning how to query XML data using XML-QL was realized during the development of 

our system prototype.  At the time of writing, many proposals involving different XML 

query languages have been submitted and are being reviewed by W3C.  Therefore, the 

next version of IWIZ may need to be able to support a different query language 

depending on the recommendation of the W3C.   
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APPENDIX A 
DOCUMENT TYPE DEFINITION OF THE BIBLOGRAPHY ONTOLOGY 

Ontology.dtd 
 
<!--  IWIZ's ONTOLOGY in one single Integrated DTD --> 
 
<!ELEMENT Ontology (Bib)*> 
 
<!ELEMENT Bib  (Article | Book | Booklet | InBook  | InCollection |  
  InProceedings | Manual | MastersThesis | PhdThesis |  
  Misc | Proceedings | TechReport | UnPublished )*> 
 
<!ELEMENT Article     ( Author+,  Title, Year, Month?,  Pages?, Note?,  Journal  )> 
 
<!ELEMENT Book    ((Author+ | Editor+),   Title,     Publisher, 
           Year,      Month?,   (Volume  |  Number1)?, 
           Series?,   Address?,  Edition?,  ISBN,  Cost?,     Note? )> 
 
<!ELEMENT Booklet   ( Author*,  Title,  HowPublished?, Year?, Month?,   
                                            Address?, Note? )> 
 
<!ELEMENT InBook    ( Author+,   Title,  Year,      Month?, 
           Publisher, (Pages | Chapter?), Book  )> 
 
<!ELEMENT InCollection ( Author+,   Title,     Year,      Month?, 
          (Pages | Chapter?),    Type?,     Note?,  Collection )> 
 
<!ELEMENT InProceedings ( Author+, Title,  Year,  Month?, 
                 (Pages | Chapter?),    Note?,     Proceedings )> 
 
<!ELEMENT Manual       ( Title, Author*,   Year?, Month?, 
           Edition?,  Address?,  Organization?, Note?   )> 
 
<!ELEMENT MastersThesis ( Author,  Title,  School, Address?, 
                                                  Year, Month?, Type?, Note? )> 
 
<!ELEMENT Misc   ( Author?, Title?, HowPublished?, Year?, Month?, Note?)> 
 
<!ELEMENT PhdThesis ( Author, Title, School,  Address?, 
                                                  Year, Month?, Type?, Note?   )> 
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<!ELEMENT TechReport ( Author+,   Title,     Institution, Year, Month?, 
                 Type?, Number1?,  Address?,  Note? )>  
 
<!ELEMENT UnPublished  ( Author+, Title,  Year?,  Month?,  Note )> 
 
<!ELEMENT Address (#PCDATA)> 
 
<!ELEMENT Author (Firstname?, Lastname, Address?)> 
 
<!ELEMENT Chapter (#PCDATA) > 
 
<!ELEMENT Collection ((Author+ | Editor+), Title, Publisher?)> 
 
<!ELEMENT Cost (#PCDATA)> 
 
<!ELEMENT Editor (#PCDATA)> 
 
<!ELEMENT Edition (#PCDATA)> 
 
<!ELEMENT Firstname (#PCDATA)> 
 
<!ELEMENT ISBN (#PCDATA)> 
 
<!ELEMENT HowPublished (#PCDATA) > 
 
<!ELEMENT Institution (#PCDATA) > 
 
<!ELEMENT Journal (Title, Year?, Month?, Volume?, Number1? )> 
 
<!ELEMENT Lastname (#PCDATA)> 
 
<!ELEMENT Month (#PCDATA) > 
 
<!ELEMENT Note (#PCDATA) > 
 
<!ELEMENT Number1 (#PCDATA) > 
 
<!ELEMENT Organization (#PCDATA) > 
 
<!ELEMENT Pages (#PCDATA) > 
 
<!ELEMENT Proceedings  ( Title, Editor*,  Year?, Month?, (Volume | Number1)?,    
                 Series?, Address?, Organization?, Publisher?, Note?   )> 
 
