

MANAGING XML DATA IN A RELATIONAL WAREHOUSE: ON

QUERY TRANSLATION, WAREHOUSE MAINTENANCE,
AND DATA STALENESS

By

RAJESH KANNA

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2001

Copyright 2001

by

RAJESH KANNA

To my parents, Kalia Perumal and Shanthi Perumal, and my brothers Ragu Ram and
Shankar Ganesh.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Dr.

Joachim Hammer for giving me an opportunity to work on this interesting topic and for

providing me with excellent advice, great guidance and support throughout the course of

this research work. His tireless patience and knowledge have been invaluable. Without

his guidance, this thesis would not have been possible.

I wish to thank Dr. Abdelsalam Helal and Dr. Douglas Dankel for graciously

agreeing to serve on my committee and for taking time out from their busy schedules to

read and comment on my thesis.

My thanks go to Sharon Grant and Mathew Belcher for making the Research and

Database Center a truly great place to work. It has been a great honor to be part of the

IWiz Project Team. It was fun working with Charnyote Pluempitiwiriyawej, Anna

Teterovskaya, Amit Shah and Ramasubramanian Ramani. I also thank Sivakumar

Balakrishnan and Karthik Ramani who made me feel at home and were with me all the

way.

Finally, I would like to thank my family back home for their unwavering moral

support and endless love.

v

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS ... iv

LIST OF FIGURES .. vii

ABSTRACT..ix

CHAPTERS

1 INTRODUCTION ..1

1.1 Semistructured Data .. 1
1.2 Motivation and Challenges ... 3

2 RELATED RESEARCH...6

2.1 Overview of XML Related Technologies ... 6
2.1.1 XML... 6
2.1.2 XMLQL ... 9

2.2 Query Transformations ... 12
2.2.1 Quilt ... 13
2.2.2 The Lore Project at Stanford.. 14

2.3 Warehouse Maintenance ... 15
2.4 Architectures for Integration Systems ... 17

3 THE INTEGRATION WIZARD PROJECT..20

3.1 IWiz Architecture.. 20
3.2 Warehouse Manager ... 23
3.3 Overview of Relational Approach for Managing XML Data 25
3.4 Architecture Overview.. 27

3.4.1 Built-time Phase... 27
3.4.2 Run-time Phase .. 28

4 DESIGN AND IMPLEMENTATION..32

4.1 Decision Module (DM) ... 34
4.2 XMLQL-2-SQL Query Translator (QT)... 36
4.3 Maintenance Query Generator (MQG) ... 44

vi

5 QUALITATIVE ANALYSIS ...47

5.1 Experimental Setup ... 47
5.2 Query Operations and Test Queries .. 48

5.2.1 Selection and Extraction.. 49
5.2.2 Reduction and Restructuring.. 50
5.2.3 Complex Restructuring .. 52
5.2.4 Combination... 54

5.3 Analysis of the Results .. 56
5.4 Analysis of Maintenance Queries ... 57

6 CONCLUSIONS...60

6.1 Contributions... 60
6.2 Future Work.. 62

APPENDIX..64

LIST OF REFERENCES ...71

BIOGRAPHICAL SKETCH ...75

vii

LIST OF FIGURES

Figure Page

2-1: Sample XML document..8

2-2: The DTD for a given XML document..9

2-3: Sample XMLQL query...11

2-4: Warehouse-based architecture for data integration..18

2-5: Mediator-based architecture for data integration..18

3-1: IWiz architecture ..21

3-2: WHM architecture ..23

3-3: Built-time architecture..28

3-4: Run-time architecture ...29

3-5: A subset of the DTD associated with the application...30

3-6: Hierarchical structure of the global IWiz schema ..30

4-1: Maintenance hashtable given as input at built-time ...32

4-2: Tag Info hashtable ..33

4-3: Table Info hashtable, based on the relational schema ..33

4-4: Associated Table Info hashtable...33

4-5: Time Stamp Info hashtable...34

4-6: Pseudo code of the Decision Module algorithm...35

4-7: An XMLQL query requesting information about books and articles.............................37

4-8 Queried tag hashtable created for the XMLQL query of Figure 4-7...............................38

4-9: ConditionInfoVector created for the XMLQL query of Figure 4-7................................38

viii

4-10: Pseudo code of the SQL Query Generation algorithm...39

4-11: Relational mapping tables for the given XMLQL query..41

4-12: SQL query for the XMLQL query of Figure 4-7..42

4-13: Pseudo code of the Maintenance Query Generation algorithm....................................45

4-14: Pseudo code of the Update Time Stamp algorithm..46

5-1: XMLQL Query Operation – Selection and Extraction...48

5-2: SQL Selection and Extraction corresponding to Figure 5-1...49

5-3: XMLQL Query Operation – Reduction and Restructuring..50

5-4: SQL Reduction and Restructuring corresponding to Figure 5-3....................................51

5-5: XMLQL Query Operation – Complex Restructuring...52

5-6: SQL Complex Restructuring corresponding to Figure 5-5...53

5-7: XMLQL Query Operation – Combination ...54

5-8: SQL Combination corresponding to Figure 5-7...55

5-9: An XMLQL query requesting information about book..57

5-10: Maintenance Query for Figure 5-9 ...58

5-11: Nested XMLQL query requesting information about authors of book........................59

ix

Abstract of Thesis Presented to the Graduate School

of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

MANAGING XML DATA IN A RELATIONAL WAREHOUSE : ON
QUERY TRANSLATION, WAREHOUSE MAINTENANCE,

AND DATA STALENESS

By

Rajesh Kanna

August 2001

Chairman: Joachim Hammer
Major Department: Computer and Information Science and Engineering

As more and more data is made available through the Web, mediation of

information from heterogeneous sources becomes the focal point for future Web-based

information systems. The Integration Wizard Project (IWiz) is a research prototype

system under development at the University of Florida that provides integrated access to

multiple, heterogeneous information sources using a combined mediation/data

warehousing approach.

IWiz uses mediators and source wrappers to extract and integrate the information

relevant to a user query from the available sources. Its internal data model is based on

XML and DOM. Query results are also cached in a relational data warehouse to speed up

similar queries in the future.

This thesis describes the underlying design and development of three critical

components that are part of the data warehouse manager (WHM) of IWiz. Generally

x

speaking, the WHM provides functionality for storing, querying, and maintaining the

results of frequently submitted queries to IWiz using a relational database engine.

Specifically, the components described in this research are as follows:

1. A decision module for determining whether a given user query can or should be
answered using the contents in the data warehouse or whether it needs to be submitted
to the sources;

2. An XMLQL-2-SQL query translator for converting user queries against the
integrated, XML-based view of the underlying sources into equivalent queries against
the relational warehouse schema; and

3. A maintenance query generator for monitoring the hit-rate of the data warehouse and
for generating maintenance queries to the sources whose results will refresh the
warehouse contents to provide optimal support for user queries.

The IWiz prototype system including the above mentioned WHM components is

currently installed and undergoing extensive testing in the Database Research and

Development Center at the University of Florida.

1

CHAPTER 1
INTRODUCTION

A broad spectrum of data is available on the Web in distinct heterogeneous

sources and under different formats. Data integration and translation becomes a crucial

task for future Web information systems. To provide integrated access to multiple,

distributed and independently managed data sources, integration systems need to

overcome the discrepancies in the way the data in these sources is maintained, modeled

and queried [18, 22].

The main reason for the existence of heterogeneity among the data sources is the

use of different hardware and software platforms to store and manage this data. Although

the data in the sources may retain some structure, it is not sufficient for conventional data

management techniques like extraction, translation, and integration, to be used

effectively [17], due to irregular, unknown or often changing structure of the data. This

has sparked great interest in the subject of storing and querying heterogeneous and

semistructured data. To build a tool for extraction of information from semistructured

sources it is necessary to account for the various features of semistructured data, as

described in the next section.

1.1 Semistructured Data

In recent years, the amount of data available electronically has increased

dramatically. Before this, problems associated with storing large amounts of data were

solved by using structured databases. Storage formats in these databases (relational or

2

object-oriented) require that all data conform to a predefined schema. Although this

limits the variety of data that could be stored, it allows efficient processing of stored data.

With the advent of the Web, data that is available to the user now resides in different

forms ranging from unstructured data which is stored in file systems (e.g., e-mail, html

pages) to highly structured data, which is managed by relational database systems (e.g.,

product inventory, customer data).

Semistructured data [35] is data that has some structure, but may be irregular and

incomplete and does not necessarily conform to a fixed schema as found in standard

database systems. The data can be designed with a semistructured format in mind, but

generally semistructured data arises as a result of the introduction of some form of

structure into unstructured text or when integrating several sources with different

schemas. Some of the characteristics of semistructured data are:

� The structure is irregular. Some elements may have missing attributes, others may
have multiple occurrences of the same attribute, and the same attribute may have
different types in different objects.

� The structure is partial. The degree of structure of data in a document may vary from
almost nothing to a fully structured document. Parts of the data may lack structure
while some parts may have partial structure.

� An apriori schema can be used to constrain data. This is the basis for traditional
database systems where a fixed schema has to be defined before introducing any data.
A relaxed approach is to detect a schema from the existing data, to simplify data
management, but not for constraining the data.

Querying and storing such irregular, partial data is the focus of many research

topics. One such data model used to describe semistructured data and to manipulate this

data is the Extensible Markup Language (XML) [41]. XML was introduced as a standard

for data representation and exchange on the Web. With the emergence of query languages

and persistent storage management techniques for manipulating XML data, XML

emerged as a data model.

3

XML enables the creation of self-describing data structures of arbitrary depth and

complexity. One of the main strengths of XML is that it retains the advantages of

extensibility, structure and validation required of a language while its design makes it

easier to learn, use and implement than other languages. Some of the advantages of using

XML are as follows:

� Users can provide new tag and attribute names. XML makes no restrictions on the
tags and relationships used to represent the data making it flexible for additional
information to be added.

� Document structures can be nested to any level of complexity.
� An XML document can contain an optional description of its grammar for use by

applications that need to perform structural validation. These descriptions can be in
the form of an XML schema [47, 48] or a Document Type Definition (DTD) [6].

Because of XML’s flexibility, portability and simplicity, the industry has started

using it as the standard for information interchange. This has fostered intense research

and standardization efforts on a data model, query language, typing mechanism etc.,

specifically designed for XML. One of the query languages for XML documents is

XMLQL [11], which is used in our research.

1.2 Motivation and Challenges

The systems used to store and manage XML data can be classified into native

XML data stores [19, 34] and relational/object-relational DBMS augmented with an

extension to store and manipulate XML Data [30, 51]. From these alternatives, we choose

RDBMS for storing and querying XML data because of its high scalability and the fact

that a huge set of performance-improving query processing techniques, like selection,

extraction, and restructuring, can be exploited for at least certain forms of XML data.

Thus using an RDBMS to enable the storage, retrieval and update of XML documents

becomes of primary importance as stated in [16, 33, 36].

4

While using RDBMS as a cache for storing data would be efficient in that

querying XML data in the cache would be faster than querying the sources, it raises some

issues that need to be resolved. They are as follows:

� If we use a warehouse as a cache for storing data, how do we decide whether to query
the sources or the cache?

� If the warehouse cache cannot or can only partially satisfy the user query, we must
obtain the desired data from the sources first and then update the contents of the
warehouse.

� If we decide the warehouse should be queried to obtain the information, the query
must be translated into a format that the warehouse can understand. How do we
translate a given XMLQL query into an equivalent SQL query?

While designing solutions to the above-mentioned problems we are faced with

three challenges:

1. To allow users to access integrated data from heterogeneous data sources, information
can be extracted from the sources or from the cache stored in the warehouse.
Querying the warehouse would result in better performance but the data may be
absent in the warehouse or if present, may be stale. In either of these situations, the
sources must be queried. We should identify the factors that we can use to decide
whether to send the queries to the sources or to the warehouse, and use this
knowledge effectively.

2. The data warehouse needs to be maintained with up-to-date information so that future
user queries can be satisfied with the cached data. Hence maintenance queries must
be generated so that the data that was previously requested by the user is available in
the warehouse. To generate maintenance queries, we must find a method to identify
what data is missing in the warehouse. Even after we identify what data is to be
queried, we have a greater challenge in converting this information to a
corresponding set of queries, so the results of these queries update the warehouse.

3. XML uses a hierarchical representation of data, but the structure of the relational
schema is flat. One of the main challenges of this research is to translate a given
query for XML data which is in semistructured, hierarchical format to a query which
expects to conform to a rigid flat schema. With respect to path expressions and
relational algebra we need to find out how compatible SQL and XMLQL are, and
also detect if there is one-to-one mapping between SQL and XMLQL. These are
some of the other challenges faced in query translation.

From this thesis, the reader can expect the following contributions. The first

contribution is an algorithm to decide whether the data warehouse can satisfy the

requirements of the user query. Second, we develop an algorithm that translates XML

5

queries on the XML views into SQL queries on the data stored in the relational database.

And finally, an algorithm to generate maintenance queries based on information that the

data in the warehouse is not up-to-date. Updating the contents of the warehouse provides

(a) persistence, (b) faster processing of frequently asked queries without having to go to

the sources, and (c) automatic maintenance of data contents of the warehouse.

The rest of the thesis is organized as follows. Chapter 2 provides an overview of

why we choose XML as our underlying data model and XMLQL as our query language.

We also summarize the main research initiatives related to query transformations and

warehouse maintenance. Chapter 3 describes the IWiz architecture focusing on the

Warehouse Manager and its components as they relate to the work described in this

thesis. Chapter 4 focuses on our design and implementation of the decision module, the

query translator and the maintenance query generator. Chapter 5 describes the

experiments conducted to verify the correctness of results generated by our

implementation, and Chapter 6 concludes the thesis with the summary of our

accomplishments and issues to be considered in the future.

6

CHAPTER 2
RELATED RESEARCH

The concept of using XML to represent and manage data is relatively new. We

start our description of the related research by summarizing the features of XML and

XMLQL, a query language for XML. We then focus on research done on query

transformations using the relational database approach for storing and querying XML

documents. In the final section, we focus on methods for warehouse maintenance.

2.1 Overview of XML Related Technologies

2.1.1 XML

XML started as a format for representation and data exchange, but was quickly

enriched with extensive application programming interfaces (APIs), data definition

facilities and presentation mechanisms to make it a suitable data model for semistructured

data. XML describes a class of data objects called XML Documents. The structure of an

XML document is defined by an optional Document Type Definition (DTD), essentially

a grammar for restricting the structure of the document. The DTD can either be included

in the document itself, or stored as a DTD file that is referred by the XML document. An

XML document satisfying a DTD grammar is considered valid. The popularity of XML

can be attributed to the following [28]:

� XML is made extensible by allowing new sets of tags to be constructed.
� XML is self-describing. Each data element has a descriptive tag. Using these tags, the

document structure can be extracted without knowledge of the domain or the
document description.

� XML is able to capture hierarchical information and preserve parent-child
relationships between real-world concepts.

� XML allows recursive definitions as well as multiple occurrences of an element.

7

With the above introduction of XML, we briefly describe the structure of an XML

document through an example. Figure 2-1 shows a sample XML document. The line

numbers are not part of the XML document, but used only to facilitate our explanation of

the example.

The data in XML documents are represented as declarations and elements, which

are described as we follow this example. The XML document shown in the figure starts

with an XML declaration, which specifies the version of XML being used. The version

number 1.0 is used to indicate conformance to this version of the specification. The

second line is a comment; therefore, it should not be considered as part of the XML

data/schema representation. Line 3 refers to an externally stored DTD file (as explained

above) used by this XML Document. Lines 4 to 26 contain the actual data that conforms

to the structure defined in the DTD.

Nested tagged elements are the building blocks of XML. A document has a root

tagged element that can contain other elements. Each tagged element has a sequence of

zero or more attribute/value pairs, and a sequence of zero or more subelements. In our

example, in Line 5, the element book has an attribute year with the value “1997.” The

subelements may themselves be tagged elements, or they may be “tagless” segments of

text data. Lines 6 to 17 in our example containing the elements author, author, title, and

publisher are subelements of book.

The DTD that defines the structure (schema) for the data being represented is

shown in Figure 2-2. An XML document is said to be valid if it has a DTD and it

conforms to the structure defined in its DTD. To be valid, an XML document also needs

to be well-formed, which implies that the document and any referenced entity should

comply with the XML grammar.

8

 1 <?xml version="1.0"?>
 2 <!-- Sample XML Document -->
 3 <!DOCTYPE document SYSTEM "source1.dtd">
 4 <document>
 5 <book year = "1997">
 6 <author>
 7 <firstname> Joe </firstname>
 8 <lastname> Bob </lastname>
 9 </author>
10 <author>
11 <lastname> Mark </lastname>
12 </author>
13 <title> Database systems </title>
14 <publisher>
15 <name> Addison-Wesley </name>
16 <address> New York, USA </address>
17 </publisher>
18 </book>
19 <article name = "Computer Hardware">
20 <author>
21 <lastname> Mathews </lastname>
22 </author>
23 <title> Reduction of gates in an IC </title>
24 <year> 1966 </year>
25 </article>
26 </document>

Figure 2-1: Sample XML Document

Elements are the most important logical structures declared in the DTD and may

hold single-string typed values (indicated by the keyword #PCDATA), like the element

title declared in Line 11 of Figure 2-2. Elements may also be nested to represent more

complex concepts, like the element book in Line 4, which is defined by the child

elements author, title, and publisher. Special characters after the element name indicate

how many instances of that element can occur under another one. For example, to reflect

the fact a book could have one or more authors we use a "+" after the author element

name in the book declaration (Line 4).

9

 1 <?xml version="1.0"?>
 2 <!DOCTYPE document [
 3 <!ELEMENT document (book | article)* >
 4 <!ELEMENT book (author+,title,publisher)>
 5 <!ATTLIST book year CDATA #IMPLIED>
 6 <!ELEMENT article (author+,title,year?)>
 7 <!ATTLIST article name CDATA #IMPLIED>
 8 <!ELEMENT author (firstname?,lastname)>
 9 <!ELEMENT firstname (#PCDATA)>
10 <!ELEMENT lastname (#PCDATA)>
11 <!ELEMENT title (#PCDATA)>
12 <!ELEMENT publisher (name,address)>
13 <!ELEMENT name (#PCDATA)>
14 <!ELEMENT address (#PCDATA)>
15 <!ELEMENT year (#PCDATA)>
16]>

Figure 2-2: The DTD for a given XML document

In addition to elements, DTDs can also contain attribute declarations. Attributes

associate name-value pairs with elements. They can be used to further describe data

represented by elements (in this case they act more like metadata), to establish more data

constraints, or simply to provide an alternative to element nesting. In our example, the

attribute year, is declared for the element book in Line 5. The advantage of using a DTD

is that it allows any element to become the root element of a concrete document instance.

Thus, different XML documents can have different root elements while still conforming

to the same DTD and to the underlying global schema.

2.1.2 XMLQL

A considerable amount of information available on the Web today is

semistructured. Therefore tools are needed to query, extract, transform, and integrate data

from documents [2, 3]. Query languages for semistructured data have been designed and

implemented such as Lorel [1, 20] and UnQL [4]. The World Wide Web Consortium

(W3C) is currently coordinating the process of creating a query language for XML [14,

10

43]. Several proposals were submitted to W3C committee including XML-QL, XQuery

[49], XQL [9], XSL [42], XPath [45], XMLGL [44], YaTL [7] just to name a few.

According to W3C, some of the requirements an XML query language [46]

should satisfy are as follows:

� It must be able to combine related information from different parts of a given
document or from multiple documents.

� It must be able to sort query results.
� Queries must be able to transform XML structures and create new XML structures,

and
� Queries must be able to perform simple operations on names, such as tests for

equality in element names, attribute names, and processing instruction targets and to
perform simple operations on combinations of names and data.

Query languages such as Lorel, YaTL, and XML-QL have similarities in their

design approach and query capabilities for querying XML data. They can be divided into

a match part, corresponding to a query in our sense, and a construct part, that specifies

how new documents or data items are constructed using the matches. For our research,

we chose XMLQL as our query language. XMLQL is similar in structure to SQL and

provides most of the necessary functionalities (i.e., joins and aggregations). Also,

database techniques for query optimization, and query rewriting could be extended to

XMLQL. In addition, our decision to use XMLQL was influenced by the existence of a

robust implementation by AT&T [50].

A sample XMLQL query is given in Figure 2-3. Like SQL’s SELECT-FROM-

WHERE clause, XMLQL’s construct comes in the form of WHERE-CONSTRUCT

clause. The structure specified in the WHERE clause must conform to the structure of the

XML document. The WHERE clause has two parts. The first part specifies input data, its

schema, and location. The second part, which is optional, indicates a set of filters or

conditions. The tag elements that specify the input data are bound using “$” symbol to

distinguish them from string literals. In our example, $y, $p in Line 4, $t in Line 6 are the

11

tag elements. Join conditions and filters can be declared implicitly or explicitly. The

string literal “Addison Wesley” in Line 7 is an implicit filter while the condition that year

($y) must be 1996 (in Line 8) is an explicit filter. The CONSTRUCT clause identifies the

structures of user-defined views. New tags can be created in the resulting document. The

tag <authors> in Line 12 is one such example.

 1 function query() {
 2 WHERE
 3 <document>
 4 <book year=$y>$p</book>
 5 </document> IN “book. xml”,
 6 <title>$t</title> IN $p,
 7 <publisher>"Addison Wesley"</publisher> IN $p,
 8 $y = 1996
 9 CONSTRUCT
10 <book>
11 <title>$t</title>
12 <authors>
13 { WHERE <author>$a</author> IN $p
14 CONSTRUCT $a }
15 </authors>
16 </book>
17 }

Figure 2-3: Sample XMLQL query

Looking at the similarity between XMLQL and SQL, it is evident that the

WHERE clause specifying the condition in SQL has the same functionality as the

WHERE clause of XMLQL. The set of tables being queried using the FROM clause is

specified in XMLQL using the IN construct in the WHERE clause. Similar to the AS

clause in SQL to rename results, we can create new tags in the CONSTRUCT clause.

Inside both WHERE and CONSTRUCT clauses, the schema is declared as the hierarchy

of tags, the fundamental component in XML.