<!ELEMENT Publisher (#PCDATA) > 
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<!ELEMENT School (#PCDATA) > 
 
<!ELEMENT Series (#PCDATA)> 
 
<!ELEMENT Title (#PCDATA) > 
 
<!ELEMENT Type (#PCDATA) > 
 
<!ELEMENT Volume (#PCDATA) > 
 
<!ELEMENT Year (#PCDATA) > 
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APPENDIX B 
EXPERIMENTAL RESULTS 

Table B-1: Base error on each data set  
Data set  Size of data set 

(items) 
Number of variation in spelling of 
data values in the data set 

Base error 
(in %) 

Article 50 1 4.33 
Article 100 1 5.54 
Article 150 1 4.98 
Article 200 1 4.85 
Article 400 1 5.00 
Article 50 2 4.16 
Article 100 2 4.67 
Article 150 2 4.85 
Article 200 2 4.93 
Article 300 2 4.94 
Article 400 2 4.90 
Article 50 4 3.67 
Article 100 4 5.01 
Article 150 4 4.75 
Article 200 4 4.97 
Article 400 4 4.93 
Article 50 7 4.00 
Article 100 7 4.77 
Article 150 7 4.93 
Article 200 7 4.92 
Article 400 7 5.04 
PhdThesis 50 2 4.00 
PhdThesis 100 2 4.79 
PhdThesis 150 2 4.76 
PhdThesis 200 2 4.86 
PhdThesis 300 2 4.98 
PhdThesis 400 2 4.96 
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Table B-2: Results on “Article” data sets for all-pair-comparison-based (AC), selected-
comparison-based (SC), and M-tree-base (MT) heuristics with uniform weights using 
terms that are separated by no more than one variation in the spelling 