XQuery is a specification that describes a new query language for XML and is

designed to meet the requirements identified by the W3C XML Query Working Group. It

is designed to be a small, easily implementable language in which queries are concise and

12

easily understood. It is also flexible enough to query a broad spectrum of XML

information sources, including both databases and documents. XQuery is derived

primarily from an XML query language called Quilt, which is described in the next

section. XQuery also has borrowed features from other query languages like the regular

path expression from XPath and XQL, the notion of binding variables from XMLQL,

methods for restructuring data from SQL. Features like data definition facilities for

persistent views, function overloading and polymorphic functions, and facilities for

updating XML data are not looked into in this specification and will be the focus of

future versions of XQuery.

2.2 Query Transformations

Since a major focus of this thesis is on translating queries from one format to

another, we give a brief overview of some of the research done in query transformations.

We look at how query translations are performed using Quilt [5], a XML query language;

and Lore, a research-oriented project at Stanford University.

The primary requirement of an XML query language is to perform queries on the

XML representation of data to extract data, to transform data into new XML

representations, or to integrate data from multiple heterogeneous data sources. The data

can be database data, object data or other traditional data sources. The current XML

Query Requirements have no specification regarding directly querying the databases;

neither do they define a normative mapping between databases and XML. Hence as there

are no specifications for storage and querying XML data, various approaches like using

file systems, relational database systems, and object-oriented storage managers have been

identified [15, 36]. Though extensive research has been done on the various approaches

for storing XML data, less attention is paid to the querying of this data.

13

2.2.1 Quilt

Quilt is a query language that uses the best ideas from XML-QL, XPath, XQL,

YaTL and XSQL; along with some features of SQL and OQL. The conceptual integrity

of Quilt comes from the structure of XML, which is based on hierarchy, sequence, and

reference. Although Quilt can be used to retrieve data from objects, relational databases,

or other non-XML sources, this data must be expressed in an XML view, and Quilt relies

solely on the structure of the XML view in its data model.

Manolescu et al., [26] described an approach of using XML queries in relational

databases by normalizing the queries expressed in Quilt, translating them on a generic

schema and rewriting the queries, using the relational tables as views over the generic

schema. A set of translation rules is used for the translation. Since these translation rules

are fixed, only a subset of the queries can be used to query the relational database.

Agora [27] is a data integration system that uses XML as the data interface format

and Quilt as the query language, where data flow inside the query processor consists of

relational tuples. Several servers each owning and sharing data can be considered to be

the sources. The shared data is collaborated in answering user queries. Query execution is

done on source-specific wrappers that publish the relational data, while query

optimization is done on the server where the query is initiated. The wrappers export

meta-data, like available access patterns, cost of executing functions, query processing

capabilities in terms of arithmetic expressions, joins. The query optimizer takes in this

information from the different wrappers and translates it into an execution plan that

distributes the work to be done by different wrappers. A Quilt query, expressed in the

form of an FLWR (pronounced "flower") expression is constructed from FOR, LET,

WHERE, and RETURN clauses. A FLWR expression is used whenever it is necessary to

14

iterate over the elements of a collection. The FOR clause binds variables by iterating over

collections of XML nodes; the WHERE clause specifies selection conditions; and the

RETURN clause constructs the results. The Quilt query is then translated into a set of

correlated, parameterized SQL queries over the relational generic schema.

Quilt can express queries against diverse sources, ranging from documents to

relational databases. On relational data, queries have been written involving joins, outer

joins, and grouping. The Quilt language attempts to pull together features from several

languages that enable it to operate on a broad range of data sources. From XPath and

XQL it draws a powerful path expression syntax that can navigate inside a hierarchical

document, selecting a set of nodes that satisfy a complex predicate. From XML-QL it

draws the notion of bound variables and a versatile syntax that can generate an output

document of arbitrary structure.

2.2.2 The Lore Project at Stanford

The aim of the Lore project [29] was to build a complete database management

system for semistructured data. It used a data model called the Object Exchange Model

(OEM) with its own query language, Lorel, which was based on OQL.

With the emergence of XML, Lore was migrated to be based on a true XML-

oriented data model and Lorel was modified accordingly. Query processing is done in

Lorel by parsing the input query and preprocessing it to translate it into an OQL-like

query. A logical query plan generator then generates a high-level execution plan for the

query. The logical query plans can be translated into different physical query plans. Lorel

uses a cost-based optimizer to translate the logical query plan into the estimated best

physical plan. There are three approaches for query translation/execution strategy. The

first approach is the top-down approach where the top level bound object is explored and

15

for each object looks for the existence of the nested objects. The second approach is the

bottom-up approach where the atomic objects are identified first and then work upwards

to obtain the bound object. The third approach is a hybrid approach involving the first

two approaches. These approaches give rise to different types of execution strategies to

evaluate a simple query.

Lore builds and dynamically maintains a DataGuide for every database, which is

a summary of the current structure of the database and serves some of the functions a

schema serves in a traditional DBMS. Since an XML DTD is a set of grammar rules that

restrict the form of an XML document, there is a close relationship between DataGuides

and DTDs. Lore can use a DTD to build an "approximate" DataGuide. Also, a keyword

and proximity search feature is provided with Lorel. The proximity search feature is

implemented using a novel indexing technique to scale to very large databases. The

prototype is complete with multi-user support, logging and recovery.

2.3 Warehouse Maintenance

From a user perspective, a data warehouse (DW) is a collection of cleansed,

integrated, and summarized data, which is available for on-line analytical queries and

decision making. From a system perspective, a DW is a database that collects and stores

information from multiple data sources. In today’s dynamic environments, it has become

necessary to keep DW up-to-date. Active research is being done in the area of supporting

DW maintenance under concurrent data updates, while research in the area of supporting

DW for schema changes is less.

Users typically perform complex read-only queries on the data. As changes are

made to the data at the sources, the warehouse becomes out-of-date. The data is refreshed

periodically by maintenance transactions, which propagate updates from the sources. In

16

current warehousing systems, maintenance transactions usually are isolated from users'

read activity, limiting availability of the warehouse. One approach for a warehouse

management scheme is to maintain the warehouse at night, during which time it is not

available to the users. Thus, one can maintain consistency without blocking user queries.

One can also update the warehouse instantaneously in response to every change at the

data source, which is expensive and gives rise to inconsistent results during the same

reader session. An update from the data source will change the results a user might see

over a sequence of queries. Quass and Widom [31] discuss a possible approach to this

problem by maintaining two versions of each tuple at the DW simultaneously so that the

reader sessions and the maintenance transactions do not block each other.

Another approach is to take into account that most users do not need the latest

data (relative to the warehouse), but would accept user defined consistency, where a user

specifies a tolerance limit for difference in data between the current data in the warehouse

and the data in the sources. Such an approach should support different maintenance

strategies for individual views. Thus, views that do not need to be up-to-date can be

maintained in a deferred or periodical way. We implement a modified version of this

approach by allowing the user to decide the tolerance limit; but when the tolerance limit

is approached, the sources are queried; at which time the user queries may be blocked.

Whenever data from the sources is loaded into the warehouse, the timestamps for this

data are updated. When the user requests some information, the timestamps for the data

requested are noted and if the difference with the current time is within the user defined

tolerance limit, the data in the warehouse is assumed to satisfy the user query. If not, the

data in the warehouse is assumed to be stale and it has to be updated. Thus maintenance

transactions are generated to refresh the data in the warehouse.

17

The selection of the most appropriate maintenance policy is a complex process

affected by several dynamic and static system properties. Any approach of DW

maintenance must choose an appropriate set of data propagation (or view maintenance)

policies to match source characteristics; and must satisfy quality of service attributes for a

data warehouse. The main advantage of using a DW is that it allows for faster data access

time since the expensive distributed query processing is conducted previously and then

cached locally.

2.4 Architectures for Integration Systems

All approaches to data integration are based on a materialized, central data

warehouse, or virtual warehouses, a.k.a. mediators. In the data warehousing approach

[24], shown in Figure 2-4, the data is integrated from the sources and stored in a

centralized repository, before users can issue queries against it. This is also commonly

referred to as the eager or in-advance approach to data integration. An excellent

overview of the research issues related to the design and implementation of data

warehouses is provided [38].

The other well-known architecture for integration systems is based on mediators.

This is shown in Figure 2-5. The mediator-based approach to data integration is also

known as lazy or on-demand approach, because the source data is integrated only when

the users issue queries to the mediators. The mediators provide the users with an

integrated view of the underlying sources, much like the data warehouse; however, since

they do not actually store the corresponding data, the incoming query is rewritten into

one or more queries against the sources that participate in the answer.

18

Warehouse Manager

Warehouse

Source 1 Source 2 Source n...

Monitor
Wrapper

Monitor
Wrapper

Monitor
Wrapper

Querying and Browsing Interface

metadata

Figure 2-4: Warehouse-based architecture for data integration

Source 1
...

Monitor
Wrapper

Mediator 2

Querying and Browsing Interface

Mediator 1 Mediator n

Monitor
Wrapper

Monitor
Wrapper

Source 2 Source n

Figure 2-5: Mediator-based architecture for data integration

The Integration Wizard (IWiz) system, under development at the University of

Florida, allows users to access and retrieve information from multiple sources through a

consistent, integrated view. To improve query response time, we have an underlying

relational database to store the data from the different sources, and an interface to query

this data. IWiz uses a "hybrid" approach where we have a mediator system with a data

19

cache (relational database) for storing the answers to frequently asked queries. All

queries are checked to see if they can be satisfied by the data cache. If so, the data cache

is queried and the result returned to the user (data warehousing approach). If the cache

cannot satisfy the user query, the query is sent to the sources (mediator approach) and the

merged result from the sources is returned to the user.

20

CHAPTER 3
THE INTEGRATION WIZARD PROJECT

As pointed out in Chapter 1, this research is part of a bigger effort to develop a

new integration system called the Integration Wizard (IWiz). The goal of IWiz is to query

and manage interesting data stored in multiple, heterogeneous sources. It focuses on

sources containing semistructured data. IWiz aims to provide integrated access to

heterogeneous data through one common interface and user-definable view of the

integrated data and to warehouse frequently accessed data in integrated fashion for faster

retrieval. It provides these functionalities by (a) helping users in describing the desired

information in a format suitable to their needs, (b) resolving semantic heterogeneity by

automatically restructuring and transforming the relevant source data into a unified data

model, and (c) supporting the querying of source data through the user-defined view and

transferring the data into the view definition with all the inconsistencies resolved.

3.1 IWiz Architecture

The architecture of IWiz is presented in Figure 3-1 The main components of the

systems are the Querying and Browsing Interface, the Warehouse Manager, Mediator and

the Wrappers, also called as the Data Restructuring Engine.

In IWiz, data is represented as XML documents. The sources provide the

requested data to be integrated. The wrappers translate and restructure the source data and

provide them to the mediator. The mediator produces the mediated data by fusing the

restructured data and cleaning redundant and overlapping data. This mediated data is the

21

result of a given user query. We shall now provide a brief description of the modules of

IWiz [21].

The sources, shown in Figure 3-1, are present at the lowest tier of the architecture.

Ideally the sources can be structured, unstructured or semistructured. However, in our

current version, the sources are XML based, semistructured sources. These underlying

source information is represented using XML together with a DTD which explains the

schema of the data.

Warehouse Manager

Warehouse

Source1 Source2 Sourcen

...

Metadata
Repository

Querying
& Browsing

Interface
(QBI)

Wrapper 1

Mediator

Wrapper 2 Wrapper n

Figure 3-1: IWiz architecture

The Warehouse, shown above the Warehouse Manager in the Figure, is a

repository that is used to store user-query results. It provides faster access to frequently

asked queries. Oracle 8i is the relational database that we are using to store the data.

There is also a Metadata Repository that serves as a persistent repository for storing

auxiliary data such as global schema, restructuring specifications, merging specifications,

information about sources etc.,

22

The Querying and Browsing Interface (QBI) provides an interactive graphical

interface to create queries. It also lets users view query result in an easy-to-understand

and easy-to-explore fashion. The Warehouse Manager (WHM) accepts a user query from

the QBI and analyzes whether the query can be satisfied by the warehouse. It returns the

result that can be either found in the warehouse or acquired from the mediator to the users

via the QBI. It also keeps the data in the warehouse up-to-date by generating maintenance

queries and sending it to the Mediator. As shown in Figure 3-1, WHM is connected to

QBI, Metadata Repository, Warehouse and the Mediator.

The Mediator which forms the middle tier of the architecture maintains metadata

and information about underlying sources. The work of the Mediator is (a) to analyze a

query coming from the Warehouse Manager, transform the query into a set of source

specific queries and send them to the corresponding Wrappers and (b) to merge the

restructured data obtained from the Wrappers and return them to the Warehouse. The

Mediator connects to the Warehouse Manager in the top tier and the Wrapper in the third

tier as shown in Figure 3-1.

The Wrapper serves as an interpreter between the sources and the rest of the

system. Its tasks are to (a) map the data model in the underlying sources into a common

data model used in the integration system, (b) map the schema of the underlying sources

into semantically equivalent concepts defined in the global schema, (c) transform the

mediated query into a restructured query to access the underlying source, and (d)

restructure the underlying source data.

Now we give a brief overview of the Warehouse Manager and the three

components that are the focus of this research.

23

3.2 Warehouse Manager

The Warehouse Manager (WHM), shown in Figure 3-2, is responsible for caching

the results of frequently accessed queries for faster response and increased efficiency.

The XMLQL-2-SQL Query Translator, the Decision Module and the Maintenance Query

Generator which are the research areas of this thesis are components of WHM.

Querying and Browsing Interface

MDR DWH

User Query
XMLQL

JDBC

XMLQL-SQL
Query

Translator

Mediator

WHM

DBCE

Decision
Module

DLE

Query
SQL

User
Query

 UQ
 Result

XML Doc

SQL

Query Result
XML Doc

Maintenance
Query

Generator

Maintenance
Query

Query
XMLQL

 MQ
 Result

XML Doc

Query Result
XML Doc

RXE

Figure 3-2: WHM architecture

In Figure 3-2 shown above, the Querying and Browsing Interface is the interface

with which the users interact to obtain results to their queries. The user query (UQ as

shown in the figure) which is in XMLQL is sent to the Warehouse Manager (WHM). The

Decision Module decides whether the warehouse (DWH) can satisfy the user query. If so,

it is translated to a SQL query by the XMLQL-to-SQL query translator and sent to DWH

through the Database Connectivity Engine (DBCE). The result set is then converted to an

24

XML document by the Relational-to-XML Engine (RXE) and given to the user. If the

DWH cannot satisfy the user query, it is sent to the Mediator. The resulting XML

document (UQ Result) is sent to the user. Also, Maintenance Queries (MQ) are generated

which are also sent to the Mediator. The resulting XML document (MQ Result) is loaded

into the DWH by the Data Loader Engine (DLE). In the figure, the dark lines indicate the

flow of queries (XMLQL and SQL) while the light and dotted lines indicate the flow of

XML documents. The dotted lines represent the flow of data to the DWH while the light

lines indicate the flow of data to the user.

Before we discuss the architecture and implementation of the work presented in

this thesis, we describe the features related to WHM that are important for a better

understanding of our thesis. The two major phases in the WHM operation are the built-

time phase and the run-time phase. At built-time, the DTD description of the global IWiz

schema is processed to generate the relational schema for the warehouse. At run-time,

WHM accepts and processes user queries which are in XMLQL format. When the

XMLQL query is provided to WHM, the Decision Module determines whether the

contents of the warehouse can satisfy the user query. The XMLQL-2-SQL Query

Translator generates an equivalent SQL query for the given XMLQL query. This SQL

query is executed against the warehouse. The relational result generated is then converted

to an XML document by the Relational-to-XML-Engine (RXE). If the Decision Module

decides that the warehouse cannot satisfy the user query, it sends the user query to the

Mediator. The resulting XML document generated by merging the information from

various sources after resolving conflicts is sent to the Querying and Browsing Interface to

be displayed to the user. To keep the contents of the warehouse up-to-date, the

25

Maintenance Query Generator generates a maintenance query which is sent to the

Mediator. The resulting XML document is loaded into the warehouse by the XML

Loader (DLE) component of WHM. The RXE and DLE are part of another ongoing

research project in the Database Research and Development Center at the University of

Florida.

3.3 Overview of Relational Approach for Managing XML Data

There have been numerous studies for storing XML documents and for executing

queries on that data [17]. XML storage strategies can be classified into three categories

according to the underlying system used: file system, storage manager or database

management systems (DBMS). A storage manager can be a file system augmented with

database features or a database system with file-system features. We can store XML

documents as ASCII files. The disadvantage of this approach is that they need to be

parsed every time they are accessed. Also the merging and updating operations are

difficult to implement. The second approach, using the storage manager, involves using

an object manager. While this can be expected to provide better performance, the record-

level interface for querying provided by a typical storage manager requires more work to

use than a query language using a database system.

Regarding the kind of DBMS used for integration and querying of XML

documents, one can identify four different approaches. First, special-purpose DBMS are

particularly tailored to store, retrieve, and update XML documents. Lore, Strudel [13] are

examples of some of the research prototypes. Second, because of the rich data modeling

capabilities of object-oriented DBMS, they are well-suited for storing hyper-text

documents. Third, object-relational DBMS could be used since the nested structure of the

26

object-relational model blends well with XML’s nested document model. However the

above-mentioned approaches have not been explored thoroughly to handle large scale

data in an efficient way and also they are not in wide-spread use.

The fourth and final approach and the one that we have selected, is to store XML

documents in a relational database management system (RDBMS). Advantages such as

reusing a mature technology and seamlessly querying data represented in XML

documents influenced our decision. Within an RDBMS, we have three alternatives for

storage. The easiest approach would be to store the XML documents as a whole within a

single database attribute. The second would be to interpret XML documents as graph

structures and provide a relational schema allowing to store arbitrary graph structures.

The third approach is that the structure of an XML document e.g., DTD, is mapped to a

corresponding relational schema wherein XML documents are stored according to the

mapping. As this allows us to exploit the features of RDBMS such as querying,

optimization, concurrency control etc., we have used this approach in our implementation

of WHM in IWiz.

Using RDBMS to store XML documents raises the issue of how to query these

documents. One could ask why not adapt SQL to query XML. SQL cannot be modified

to query XML because XML data is fundamentally different from relational data. In

relational data models, every data instance has a schema which is separate from and

independent of the data, while in XML the schema exists with the data. Also, in XML,

data items may have missing elements or multiple occurrences of the same element;

elements may have atomic values in some data items and structured values in others; and

27

collections of items can have heterogeneous structure. Hence we need a mechanism to

translate XML queries into SQL.

3.4 Architecture Overview

We shall now give a brief overview of the architecture which is divided into the

built-time and run-time phase.

3.4.1 Built-time Phase

The built-time architecture of WHM is shown in Figure 3-3. During this phase,

only the Decision Module is used. The input to this module is the Maintenance Key File.

It contains a list of the variables for which a maintenance query must be generated. A

hashtable, Maintenance hashtable, is created from information in the input, which is also

stored persistently in the warehouse. Metadata from the Meta Data Repository is used to

create (1) the Tag Info hashtable which identifies whether the variables in the global

schema are CONCEPTs or FIELDs/ATTRIBUTEs, (2) Table Info hashtable which stores

the names of all columns associated with a table in the relational schema, (3) Associated

Table Info hashtable which contains the names of all tables that are mapped to a table in

the relational schema, and (4) the Time Stamp Info hashtable which contains information

regarding the freshness of the data in the warehouse. These terms are explained in detail

in the next chapter. The hashtables created are stored together in a module called

DataContainer, that can be accessed by the various modules of WHM. All these are also

stored persistently in the warehouse. While the first three are fixed for a given relational

schema, the Time Stamp Info hashtable may be modified based on the changes to the data

in the warehouse.

28

MDR DWH

Decision
Module

WHM Server

Maintenance
Key File

WHM

Data
Container

Figure 3-3: Built-time architecture

3.4.2 Run-time Phase

In the run-time phase, the Decision Module (DM), the XMLQL-2-SQL Query

Translator (QT), and the Maintenance Query Generator (MQG) are used. The run-time

architecture is shown in Figure 3-4. The modules are aided by the Data Container (DC)

which is used to store the metadata required for processing the user queries. At run-time,

WHM is ready to accept user queries from the Query and Browsing Interface (QBI), as

described. These user queries are in XMLQL format. When the XMLQL query is

provided to the WHM, the DM determines whether the contents of the warehouse can

satisfy the user query. The QT then translates the given XMLQL query into an equivalent

SQL query which is executed against the warehouse. The relational result generated is

then converted to an XML document that is returned as the result to the user query back

to the QBI. The QBI then displays the result to the user. If the DM decides that the

warehouse cannot satisfy the user query, it sends the user query to the Mediator

component. The resulting XML document generated by merging the information from

various sources after resolving conflicts is sent to the Querying and Browsing Interface to

29

be displayed to the user. To keep the contents of the warehouse up-to-date, the MQG

generates a maintenance query which is sent to the mediator.

MDR DWH

User
Query

WHM
Data

Container
XMLQL-SQL

Query
Translator

Decision
Module

Maintenance
Query

Generator

WHM Server

Mediator

Interface

Figure 3-4: Run-time architecture

The maintenance query generates results that are used to load the data warehouse

so that in the future, similar queries can be satisfied directly from the warehouse. The

resulting XML document is loaded into the warehouse.

We shall now explain the sample application used in our implementation that is

important for a better understanding of our thesis. To illustrate our approach, we describe

a scenario where users would like to get information pertaining to description and

identification of the editions, dates of issue, authorship, and typography etc., of books or

other written material. This descriptive information is termed as bibliography, on which

the global schema (DTD) of IWiz is based. The structure of the DTD corresponds to the

concept of a bibliography. The global (integrated) schema includes most of the

30

commonly used items of a bibliography and their descriptions. A subset of the DTD is

shown in Figure 3-5. The detailed DTD is included in the Appendix.

<!ELEMENT Ontology (Bib*)>
<!ELEMENT Bib(Book,Article)*>
<!ELEMENT Book (Author+, Title, Year, Editor*, ISBN>
<!ELEMENT Article (Author*, Title, Year, Editor?>
<!ELEMENT Author (Firstname?, Lastname, Address>
<!ELEMENT Editor (Lastname)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT ISBN (#PCDATA)>
<!ELEMENT Year (#PCDATA)>
<!ELEMENT Firstname (#PCDATA)>
<!ELEMENT Lastname (#PCDATA)>
<!ELEMENT Address (#PCDATA)>

Figure 3-5: A subset of the DTD associated with the application

Bib

Book Article . . .