Time (sec) False alarm (%) False dismissal (%) Error (%) 
Test Description 

AC SC MT AC SC MT AC SC MT AC SC MT 
  50 items   3% cluster size 7 6 3 0.57 1.10 0.69 2.86 3.39 3.71 3.43 4.49 4.41
  50 items   5% cluster size 7 4 3 0.57 2.43 1.65 2.86 2.76 3.33 3.43 5.18 4.98
  50 items   7% cluster size 7 3 3 4.16 4.37 2.63 2.53 2.73 3.00 6.69 7.10 5.63
  50 items 10% cluster size 7 3 3 4.16 6.69 3.35 2.53 2.86 2.55 6.69 9.55 5.90
  50 items 15% cluster size 7 2 2 12.00 12.18 6.20 2.53 2.71 1.82 14.53 14.90 8.02
  50 items 20% cluster size 6 1 2 16.49 16.51 7.63 2.45 2.47 1.12 18.94 18.98 8.76
100 items   2% cluster size 27 26 10 0.08 0.35 0.35 4.63 4.87 5.21 4.71 5.22 5.56
100 items   3% cluster size 26 17 7 0.10 0.76 0.77 4.63 4.30 4.99 4.73 5.06 5.76
100 items   5% cluster size 27 10 6 1.78 2.00 1.84 4.28 3.49 4.74 6.06 5.49 6.58
100 items   7% cluster size 27 7 5 5.41 4.12 3.18 4.04 2.74 3.91 9.45 6.86 7.09
100 items 10% cluster size 27 5 5 7.52 6.79 4.26 3.96 3.23 3.16 11.47 10.02 7.41
100 items 15% cluster size 27 4 5 11.07 10.64 7.06 3.72 2.54 2.70 14.79 13.18 9.75
100 items 20% cluster size 27 2 4 16.69 16.39 11.77 3.03 2.73 3.54 19.72 19.12 15.31
150 items   2% cluster size 65 41 13 0.05 0.45 0.37 4.36 4.08 4.45 4.41 4.52 4.81
150 items   3% cluster size 65 24 12 1.09 1.07 0.68 4.07 3.36 3.81 5.16 4.43 4.48
150 items   5% cluster size 65 16 10 3.49 2.38 1.22 3.82 2.72 2.87 7.31 5.10 4.09
150 items   7% cluster size 65 12 9 4.66 4.01 1.89 3.60 2.40 2.17 8.26 6.42 4.07
150 items 10% cluster size 64 8 10 7.10 6.89 3.62 3.53 2.47 2.03 10.62 9.36 5.65
150 items 15% cluster size 64 6 7 12.54 11.55 7.20 3.74 2.35 1.87 16.28 13.89 9.07
150 items 20% cluster size 63 4 7 17.69 16.71 9.96 3.20 2.22 2.02 20.89 18.93 11.98
200 items   2% cluster size 110 54 17 0.74 0.46 0.36 4.11 3.81 4.22 4.85 4.27 4.58
200 items   3% cluster size 110 36 16 1.68 0.96 0.71 4.06 3.32 3.94 5.74 4.28 4.64
200 items   5% cluster size 110 21 14 3.45 2.57 1.78 3.83 2.90 3.35 7.28 5.46 5.12
200 items   7% cluster size 110 15 13 5.43 4.05 2.99 3.80 2.00 3.02 9.23 6.05 6.01
200 items 10% cluster size 109 11 13 8.17 6.99 3.71 3.57 2.30 1.99 11.73 9.30 5.70
200 items 15% cluster size 109 7 10 12.53 11.43 7.53 3.31 2.21 1.95 15.84 13.64 9.48
200 items 20% cluster size 110 5 7 17.71 16.94 13.90 3.17 2.20 3.30 20.88 19.14 17.19
400 items   2% cluster size 416 102 33 1.05 0.62 0.45 4.31 3.86 4.23 5.35 4.48 4.68
400 items   3% cluster size 416 70 33 1.85 1.23 0.76 4.12 3.49 3.75 5.98 4.71 4.51
400 items   5% cluster size 414 42 31 3.67 2.51 1.91 3.91 2.75 3.49 7.58 5.27 5.41
400 items   7% cluster size 414 28 31 5.60 5.01 2.61 3.93 3.08 2.66 9.54 8.10 5.28
400 items 10% cluster size 415 21 24 8.42 7.56 4.83 3.64 2.79 2.97 12.06 10.35 7.80
400 items 15% cluster size 415 14 18 12.72 11.89 8.36 3.43 2.60 2.81 16.15 14.49 11.17
400 items 20% cluster size 418 9 16 18.02 16.76 11.29 3.22 1.96 2.73 21.24 18.72 14.02
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Table B-3: Results on “Article” data sets for all-pair-comparison-based (AC), selected-
comparison-based (SC), and M-tree-base (MT) heuristics with uniform weights using 
terms that are separated by no more than two variations in the spelling 