Author Title Year ISBN Editor

Ontology

...

Firstname Lastname Address Lastname

Figure 3-6: Hierarchical structure of the global IWiz schema

The root of the global schema is the element Ontology. An ontology can contain

one or more types of bibliographies specified by the element Bib. Each bibliography has

multiple instances of Books and Articles. Each instance of Book can contain one or more

Authors, a Title, an ISBN, the Year it was published and zero or more Editors. Similarly

each instance of article has zero or more Authors, the Title, the Year it was published and

31

one or more Editors. Finally each author can have an optional Firstname, a Lastname and

an Address while an editor has only a Lastname.

The hierarchical structure of the schema is shown in Figure 3-6. It contains the

same information as Figure 3-5, but in a tree structure for easier understanding of the

DTD. The root of the tree is Ontology, which has as its children a set of bibliographies,

Bib. Each Bib in turn contains one or more Books and Authors. This structure continues

till we reach the leaf nodes of the tree, which are the elements with PCDATA in our

DTD. Thus all non-leaf nodes are elements in the DTD which contain other elements as

children while the leaf nodes must be either elements having PCDATA or must be

attributes (as explained in Line 5 of Figure 2-2).

32

CHAPTER 4
DESIGN AND IMPLEMENTATION

Before describing the design and implementation of the Decision Module, the

XMLQL-2-SQL Query Translator and the Maintenance Query Generator we first

introduce some important terms and data structures used in the reminder of this chapter:

� Concept: In DTD terms, a CONCEPT is an element that satisfies one or more of the
following conditions (a) it has one or more attributes, (b) it has one or more children,
or (c) can occur more than one time. In relational terms, a CONCEPT is a table. In
our sample schema, shown in Figure 3-5, Book, Article, Author, Editor are all
concepts.

� Field/Attribute: In a DTD, a FIELD is an element which has no children. It is the leaf
node in a hierarchical structure of the DTD. FIELDs are mapped to columns of a
relational table. In Figure 3-6, which is the hierarchical structure of the schema of
Figure 3-5, Firstname, Lastname, Title, and Year are all FIELDs/ATTRIBUTEs.

� parentChild: parentChild is a term which we shall be using frequently in the
remainder of this chapter. Referring to Figure 3-6, parentChild refers to a node in the
tree and its parent. Thus, Bib with either Book or with Article would refer to a
parentChild. We write this in the form of parent followed by a ”:” and then the child.
Thus, Ontology:Bib, Bib:Book, Author:Lastname, Book:Year are all parentChild
elements. One can notice that the parentChild element can refer to a CONCEPT,
FIELD or ATTRIBUTE. The same idea is expressed in relational terms as
tableColumn written as table:Column. But only those elements which are FIELDs or
ATTRIBUTEs occur as tableColumn elements.

� Maintenance hashtable: A maintenance hashtable is a data structure that is given as
input at built-time. This is shown in Figure 4-1.
This is used by the Maintenance Query Generator module to generate maintenance
queries. The data structure comprises of a set of elements for which maintenance
queries must be generated and the path of these elements from the root in the global
schema. For example, the element Book in Figure 3-6 has the path
Ontology\Bib\Book from the root, which is the value for the key ”Book” in the
Maintenance hashtable.

 Key Value

Book Ontology.Bib.Book
Article Ontology.Bib.Article

Figure 4-1: Maintenance hashtable given as input at built-time

33

 Key Value

Bib:Article CONCEPT
Ontology:Bib CONCEPT
Author:Lastname INLINED-FIELD
Article:Title INLINED-FIELD
Article:Editor CONCEPT
Book:Editor CONCEPT

Figure 4-2: Tag Info hashtable

� Tag Info hashtable: The Tag Info hashtable, shown in Figure 4-2, is created at built-
time. The keys are the parentChild (explained above) and the values indicate whether
these parentChild elements are CONCEPTs, FIELDs or ATTRIBUTEs. Thus, Article,
which is a CONCEPT in Figure 3-5, is shown with the key Bib:Article and the value
CONCEPT, while Lastname which is an element of Author (Author:Lastname) has
the value FIELD.

� Table Info hashtable: This data structure is based on the relational schema created
from the global schema. As shown in Figure 4-3, this data structure consists of a set
of names of the tables created in the relational schema and the columns of the table.

 Key Value

Bib [BIB_PK_ID]
Ontology [ONTOLOGY_PK_ID]
Author [AUTHOR_PK_ID, FIRSTNAME, LASTNAME, ADDRESS]
Editor [EDITOR_PK_ID, LASTNAME]
Article [ARTICLE_PK_ID, TITLE, YEAR]

Figure 4-3: Table Info hashtable, based on the relational schema

As shown in Figure 4-3, each table has a primary key associated with the table, which
is not present in the global schema (Figure 3-5).

� Associated Table Info hashtable: This data structure, shown in Figure 4-4, is also
created based on the relational schema. Referring to Figure 3-6, each node in the tree
can have as its child, a CONCEPT or a FIELD/ATTRIBUTE. Those non-leaf nodes
in the tree whose children are non-leaf nodes form the keys of this hashtable and the
children of these nodes, which are CONCEPTS themselves, are the values.

 Key Value

Bib [Article, Book]
Book [Author, Editor]
Article [Author, Editor]
Ontology [Bib]

Figure 4-4: Associated Table Info hashtable

34

As can be seen, Ontology is a non-leaf node which has Bib as its child and this is
reflected in Figure 4-4. Similarly, it can be seen that the associated tables of Book are
Author and Editor, and that Author is not be present in this hashtable as a key element
as it has no non-leaf nodes.

� Time Stamp Info hashtable: The Time Stamp Info hashtable, shown in Figure 4-5, is
created at built-time. The parentChild terminology explained above are the keys of
this hashtable. They refer to the columns of the tables created in the relational
schema. The value of each key is the time when the warehouse was updated with
respect to this table and particular column. Thus, the value for the key BOOK:YEAR
refers to the latest update on the Month column of the Article Table. At built-time,
when the warehouse is initially empty, there are no values for any of the keys.

 Key Value

BOOK:YEAR 2001-03-25 16:17:25.0
ARTICLE:AUTHOR 2001-03-25 16:17:25.0
AUTHOR:LASTNAME 2001-03-25 16:17:25.0
ONTOLOGY:BIB 2001-03-25 16:17:25.0

Figure 4-5: Time Stamp Info hashtable

A detailed structure of the DTD, Maintenance hashtable, Tag Info hashtable,

Table Info hashtable, Associated Table Info hashtable and Time Stamp Info hashtable is

presented in the Appendix.

With this understanding of interaction between the various components of WHM,

we now proceed to describe in detail the design and implementation of the XMLQL-2-

SQL Query Translator, the Decision Module, and the Maintenance Query Generator

components that are the focus of this research.

4.1 Decision Module (DM)

As explained in Chapter 2, IWiz uses a "hybrid" approach as the approach for data

integration, in which we have a mediator system with a data cache for storing the answers

to frequently asked queries. Because of this, a decision has to be made to either query the

cache or send the query to the sources. The DM in WHM performs this function. When a

35

query is submitted by the QBI, the DM parses the incoming XMLQL query and obtains

the set of tags that are queried and requested by the user. Both the WHERE clause and

the CONSTRUCT clause of the XMLQL query may contain these tags (bound variables).

 1 Parse the incoming query to obtain the tags that need to be queried
 in the warehouse
 2 For each tag
 3 Obtain the time when the warehouse was last modified w.r.t this tag
 4 If the difference between the current time and the timestamp of the
 tag in the warehouse is beyond a threshold limit, it means the
 query cannot be satisfied by the warehouse
 5 If the query cannot be satisfied by the warehouse
 6 Query the sources through the Mediator
 7 The resultant XML document is sent to the QBI
 8 Generate a set of XMLQL queries so that the warehouse can be updated
 9 Update the timestamp of those tags in the warehouse whose contents
 are updated
10 If the query can be satisfied by the warehouse
11 Call the XMLQL-SQL Query Translator to translate the XMLQL query to
 the corresponding SQL query in the underlying relational schema
12 The SQL query generated is then queried on the data warehouse and
 the resultant XML document generated is sent back to the user

Figure 4-6: Pseudo code of the Decision Module algorithm

At built-time, the DM connects to the database to get information about the

timestamps of the variables present in the global schema. The pseudo code of the

Decision Module Algorithm is given in Figure 4-6. We shall explain the pseudo code in

detail.

The incoming query is parsed to obtain the set of tags that participate in the query.

This is shown in Line 1. The tags can be present in the WHERE clause as bound

variables or conditions/filters. For each queried tag, the timestamps is checked with the

current time (Lines 2 and 3). If the difference in the time is within a threshold as

determined at built-time, the contents of the warehouse for those variables queried are

considered to be fresh in the warehouse (Line 10). If so, it calls the XMLQL-2-SQL

Translator to translate the XMLQL query into a SQL query to query the warehouse (Line

36

11). The result set of the SQL query is converted to an XML document and sent to the

user via the Querying and Browsing Interface as indicated by Line 12. If the warehouse

cannot satisfy the user query (Line 4), it has to query the sources. The user query is then

sent to the mediator (Line 6). The result of the user query obtained from the Mediator is

sent back to the user as explained in Line 7. At the same time, the DM calls the

Maintenance Query Generator, to generate a set of maintenance queries to update the

warehouse (Line 8), while the result of the maintenance query from the Mediator is used

to update the contents of the warehouse. The timestamps that are used to indicate the

freshness of data in the warehouse is updated for those variables whose data is loaded

into the warehouse. This operation is explained in Line 9 of the pseudo code. We shall

now describe the implementation of the XMLQL-to-SQL Translator.

4.2 XMLQL-2-SQL Query Translator (QT)

If the DM decides that the contents of the warehouse can be used to satisfy the

user query, it calls the QT, which translates the user query to a SQL query to query the

warehouse. The design issues and implementation of QT is discussed in this section.

Consider a scenario in which the user likes to get information about books and

articles whose authors have the same lastnames. Specifically, the user wants only the

titles of books and articles, which have been written by authors having the same lastname

and have been published in the year 1995. The query generated by QBI would in the form

shown in Figure 4-7.

37

function query() {
 WHERE

<document>
 <book year=$year>
 <title> $title_book </title>
 <author>
 <lastname>
 <PCDATA> $author_book </PCDATA>

 </lastname>
 </author>
 </book>
 <article>
 <title> $title_article </title>
 <author>
 <lastname>
 <PCDATA> $author_article </PCDATA>

 </lastname>
 </author>
 <year> $year </year>
 </article>
 </document> IN IWiz,
 $year = 1995,
 $author_book = $author_article
 CONSTRUCT
 <authors_of_book_or_article year=$year>

 $author_book
 <book_title>$title_book </book_title>
 <article_title>$title_article</article_title>

 </authors_of_book_or_article>
}

Figure 4-7: An XMLQL query requesting information about books and articles

This query conforms to the DTD shown in Figure 2-2. Before explaining in detail

how the Query Translator algorithm works, we shall explain some terms used in the

algorithm: the XMLQL query is parsed to obtain those tags that are queried in the

XMLQL query. Both the bound variable and the path of this element from the root are

stored in a hashtable. We shall call this hashtable as Queried Tag hashtable. The structure

of the hashtable is shown in Figure 4-8. This hashtable is created for the query given in

Figure 4-7. As can be seen from Figure 4-7, $title_article is a variable bound to the title

of a book. Hence this is the value in Figure 4-8, which has as its key, the path from the

root of the global schema (i.e., document).

38

 Key Value

\document\article\title $title_article
\document\article\author\lastname $author_article
\document\book\title $title_book
\document\book\author\lastname $author_book
\document\book\year $year
\document\article\year $year

Figure 4-8 Queried tag hashtable created for the XMLQL query of Figure 4-7

Also, at the same time, the conditions present in the XMLQL query are noted. We

shall refer to the storage data structure of these conditions as the ConditionInfoVector.

The structure of the ConditionInfoVector for the given query is shown in Figure 4-9.

$year = 1995
$author_book = $author_article

Figure 4-9: ConditionInfoVector created for the XMLQL query of Figure 4-7

This data structure informs us that the year in which both book and article were

published must be “1995.” Also, the second condition is that the lastname of the author of

a book must be the same as the lastname of the author of an article. In general, all the

conditions and filters specified in a query are stored in the ConditionInfoVector. This

includes implicit filters (e.g., <year>“1995”</year>), explicit filters (e.g., $year = 1995),

and joins conditions (e.g., $author_book = $author_article).

The pseudocode of the Query Translation algorithm is shown in Figure 4-10. Let

us explain the algorithm in detail. Line numbers are present to facilitate easier

understanding of the pseudo code. After creating the Queried Tag hashtable, each tag is

processed (Line 1). For each tag, as indicated in Lines 2 and 3, the parentChild is

obtained (explained earlier in this chapter). The parentChild refers to the bound variable

39

and its parent in the hierarchical structure of the global schema. Thus, for example, for

the bound variable $title_book, the parentChild tag would be book:title, and for

$article_author, the parentChild would be author:lastname. After obtaining the

parentChild for a tag, find out whether this bound element refers to a CONCEPT or a

FIELD/ATTRIBUTE by checking the Tag Info hashtable.

 1 for all keys in the QueriedTagHashtable
 2 for each key
 3 get the parentChild name of the key
 4 if key is CONCEPT
 5 if it is queried in the construct clause
 6 if the path of the key already contains a TABLE, it is an ERROR
 7 select the table with the current table index number and increase the
 table index number
 8 from the Table Info Hashtable obtain the columns of the table and insert
 in the hashtable the column names and the keyword "SQL" with
 the current column index number and increase the column index number
 9 process the same algorithm for all associated tables of this table
10 if key is FIELD or ATTRIBUTE
11 if the path of the key already contains a TABLE
12 if it is queried in the construct clause
13 obtain the vector which contains the column names and its
 associated sql names
14 add to the vector the last string from '\' as the column name and
 the keyword "SQL" with the current column index number
15 increase the column index number
16 else
17 select the table with the current table index number and increase the
 table index number
18 insert in the hashtable the column name and the keyword "SQL"
 with the current column index number
19 increase the column index number

Figure 4-10: Pseudo code of the SQL Query Generation algorithm

If the bound element is a CONCEPT (Line 4), and it is queried in the

CONSTRUCT clause (Line 5), check if the TABLE has been selected for this CONCEPT

in the SQL query. Note that a CONCEPT in XML terms is the same as a TABLE in

relational terms. If this table has been selected, then there is an error in the query and the

user is informed about this. This is indicated in Line 6. Also, note that a CONCEPT

cannot be associated with a condition, as it has many child elements and each child

element must be associated with the condition individually. If no table has been selected,

40

then this table is selected with an alias (Line 7). Since it is a CONCEPT, all the columns

of this table must also be selected in the SQL query. Hence, from the Table Info

hashtable, select all the columns associated with this table. The primary key of the table

is ignored, as it is not present in the global schema. This is explained in Line 8. Also, this

CONCEPT can have as its children other CONCEPTs. Hence the algorithm must

recursively process the tables associated with this table by obtaining the information from

Associated Table Info hashtable. Thus the same algorithm is called for all tables that are

associated with this table as shown in Line 9.

If the bound element is a FIELD/ATTRIBUTE (Line 10), it can be present either

in the CONSTRUCT clause or in the ConditionInfoVector. If the variable is present only

in the ConditionInfoVector then in the SQL query generated, this variable should be

present only in the WHERE clause. If it is present in the CONSTRUCT clause, this

variable shall be selected in the SELECT clause. Check if the TABLE has been selected

which is associated with this FIELD/ATTRIBUTE, as explained in Line 11. If the

TABLE has already been selected, then obtain the set of those columns selected for this

TABLE and append the column associated with this bound element to that set. This is

explained in Lines 13 to 15. If the TABLE has not been selected, then select this TABLE

and the associated column. These steps are explained in Lines 17 to 19.

The above-explained process is executed recursively for all the bound elements

present in the Queried Tag hashtable.

Looking at the query, one can notice that authors of both books and articles are

queried. In the relational schema designed from the global XML schema, it can be seen

that there is only one author table created. Data in this table refers to authors of book and

41

articles. Hence we must be able to identify those tuples which are associated with books

and those tuples which are associated with articles. This issue is resolved in our

implementation by the creation of Relational mapping tables. The Relational mapping

tables maps two given tables with their primary keys. For example, since there is a

mapping to the author table from both book table and article table, two mapping tables

“book_author” and “article_author” are created. For the given XMLQL query, the

relational mapping tables are shown in Figure 4-11.

document
document_PK_Id

book

book_PK_Id,title,year
article

article_PK_Id,title,year
author

author_PK_Id, lastname

document_article
article_FK_Id, document_FK_Id

document_book
book_FK_Id, document_FK_Id

book_author
author_FK_Id, book_FK_Id

article_author
author_FK_Id, article_FK_Id

Figure 4-11: Relational mapping tables for the given XMLQL query

Also, one must taken into consideration grouping associated with an XMLQL

query. This can be taken care in the corresponding SQL query with a group by clause.

Hence those bound elements which are requested in a group by form in the XMLQL

query is first selected in the group by clause of the SQL and then the remaining variables

in the Select clause are added.

42

 Select
 TABLE6.TITLE As sql2,
 TABLE8.LASTNAME As sql3,
 TABLE1.TITLE As sql4,
 TABLE1.YEAR As sql1
 From
 ARTICLE TABLE1,
 ARTICLE_AUTHOR TABLE5,
 BOOK_AUTHOR TABLE9,
 DOCUMENT TABLE2,
 DOCUMENT_BOOK TABLE7,
 AUTHOR TABLE8,
 AUTHOR TABLE4,
 BOOK TABLE6,
 DOCUMENT_ARTICLE TABLE3
 Where
 TABLE1.YEAR LIKE '%1995%'
 AND TABLE8.LASTNAME LIKE TABLE4.LASTNAME
 AND TABLE2.DOCUMENT_PK_ID = TABLE3.DOCUMENT_FK_ID
 AND TABLE3.ARTICLE_FK_ID = TABLE1.ARTICLE_PK_ID
 AND TABLE1.ARTICLE_PK_ID = TABLE5.ARTICLE_FK_ID
 AND TABLE5.AUTHOR_FK_ID = TABLE4.AUTHOR_PK_ID
 AND TABLE2.DOCUMENT_PK_ID = TABLE7.DOCUMENT_FK_ID
 AND TABLE7.BOOK_FK_ID = TABLE6.BOOK_PK_ID
 AND TABLE6.BOOK_PK_ID = TABLE9.BOOK_FK_ID
 AND TABLE9.AUTHOR_FK_ID = TABLE8.AUTHOR_PK_ID
 Group by
 TABLE6.TITLE,
 TABLE1.TITLE,
 TABLE8.LASTNAME,
 TABLE1.YEAR

Figure 4-12: SQL query for the XMLQL query of Figure 4-7

Thus, the output of the QT is a valid SQL query. The SQL query for the given

XMLQL query of Figure 4-7 is shown in Figure 4-12. The XMLQL query in Figure 4-7

requested information about the titles of books and articles, which have been written by

authors having the same lastname and have been published in the year 1995. As can be

seen from Figure 4-12, the SQL query selects “Lastname” from the AUTHOR table,

“Title” and “Year” from the ARTICLE table and “Title” from the BOOK table, as these

are the information requested by the XMLQL query. Note that the “Year” can be selected

from either the ARTICLE table or the BOOK table, as they have the same values. The

conditions/filters of the XMLQL query is present in the SQL query in the first two lines

43

of the where clause. There is a self join on the AUTHOR table, but the where clause

maps one AUTHOR table with the BOOK table and the other AUTHOR table with the

ARTICLE table. Thus only those tuples which have the last names of the authors of

books and authors the same are selected. The result set is further constrained by selecting

only tuples which have the value of the year as “1995.” Thus the result set obtained from

the SQL query will contain the same information as the XML document obtained as a

result of the XMLQL query.

One of the features of XMLQL is that it allows us to create a new set of elements

instances to hold the queried data. This operation of XMLQL is called as Restructuring.

This can be achieved by the template expression in the CONSTRUCT clause. Hence the

regular path expression of the bound variable can be modified to create a new document

from the result. To take care of this, whenever a variable is selected in the SQL query, it

is selected with an alias using the AS option. This is seen in the SQL query of Figure 4-

12. The alias in the AS option is mapped to the regular expression of the bound variable

in the CONSTUCT clause. Thus when the relational result is converted to XML format,

the tags created are based on the regular expression mappings of the aliases of the

columns.

The correctness of the SQL query generated is verified in the next Chapter. While

creating the SQL Query Creating Algorithm, there were other complexities encountered

which have been resolved. Although no information is present regarding the datatypes in

both SQL and XML, based on the relational operator in the condition associated with an

bound element in the XMLQL query, if "<" , ">" , "<=" , and ">=" is present, then that

bound variable has to be converted to number for the condition in the where clause of the

44

SQL query. Though XMLQL can bind a bound tag with just PCDATA or with sub-

elements, in the SQL Query Creation, the bound element must be mapped to only

columns. If the bound tag is a TABLE in the relational schema, select the table and all the

columns, only if the table has not been selected. If a Table has been selected, then only

those columns not already present in the select clause must be selected.

4.3 Maintenance Query Generator (MQG)

The data warehouse needs to be maintained with up-to-date information so that in

future user queries may be satisfied with the cached data. In case the DM decides that the

warehouse cannot satisfy the user query, the sources have to be queried. Hence the MQG

creates a maintenance query to obtain the current content of the sources so as to load and

update the warehouse.

We present an algorithm to generate maintenance queries based on information

that indicates the data in the warehouse is not up-to-date. As explained in Chapter 2, we

allow the user to decide a tolerance limit, and when the tolerance limit is reached, it is

assumed that the data in the warehouse is stale. This tolerance limit is specified by

keeping timestamps of all the elements in the global schema. The timestamps indicate

when the element was last updated in the warehouse. The functionality of MQG is to

generate a maintenance query and invoke the loader with the desired loading option on

the resulting XML document. Also, it needs to update the timestamps of those elements

which are obtained as a result of the maintenance query. The algorithm to generate

maintenance queries is shown in Figure 4-13.