Time (sec) False alarm (%) False dismissal (%) Error (%) 
Test Description 

AC SC MT AC SC MT AC SC MT AC SC MT 
  50 items   3% cluster size 7 7 5 0.65 0.98 0.76 2.78 3.10 3.67 3.43 4.08 4.43
  50 items   5% cluster size 7 5 4 0.65 2.45 1.76 2.78 2.61 3.45 3.43 5.06 5.20
  50 items   7% cluster size 7 3 3 4.57 4.29 2.69 2.78 2.49 3.08 7.35 6.78 5.78
  50 items 10% cluster size 7 3 3 4.57 6.27 3.78 2.78 2.27 2.80 7.35 8.53 6.57
  50 items 15% cluster size 7 2 2 12.41 11.73 9.14 2.78 2.10 1.92 15.18 13.84 11.06
  50 items 20% cluster size 7 1 2 16.49 16.51 9.47 2.29 2.31 2.00 18.78 18.82 11.47
100 items   2% cluster size 27 27 10 0.16 0.39 0.37 3.82 4.05 4.41 3.98 4.44 4.78
100 items   3% cluster size 27 18 8 0.16 0.97 0.68 3.82 3.64 4.01 3.98 4.61 4.68
100 items   5% cluster size 27 10 7 2.06 2.53 1.55 3.70 3.16 3.62 5.76 5.69 5.16
100 items   7% cluster size 27 7 5 5.82 5.25 3.38 3.58 3.01 2.93 9.39 8.25 6.32
100 items 10% cluster size 27 5 6 7.84 7.02 4.03 3.41 2.60 2.51 11.25 9.62 6.53
100 items 15% cluster size 27 4 5 11.66 11.74 7.55 3.43 2.77 2.09 15.09 14.52 9.64
100 items 20% cluster size 27 2 4 17.66 17.41 11.13 3.13 2.89 2.06 20.79 20.30 13.19
150 items   2% cluster size 63 42 15 0.11 0.50 0.41 4.29 4.01 4.42 4.39 4.51 4.82
150 items   3% cluster size 64 24 13 1.32 1.05 0.78 4.17 3.22 3.86 5.49 4.27 4.64
150 items   5% cluster size 64 16 13 3.79 2.42 1.51 3.99 2.63 3.07 7.78 5.05 4.58
150 items   7% cluster size 64 11 10 5.25 4.00 2.65 4.06 2.26 2.85 9.32 6.26 5.50
150 items 10% cluster size 63 8 10 7.49 7.03 4.48 3.79 2.49 2.75 11.28 9.52 7.23
150 items 15% cluster size 63 6 7 12.55 11.68 7.38 3.62 2.36 2.05 16.17 14.04 9.43
150 items 20% cluster size 63 4 7 18.19 16.85 10.81 3.58 2.23 2.20 21.77 19.08 13.01
200 items   2% cluster size 109 53 17 0.89 0.49 0.44 4.33 3.92 4.37 5.22 4.42 4.81
200 items   3% cluster size 109 35 16 1.90 0.86 0.70 4.34 3.30 3.89 6.24 4.16 4.59
200 items   5% cluster size 109 21 15 3.80 2.16 1.49 4.26 2.57 3.23 8.07 4.72 4.72
200 items   7% cluster size 109 15 14 5.60 4.76 2.59 4.11 2.78 2.74 9.71 7.54 5.33
200 items 10% cluster size 109 10 14 8.42 6.79 3.84 3.90 2.17 2.24 12.32 8.96 6.08
200 items 15% cluster size 108 7 9 12.89 11.36 8.40 3.75 2.22 2.97 16.64 13.58 11.38
200 items 20% cluster size 109 5 8 17.83 16.75 10.89 3.36 2.08 2.14 21.19 18.83 13.04
300 items   2% cluster size 256 84 28 1.13 0.55 0.38 4.40 3.81 4.20 5.53 4.36 4.58
300 items   3% cluster size 257 57 26 1.71 0.93 0.67 4.31 3.21 3.76 6.02 4.14 4.43
300 items   5% cluster size 257 31 25 3.53 2.36 1.64 4.15 2.61 3.29 7.68 4.97 4.92
300 items   7% cluster size 257 22 23 5.87 4.37 2.54 3.91 2.41 2.69 9.77 6.79 5.23
300 items 10% cluster size 258 16 20 8.50 7.33 4.66 3.80 2.57 2.45 12.30 9.90 7.10
300 items 15% cluster size 259 11 14 12.58 12.03 7.81 3.46 2.75 2.20 16.04 14.78 10.02
300 items 20% cluster size 259 7 12 17.86 17.00 12.47 3.20 2.20 2.79 21.06 19.20 15.26
400 items   2% cluster size 437 108 36 1.22 0.78 0.39 4.38 3.93 4.09 5.60 4.70 4.48
400 items   3% cluster size 439 70 34 2.10 1.53 0.67 4.28 3.70 3.68 6.38 5.22 4.34
400 items   5% cluster size 437 42 31 3.84 3.55 2.25 4.01 3.69 3.70 7.86 7.24 5.95
400 items   7% cluster size 435 28 33 5.77 5.55 2.73 3.98 3.52 2.84 9.76 9.07 5.58
400 items 10% cluster size 436 21 24 8.39 8.35 5.36 3.57 3.48 3.31 11.97 11.83 8.67
400 items 15% cluster size 435 14 18 12.86 12.74 9.13 3.48 3.36 3.21 16.33 16.10 12.34
400 items 20% cluster size 439 9 16 18.03 17.88 13.17 3.23 2.99 3.05 21.26 20.87 16.22
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Table B-4: Results on “Article” data sets for all-pair-comparison-based (AC), selected-
comparison-based (SC), and M-tree-base (MT) heuristics with uniform weights using 
terms that are separated by no more than four variations in the spelling 