The input to the algorithm is the Maintenance hashtable, a data structure created

at built-time (Figure 4-1). The hashtable consists of a set of elements for which

45

maintenance queries must be generated and the path of these elements from the root in

the global schema. These elements can be present at any level in the hierarchical structure

of the global schema.

 1 For each tag in the User Query
 2 Check if it a queriable tag present in the Maintenance Hashtable
 3 If so,
 4 Store both the Tag and its path in the UserMaintenance Hashtable

 5 For each element in the UserMaintenance Hashtable, a maintenance query
 must be generated

 6 Select element from the UserMaintenance Hashtable and its path
 7 Create a XMLQL query querying for the element by constructing the

 tag elements in both the WHERE and the CONSTRUCT clause
 8 Use the Update TimeStamp Algorithm to update the TimeStamps of

 the tag variables queried
 9 Add this XMLQL query to the set of Maintenance Queries generated

Figure 4-13: Pseudo code of the Maintenance Query Generation algorithm

Let us understand how the algorithm works. As before, the Line numbers assist us

in understanding the algorithm. When the user query is parsed to identify those elements

which are being queried, the element is checked to see whether it is a queriable tag

present in the Maintenance hashtable. This is indicated in Line 2 of Figure 4-13. If it is a

queriable tag, then both the tag and path of the tag from the root in the hierarchical

structure are stored in a UserMaintenance hashtable (Line 4). This is repeated for all the

bound elements in the user query, as indicated by Line 1.

A maintenance query must be generated for each of the element in the

UserMaintenance hashtable (Line 5). For each element in this hashtable, obtain the path

from the hashtable (Line 6). An XMLQL query is generated with that element as the

bound variable, as shown in Li ne 7. This is added to the set of maintenance queries

generated (Line 9). The timestamps of those variables for which the data is requested is

then updated (Line 8).

46

After the result of the user query is obtained from the Mediator, and sent back to

the Querying and Browsing Interface, the maintenance queries are sent to the Mediator.

The Loader module of WHM is then invoked with the resulting document for loading the

warehouse.

The timestamps of those elements that are present in the maintenance queries

must be updated to indicate the freshness of data in the warehouse. The pseudocode of

the algorithm is shown in Figure 4-14.

1 The parameter sent by the Maintenance Query Algorithm is a table
2 For all columns in the Table,
3 Update the timestamps of the tableColumn element in the
 TimeStamp Info Hashtable
4 For all tables associated with this table
5 Call the algorithm recursively with the associated table name
 as the parameter

Figure 4-14: Pseudo code of the Update Time Stamp algorithm

The element queried in a maintenance query is a table in the relational schema

(Line 1). Hence for all the columns of the table (Line 2), we identify the tableColumn

element in the TimeStamp Info hashtable, and update the timestamps with the current

time. This is explained in Line 3. Since this table can have other tables associated with it

in the relational mapping of the global schema, for all the tables associated with this table

(Line 4), this algorithm is called recursively to update the timestamps of the columns of

the associated tables, as described in Line 5 of the algorithm.

Updating the contents of the warehouse provides persistence, faster processing of

frequently asked queries without having to go to the sources, and automatic maintenance

of data in the warehouse.

47

CHAPTER 5
QUALITATIVE ANALYSIS

In this chapter, we shall look into the correctness of the queries generated by the

XMLQL-2-SQL Query Translator (QT) and Maintenance Query Generator. The tests for

the QT are based on standard query operations of any query language i.e., selection,

extraction etc., These operations are explained in detail later in this chapter. The

correctness of the query translation can be checked by comparing the output of the

XMLQL query on the XML document and the output of the SQL query on data that was

loaded into the warehouse. Semistructured query languages such as XMLQL have a lot

more flexibility than SQL. We shall first give the setup on which the test queries were

run. In the next section, we shall explain the characteristics required by an XMLQL query

language and how each of this characteristics is tested for correctness in the query

transformation. Finally, we shall perform tests to verify the correctness of the

maintenance queries generated by the Maintenance Query Generator.

5.1 Experimental Setup

The IWiz testbed resides in the Windows NT environment. The experiments are

carried out using a Pentium II 233 MHz processor with 128 MB of main memory. The

components of this research were implemented using Java (SDK 1.3) from Sun

Microsystems. Some of the other tools we use are the XML Parser from Oracle version

2.0.2.9, Oracle 8i as the warehouse, and AT&T Bell Labs’ implementation of XMLQL

processor version 0.9. All components communicate with each other using Java RMI.

48

IWiz has been implemented using Java, allowing it to be implemented across different

platforms.

5.2 Query Operations and Test Queries

To evaluate the performance of a system, several prerequisites are needed.

However, at this point in the XML world, practically all the prerequisites like sets of

suitable data, sets of benchmark programs, and performance characteristics observed by

comparable systems during testing are non-existent. The only XML-processing programs

that are benchmarked are several XML parsers [8]. There is little material for

benchmarking of XML data management systems [32]. For the purpose of testing, we use

several XML sources containing bibliographic data.

We shall now describe the testing of the query translations generated by the QT.

The general technique of translating an XMLQL query into a SQL query is as follows:

(a) first, the relations corresponding to the start of the root path expressions are identified

and added to the From clause of the SQL query then (b) the path expressions are

translated to joins among relations. We evaluate the performance of this approach to

query XML data with a set of queries that satisfy all operations that need to be performed

by an XMLQL query.

WHERE
 <Bib>
 <Book year=$y>
 <Publisher>"Addison-Wesley"</Publisher>
 <Title> $t </Title>
 <Author> $a </Author>
 </Book>
 </Bib> IN “books.xml”,
 $y > 1991
CONSTRUCT $a

Figure 5-1: XMLQL Query Operation – Selection and Extraction

49

The different operations that have to be supported by an XML query language are

selection, extraction, reduction, restructuring and combination [25]. These terms are

explained below with queries to indicate the operations performed.

5.2.1 Selection and Extraction

Selection is the process of choosing a document element based on content,

structure or attributes. Extraction is the process of pulling out particular elements of a

document.

Select
 TABLE1.LASTNAME As sql2,
 TABLE1.FIRSTNAME As sql1,
 TABLE1.ADDRESS As sql3
From
 BOOK_AUTHOR TABLE5,
 BIB TABLE2,
 BIB_BOOK TABLE4,
 BOOK TABLE3,
 AUTHOR TABLE1
Where
 to_number(TABLE3.YEAR,'99999999999') > 1991
 AND TABLE3.PUBLISHER LIKE '%Addison-Wesley%'
 AND TABLE2.BIB_PK_ID = TABLE4.BIB_FK_ID
 AND TABLE4.BOOK_FK_ID = TABLE3.BOOK_PK_ID
 AND TABLE3.BOOK_PK_ID = TABLE5.BOOK_FK_ID
 AND TABLE5.AUTHOR_FK_ID = TABLE1.AUTHOR_PK_ID
Group by
 TABLE1.LASTNAME,
 TABLE1.FIRSTNAME,
 TABLE1.ADDRESS

Figure 5-2: SQL Selection and Extraction corresponding to Figure 5-1

Selection in XMLQL is done using patterns and conditions. Figure 5-1 shows a

sample XMLQL query that selects all books published by Addison-Wesley after 1991.

Extraction is done with the bound variables. The query binds the variables $t, $a and $y.

<Publisher> is an element that is being selected and it must have the content “Addison-

Wesley.” Also, the bound variable $y has the constraint that it should be greater than

1991. The query extracts the contents of author ($a).

50

The SQL query created by the QT, as a result of the XMLQL query of Figure 5-1,

is shown in Figure 5-2. As can be seen from the figure, the selection operation of an

XMLQL query is the from and where clause of a SQL query. The extraction operation of

an XMLQL query is the select clause of a SQL query.

The select clause selects information from the table AUTHOR, as required by the

XMLQL query and the where clause has the constraint that the content of the column

PUBLISHER in the table BOOK must be “Addison-Wesley” and the content of the

column YEAR in the table BOOK must be greater than 1991. Although the variable title

($t) is bound in the XMLQL query, it is not selected in the SQL query as it is not

required. Thus the SQL query generated matches requests for the same information as

that requested by the XMLQL query.

WHERE
 <Bib>
 <Book year=$y>
 <Publisher>"Addision-Wesley"</Publisher>
 <Title> $t </Title>
 <Author> $a </Author>
 </Book>
 </Bib> IN “books.xml”,
 $y > 1991
CONSTRUCT
 <result>
 <author> $a </author>
 <title> $t </title>
 </result>

Figure 5-3: XMLQL Query Operation – Reduction and Restructuring

5.2.2 Reduction and Restructuring

Reduction is the process of removing selected sub-elements of an element.

Restructuring is constructing a new set of element instances to hold queried data. Figure

5-3 shows the same query as Figure 5-1, but with additional structure in the

CONSTRUCT clause to output the author and title of a book. Reduction is achieved by

51

controlling what elements are returned by the CONSTRUCT clause. In the query, only

information about the author and the title are returned. Restructuring is controlled by the

template expression of the CONSTRUCT clause. The querying of author and title of

books in bib is restructured with the root element being “result”

Select
 TABLE1.LASTNAME As sql2,
 TABLE1.FIRSTNAME As sql1,
 TABLE1.ADDRESS As sql3,
 TABLE3.TITLE As sql4
From
 BOOK_AUTHOR TABLE5,
 BIB TABLE2,
 BIB_BOOK TABLE4,
 BOOK TABLE3,
 AUTHOR TABLE1
Where
 to_number(TABLE3.YEAR,'9999999') > 1991
 AND TABLE3.PUBLISHER LIKE '%Addison-Wesley%'
 AND TABLE2.BIB_PK_ID = TABLE4.BIB_FK_ID
 AND TABLE4.BOOK_FK_ID = TABLE3.BOOK_PK_ID
 AND TABLE3.BOOK_PK_ID = TABLE5.BOOK_FK_ID
 AND TABLE5.AUTHOR_FK_ID = TABLE1.AUTHOR_PK_ID
Group by
 TABLE1.LASTNAME,
 TABLE1.FIRSTNAME,
 TABLE1.ADDRESS,
 TABLE3.TITLE

Figure 5-4: SQL Reduction and Restructuring corresponding to Figure 5-3

In the SQL query created by QT and shown in Figure 5-4, reduction is performed

by selecting those variables that are present in the CONSTRUCT clause. Restructuring is

taken care by giving aliases to the elements in the Select clause of the SQL query and

then creating the XML document from the result set by using these aliases to map the

regular expression of the path in the CONSTRUCT clause.

For the given XMLQL query, information about year ($y), publisher (“Addison-

Wesley”), title ($t) and author ($a) are queried, but only information about the title and

author are given back to the user. This reduction is taken care in the SQL query by

52

selecting only LASTNAME, FIRSTNAME and ADDRESS from the AUTHOR table and

TITLE from the BOOK table. Information about either the year or the publisher is not

selected. Also, when these columns are being selected in the Select clause, they are given

aliases. These aliases are then used to map the element instances as present in the

CONSTRUCT clause, so that the resulting XML document from the relational result set

is restructured to the user specifications.