Time (sec) False alarm (%) False dismissal (%) Error (%) 
Test Description 

AC SC MT AC SC MT AC SC MT AC SC MT 
  50 items   3% cluster size 7 7 4 0.73 1.16 0.90 2.45 2.80 3.33 3.18 3.96 4.22
  50 items   5% cluster size 7 5 3 0.82 2.31 1.88 2.45 1.98 2.96 3.27 4.29 4.84
  50 items   7% cluster size 7 4 3 4.73 4.63 2.90 2.45 2.35 2.73 7.18 6.98 5.63
  50 items 10% cluster size 7 3 3 4.73 6.67 4.12 2.45 2.18 2.47 7.18 8.86 6.59
  50 items 15% cluster size 7 2 2 12.57 12.16 7.24 2.45 2.04 1.76 15.02 14.20 9.00
  50 items 20% cluster size 7 1 2 16.41 16.65 10.33 2.45 1.96 1.53 18.86 18.61 11.86
100 items   2% cluster size 31 30 11 0.32 0.39 0.35 4.34 4.39 4.74 4.67 4.78 5.10
100 items   3% cluster size 31 20 8 0.36 0.77 0.72 4.34 3.78 4.45 4.71 4.55 5.18
100 items   5% cluster size 31 12 7 2.12 2.41 1.58 4.10 3.38 3.85 6.22 5.80 5.43
100 items   7% cluster size 31 8 6 5.96 4.67 2.85 4.06 2.77 2.82 10.02 7.43 5.67
100 items 10% cluster size 31 6 6 7.94 6.72 4.02 4.04 2.64 2.89 11.98 9.36 6.90
100 items 15% cluster size 31 4 6 12.14 11.56 6.80 4.00 2.93 2.31 16.14 14.48 9.11
100 items 20% cluster size 31 3 5 17.58 16.83 9.71 3.78 2.65 2.33 21.35 19.48 12.04
150 items   2% cluster size 69 44 15 0.11 0.34 0.45 4.19 3.75 4.34 4.30 4.10 4.79
150 items   3% cluster size 70 27 13 1.31 1.00 0.77 4.06 3.07 3.82 5.37 4.08 4.59
150 items   5% cluster size 69 18 12 3.79 2.22 1.66 3.90 2.32 3.23 7.70 4.54 4.89
150 items   7% cluster size 70 13 11 4.98 4.04 3.11 3.70 2.21 3.06 8.68 6.25 6.17
150 items 10% cluster size 70 9 10 7.54 7.13 4.17 3.75 2.48 2.35 11.29 9.61 6.52
150 items 15% cluster size 69 6 8 12.41 12.04 7.87 3.39 2.61 2.30 15.80 14.65 10.18
150 items 20% cluster size 70 4 6 17.74 16.45 12.36 3.29 1.73 3.07 21.04 18.18 15.43
200 items   2% cluster size 123 59 20 0.96 0.59 0.42 4.42 4.05 4.41 5.38 4.65 4.83
200 items   3% cluster size 122 41 18 1.90 1.07 0.81 4.38 3.55 4.02 6.29 4.62 4.83
200 items   5% cluster size 122 23 16 3.77 2.70 1.63 4.22 3.15 3.53 7.99 5.86 5.15
200 items   7% cluster size 122 17 15 5.60 5.24 2.63 4.14 3.30 2.66 9.73 8.55 5.29
200 items 10% cluster size 122 12 14 8.37 7.68 4.91 3.79 3.11 2.76 12.17 10.79 7.66
200 items 15% cluster size 121 8 10 12.64 11.99 8.47 3.54 2.89 2.56 16.19 14.89 11.04
200 items 20% cluster size 121 6 9 17.85 17.36 11.34 3.23 2.73 2.63 21.08 20.08 13.97
400 items   2% cluster size 488 118 42 1.34 0.49 0.34 4.52 3.67 4.08 5.86 4.16 4.42
400 items   3% cluster size 490 81 40 2.19 0.74 0.54 4.39 2.94 3.60 6.57 3.68 4.14
400 items   5% cluster size 491 46 38 4.05 2.21 1.57 4.22 2.38 3.25 8.27 4.58 4.81
400 items   7% cluster size 488 32 35 5.87 4.50 2.57 4.14 2.50 2.53 10.01 7.00 5.09
400 items 10% cluster size 486 23 28 8.74 7.39 4.35 3.90 2.55 2.25 12.63 9.94 6.60
400 items 15% cluster size 486 16 19 12.95 11.68 9.42 3.60 2.33 3.42 16.54 14.00 12.85
400 items 20% cluster size 486 11 18 18.08 17.40 11.63 3.22 2.54 2.66 21.30 19.94 14.29
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Table B-5: Results on “Article” data sets for all-pair-comparison-based (AC), selected-
comparison-based (SC), and M-tree-base (MT) heuristics with uniform weights using 
terms that are separated by no more than seven variations in the spelling 

Time (sec) False alarm (%) False dismissal (%) Error (%) 
Test Description 

AC SC MT AC SC MT AC SC MT AC SC MT 
  50 items   3% cluster size 9 8 5 0.82 1.12 0.86 2.78 3.08 3.49 3.59 4.20 4.35
  50 items   5% cluster size 9 5 4 0.82 2.78 1.76 2.78 2.78 3.22 3.59 5.55 4.98
  50 items   7% cluster size 9 4 4 4.73 4.71 2.82 2.78 2.76 3.00 7.51 7.47 5.82
  50 items 10% cluster size 9 3 3 4.73 6.71 4.00 2.78 2.55 2.61 7.51 9.27 6.61
  50 items 15% cluster size 9 2 3 12.41 12.14 7.59 2.61 2.35 2.29 15.02 14.49 9.88
  50 items 20% cluster size 9 1 3 16.82 16.08 9.96 2.45 1.71 1.45 19.27 17.80 11.41
100 items   2% cluster size 35 34 13 0.18 0.37 0.44 3.98 4.13 4.55 4.16 4.51 4.99
100 items   3% cluster size 35 23 10 0.20 0.98 0.73 3.96 3.75 4.19 4.16 4.73 4.92
100 items   5% cluster size 35 13 8 2.10 2.40 1.58 3.84 3.13 3.58 5.94 5.54 5.16
100 items   7% cluster size 35 9 7 5.66 4.87 2.92 3.52 2.73 2.62 9.17 7.61 5.54
100 items 10% cluster size 35 7 7 7.58 7.22 4.91 3.43 2.90 3.22 11.01 10.12 8.13
100 items 15% cluster size 35 5 7 11.45 11.63 6.94 3.33 2.76 2.35 14.79 14.39 9.30
100 items 20% cluster size 35 3 5 17.17 17.10 12.35 3.13 2.68 2.98 20.30 19.78 15.34
150 items   2% cluster size 79 52 17 0.18 0.68 0.50 4.43 4.27 4.58 4.61 4.96 5.08
150 items   3% cluster size 79 32 16 1.41 1.47 1.00 4.32 3.72 4.10 5.74 5.19 5.10
150 items   5% cluster size 79 20 12 3.64 3.09 1.87 3.93 3.37 3.50 7.57 6.46 5.37
150 items   7% cluster size 79 14 12 5.09 4.72 3.41 3.98 3.06 3.39 9.07 7.79 6.80
150 items 10% cluster size 79 11 11 7.58 7.43 4.74 3.96 2.97 2.69 11.54 10.40 7.42
150 items 15% cluster size 79 7 9 12.65 12.13 8.32 3.81 2.89 2.52 16.47 15.02 10.84
150 items 20% cluster size 79 6 7 17.79 17.49 12.15 3.52 2.96 2.58 21.31 20.45 14.73
200 items   2% cluster size 140 68 23 0.98 0.53 0.48 4.41 3.95 4.44 5.39 4.48 4.92
200 items   3% cluster size 140 46 21 1.80 1.01 0.60 4.25 3.44 3.86 6.05 4.45 4.46
200 items   5% cluster size 140 28 20 3.65 2.64 1.38 4.10 3.05 3.35 7.74 5.69 4.73
200 items   7% cluster size 139 20 19 5.48 4.67 2.36 3.97 2.68 2.42 9.46 7.35 4.78
200 items 10% cluster size 140 13 18 8.25 7.67 3.89 3.72 3.05 2.16 11.97 10.72 6.05
200 items 15% cluster size 139 9 13 12.63 11.66 7.38 3.48 2.51 1.94 16.11 14.17 9.32
200 items 20% cluster size 140 6 11 17.86 17.01 9.68 3.38 2.33 1.47 21.24 19.34 11.16
400 items   2% cluster size 539 133 43 1.43 0.65 0.53 4.71 3.93 4.34 6.14 4.58 4.87
400 items   3% cluster size 537 92 41 2.34 1.20 0.92 4.64 3.50 3.98 6.98 4.71 4.90
400 items   5% cluster size 536 54 39 4.22 2.57 2.13 4.50 2.84 3.76 8.72 5.40 5.89
400 items   7% cluster size 533 36 38 6.08 4.49 3.67 4.45 2.59 3.63 10.53 7.08 7.29
400 items 10% cluster size 536 27 29 9.00 7.39 5.20 4.26 2.65 3.11 13.27 10.04 8.31
400 items 15% cluster size 539 18 21 13.22 11.70 9.40 3.97 2.45 3.32 17.19 14.15 12.72
400 items 20% cluster size 534 12 20 18.42 17.29 11.58 3.66 2.52 2.86 22.08 19.81 14.44
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Table B-6: Results on “PhdThesis” data sets for all-pair-comparison-based (AC), 
selected-comparison-based (SC), and M-tree-base (MT) heuristics with uniform weights 
using terms that are separated by no more than two variations in the spelling 

Time (sec) False alarm (%) False dismissal (%) Error (%) 
Test Description 

AC SC MT AC SC MT AC SC MT AC SC MT 
  50 items   3% cluster size 4 4 3 0.24 0.76 0.63 2.29 2.71 3.45 2.53 3.47 4.08
  50 items   5% cluster size 4 2 2 0.33 2.31 1.49 2.29 2.31 3.12 2.61 4.61 4.61
  50 items   7% cluster size 4 2 2 4.24 3.88 2.12 2.29 1.92 2.49 6.53 5.80 4.61
  50 items 10% cluster size 4 1 2 4.24 6.35 2.98 2.29 2.18 2.18 6.53 8.53 5.16
  50 items 15% cluster size 4 1 2 12.08 11.55 6.76 2.29 1.76 1.57 14.37 13.31 8.33
  50 items 20% cluster size 4 1 1 15.92 15.73 9.02 2.29 1.37 1.51 18.20 17.10 10.53
100 items   2% cluster size 14 14 6 0.14 0.25 0.34 3.92 4.03 4.52 4.06 4.27 4.86
100 items   3% cluster size 14 9 5 0.14 0.63 0.59 3.92 3.41 4.11 4.06 4.04 4.70
100 items   5% cluster size 14 5 4 1.76 1.93 1.15 3.52 2.68 3.31 5.27 4.62 4.46
100 items   7% cluster size 14 4 3 5.64 4.35 2.35 3.52 2.23 2.53 9.15 6.59 4.88
100 items 10% cluster size 14 3 3 7.58 6.56 3.58 3.27 2.25 2.01 10.85 8.81 5.59
100 items 15% cluster size 14 2 3 11.29 11.20 6.13 3.19 2.35 1.73 14.48 13.55 7.85
100 items 20% cluster size 14 1 2 17.56 16.47 10.42 3.15 2.07 1.39 20.71 18.55 11.81
150 items   2% cluster size 34 22 8 0.04 0.32 0.31 4.13 3.74 4.24 4.18 4.07 4.55
150 items   3% cluster size 34 14 8 1.33 0.84 0.81 4.10 2.91 3.79 5.43 3.75 4.61
150 items   5% cluster size 34 8 6 3.91 2.21 1.15 4.03 2.33 2.81 7.94 4.55 3.96
150 items   7% cluster size 34 6 6 5.27 3.75 2.02 3.99 1.93 2.06 9.26 5.68 4.09
150 items 10% cluster size 34 4 6 7.63 6.68 3.27 3.85 2.04 1.58 11.48 8.72 4.85
150 items 15% cluster size 34 3 4 12.55 11.59 6.81 3.54 2.17 1.43 16.10 13.76 8.25
150 items 20% cluster size 34 2 3 17.54 16.36 9.92 3.10 1.66 1.33 20.64 18.02 11.25
200 items   2% cluster size 62 30 11 0.88 0.28 0.32 4.25 3.63 4.22 5.14 3.91 4.54
200 items   3% cluster size 62 21 10 1.84 0.76 0.52 4.21 3.13 3.73 6.06 3.89 4.25
200 items   5% cluster size 62 13 9 3.85 1.76 1.16 4.23 2.10 2.81 8.08 3.86 3.97
200 items   7% cluster size 62 8 8 5.62 4.73 2.12 4.05 2.68 2.25 9.67 7.42 4.37
200 items 10% cluster size 62 6 8 8.52 6.64 3.42 3.93 1.95 1.65 12.45 8.60 5.07
200 items 15% cluster size 63 4 6 12.92 11.63 7.30 3.71 2.42 1.54 16.63 14.05 8.84
200 items 20% cluster size 63 3 5 17.94 16.04 9.90 3.40 1.31 1.13 21.34 17.35 11.03
300 items   2% cluster size 123 39 16 1.13 0.36 0.25 4.44 3.66 4.13 5.58 4.02 4.38
300 items   3% cluster size 124 28 14 1.64 0.68 0.58 4.30 3.00 3.69 5.94 3.68 4.27
300 items   5% cluster size 123 16 13 3.52 2.08 1.04 4.20 2.37 2.68 7.72 4.45 3.72
300 items   7% cluster size 121 11 13 5.87 4.22 2.14 3.95 2.30 2.50 9.81 6.52 4.65
300 items 10% cluster size 121 8 10 8.53 6.73 3.79 3.81 2.01 1.91 12.35 8.75 5.71
300 items 15% cluster size 122 6 8 12.54 11.41 6.94 3.46 2.18 2.03 16.00 13.59 8.97
300 items 20% cluster size 121 4 7 17.92 16.78 9.60 3.17 2.03 1.87 21.09 18.80 11.46
400 items   2% cluster size 233 57 23 1.24 0.40 0.30 4.45 3.61 4.09 5.69 4.01 4.39
400 items   3% cluster size 232 39 22 2.14 0.83 0.51 4.36 3.05 3.60 6.50 3.88 4.11
400 items   5% cluster size 232 23 20 4.04 1.77 1.25 4.27 1.97 2.66 8.31 3.73 3.91
400 items   7% cluster size 232 17 17 5.86 4.45 2.21 4.15 2.48 1.99 10.01 6.93 4.20
400 items 10% cluster size 232 12 14 8.71 6.71 3.46 3.95 1.90 1.58 12.66 8.61 5.04
400 items 15% cluster size 233 8 11 12.90 11.32 6.97 3.58 2.00 1.93 16.48 13.32 8.90
400 items 20% cluster size 234 5 9 18.07 16.49 10.71 3.33 1.65 1.15 21.40 18.14 11.86
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