This query also illustrates the preservation of association: authors and titles are

grouped as they appear in the input document.

WHERE
 <Ontology>
 <Bib>
 <Book>$book</Book>
 </Bib>
 </Ontology> IN “books.xml”,
 <Title> $title </Title> IN $book,
 <Publisher>"Addison-Wesley"</Publisher> IN $book
CONSTRUCT
 <book>
 <title>$title</title>
 <authors>
 { WHERE <author>$author</author> IN $book
 CONSTRUCT $author }
 </authors>
 </book>

Figure 5-5: XMLQL Query Operation – Complex Restructuring

5.2.3 Complex Restructuring

In the previous query, we see that association property is preserved by grouping

each author with its corresponding title. But if a document has multiple instances of

author the resulting document will contain each instance of the author coupled with the

title. To eliminate this, the query of Figure 5-5 is written which is restructured to group

results by book title. It is written using a nested query.

53

Select
 TABLE7.LASTNAME As sql3,
 TABLE7.FIRSTNAME As sql2,
 TABLE7.ADDRESS As sql4,
 TABLE2.TITLE As sql1
From
 BOOK_AUTHOR TABLE8,
 BIB_BOOK TABLE6,
 ONTOLOGY_BIB TABLE5,
 BOOK TABLE2,
 ONTOLOGY TABLE3,
 AUTHOR TABLE7,
 BIB TABLE4
Where
 TABLE2.PUBLISHER LIKE '%Addison-Wesley%'
 AND TABLE3.ONTOLOGY_PK_ID = TABLE5.ONTOLOGY_FK_ID
 AND TABLE5.BIB_FK_ID = TABLE4.BIB_PK_ID
 AND TABLE4.BIB_PK_ID = TABLE6.BIB_FK_ID
 AND TABLE6.BOOK_FK_ID = TABLE2.BOOK_PK_ID
 AND TABLE2.BOOK_PK_ID = TABLE8.BOOK_FK_ID
 AND TABLE8.AUTHOR_FK_ID = TABLE7.AUTHOR_PK_ID
Group by
 TABLE7.LASTNAME,
 TABLE7.FIRSTNAME,
 TABLE7.ADDRESS,
 TABLE2.TITLE

Figure 5-6: SQL Complex Restructuring corresponding to Figure 5-5

In the XMLQL query, the first WHERE clause bins the variable $book to the

contents of <book>…</book>. For each such binding, one <book> and one

<title> are emitted. Then the inner where clause is evaluated, which, in turn, produces

one or several authors. The QT takes care of this condition while generating the SQL

query, by grouping the results first by the inner most nested query, then in the decreasing

order of the nested query. The SQL query is shown in Figure 5-6, containing the group by

clause, which takes care of restructuring. Thus, grouping them in this form would make

the resulting XML document from the result set to be nested in the order that the query

has specified.

54

WHERE
 <Ontology>
 <Bib>
 <Book>
 <Title> $title_book </Title>
 <Author>
 <Lastname>
 <PCDATA> $author_book </PCDATA>
 </Lastname>
 </Author>
 <Year> $year </Year>
 </Book>
 <Article>
 <Title> $title_article </Title>
 <Author>
 <Lastname>
 <PCDATA> $author_article </PCDATA>
 </Lastname>
 </Author>
 <Year> $year </Year>
 </Article>
 </Bib>
 </Ontology> IN “books_article.xml”,
 $year = 1995,
 $author_book = $author_article
CONSTRUCT
 <authors_of_book_or_article year=$year>
 $author_book
 <book_title>$title_book </book_title>
 <article_title>$title_article</article_title>
 </authors_of_book_or_article>

Figure 5-7: XMLQL Query Operation – Combination

5.2.4 Combination

Combination is the operation of merging two or more elements into one. Figure 5-

7 indicates an XMLQL query with one such operation. Here, we have two different

elements, a <book> element and an <article> element. The query requests for

information about books and articles that were written in the same year 1995, and by

authors who had the same lastnames. Specifically, the information requested is the titles

of the book and article and the author’s lastnames. This XMLQL query reads data from

both elements and computes a “join.” The join value is the common year $year, and the

bound variables $author_book and $author_article which must be the same. The query

55

Select
 TABLE10.LASTNAME As sql4,
 TABLE1.TITLE As sql1,
 TABLE7.TITLE As sql3,
 TABLE7.YEAR As sql2
From
 BIB TABLE3,
 ONTOLOGY TABLE2,
 BIB_ARTICLE TABLE8,
 ARTICLE TABLE7,
 AUTHOR TABLE6,
 BOOK TABLE1,
 ONTOLOGY_BIB TABLE4,
 BIB_BOOK TABLE5,
 AUTHOR TABLE10,
 ARTICLE_AUTHOR TABLE9,
 BOOK_AUTHOR TABLE11
Where
 TABLE10.LASTNAME LIKE TABLE6.LASTNAME
 AND TABLE7.YEAR LIKE '%1995%'
 AND TABLE1.YEAR LIKE '%1995%'
 AND TABLE2.ONTOLOGY_PK_ID = TABLE4.ONTOLOGY_FK_ID
 AND TABLE4.BIB_FK_ID = TABLE3.BIB_PK_ID
 AND TABLE3.BIB_PK_ID = TABLE5.BIB_FK_ID
 AND TABLE5.BOOK_FK_ID = TABLE1.BOOK_PK_ID
 AND TABLE3.BIB_PK_ID = TABLE8.BIB_FK_ID
 AND TABLE8.ARTICLE_FK_ID = TABLE7.ARTICLE_PK_ID
 AND TABLE7.ARTICLE_PK_ID = TABLE9.ARTICLE_FK_ID
 AND TABLE9.AUTHOR_FK_ID = TABLE6.AUTHOR_PK_ID
 AND TABLE1.BOOK_PK_ID = TABLE11.BOOK_FK_ID
 AND TABLE11.AUTHOR_FK_ID = TABLE10.AUTHOR_PK_ID
Group by
 TABLE1.TITLE,
 TABLE7.TITLE,
 TABLE10.LASTNAME,
 TABLE7.YEAR

Figure 5-8: SQL Combination corresponding to Figure 5-7

tries every match in the first data element against every match in the second data element,

and checks if they have the same year and the lastnames of authors match: if yes, the

requested data is output. The QT translates this query into a query as shown in Figure 5-

8.

In the relational schema, as all elements are mapped to tables or columns, a

combination of two elements refers to joins on two tables. We use the Relational

mapping tables to map the different tables as explained in Chapter 4.

56

5.3 Analysis of the Results

The above examples indicate the operations that must be done by an XML query

language. A sample XML document was taken containing information about books and

articles and loaded into the data warehouse by WHM. The XMLQL queries were given

as input to the XMLQL-2-SQL Query Translator, which generated the corresponding

SQL queries. The SQL query generated was executed on the data in the warehouse, while

the XMLQL queries were executed on the XML document using AT&T’s

implementation of XMLQL processor. The resulting XML document was then checked

against the relational set obtained from the SQL query. The correctness of the SQL query

was verified by the fact that the results of both the XMLQL query and the SQL query

were the same.

The minimal representational features in the DTD limit the datatypes of all fields

in the relational schema to be of type varchar. This causes a constraint for conditions

related with data of numeric type, as seen in Figure 5-2 and Figure 5-4

(to_number(TABLE3.YEAR,'99999999999') > 1991).

The varchar has to be converted to a number datatype using the to_number

function. But the problem faced is to identify how many digits would be present in the

number. A set number of digits must be hardcoded when we use a DTD. Using a XML

schema instead of a DTD when creating the relational schema would be useful in that we

can know the datatype of the element being stored and no assumptions need to be made.

Another problem faced during XMLQL to SQL translation is that, while loading

the data into the warehouse, it may be loaded with spaces either in front or at the end of

the actual data. Hence all conditions must take care of these spaces. In the SQL query

57

generated, the “%” sign before and after the condition makes sure that the conditions are

checked correctly and the output generated as required.

5.4 Analysis of Maintenance Queries

When the Decision Module obtains the user query and decides that the queries

cannot be satisfied by the warehouse, it sends the query to the sources. To update the

contents of the warehouse, it calls the Maintenance Query Generator to generate

maintenance queries. The result obtained due to the maintenance queries is then loaded

into the warehouse. When a query requesting similar information is given to WHM,

because of the freshness of data in the warehouse, DM decides that the warehouse can

satisfy the query and queries the warehouse.

WHERE
 <Bib>
 <Book year=$y>
 <Publisher>"Addison-Wesley"</Publisher>
 <Title> $t </Title>
 </Book>
 </Bib> IN “books.xml”,
 $y > 1991
CONSTRUCT $t

Figure 5-9: An XMLQL query requesting information about book

The decision module was tested by sending the same query from the Querying

and Browsing Interface to WHM. The first time, since there was no data, the sources

were queried and the result returned to the user. The maintenance query was then sent to

the sources and the result loaded into the warehouse. When the same query was sent

again, since the warehouse was updated, DM sent the XMLQL query to the XMLQL-2-

SQL Query Translator to translate the query into SQL and query the warehouse.

Repetitions of such tests verified the correct working of DM.

58

function query() {
 CONSTRUCT
 <Ontology> {
 WHERE
 <Ontology>
 <Bib>
 <Book> $Book </Book>
 </Bib>
 </Ontology> IN Mediator
 CONSTRUCT
 <Bib>
 <Book> $Book </Book>
 </Bib>
 }
 </Ontology>
}

Figure 5-10: Maintenance Query for Figure 5-9

An XMLQL query requesting information about books is shown in Figure 5-9.

When this query cannot be satisfied by the warehouse, a maintenance query has to be

generated. DM identifies what is the data requested by the user and using the

Maintenance hashtable (which is obtained at built-time as explained in Chapter 4),

generates a maintenance query, shown in Figure 5-10. As can be seen, when information

in any of the attributes (e.g., publisher, title, year) of a queriable tag (e.g., book) is not

present or is stale in the warehouse, a maintenance query is generated requesting all

information about book.

When the data in the warehouse was stale, another query requesting information

about authors of book was given to DM by the Querying and Browsing Interface. The

nested XMLQL query is shown in Figure 5-11, and the MQG generated a maintenance

query which was the same as shown in Figure 5-10. This indicated the correctness of the

MQG in that even if any attribute of a queriable tag was considered absent or the data

stale in the warehouse, then all information about the queriable tag was requested. The

59

same type of maintenance queries was generated irrespective of whether it was a simple

or nested query with conditions and filters.

WHERE
 <Ontology>
 <Bib>
 <Book>$book</Book>
 </Bib>
 </Ontology> IN “books.xml”
CONSTRUCT
 <book>
 <authors>
 { WHERE <author>$author</author> IN $book
 CONSTRUCT $author }
 </authors>
 </book>

Figure 5-11: Nested XMLQL query requesting information about authors of book

Since all types of operations are possible in a single XML query, our approach to

create SQL queries and maintenance queries must take care of these conditions and

operations. Based on the experimental results, our integration system supports all basic

operations on simple and nested queries with filters and conditions. However, operations

like recursive definitions and regular path expressions cannot be satisfied by the current

implementation. But, the robustness and efficiency obtained with increased volumes of

data weigh in selecting relational databases for storing and querying frequently accessed

simple data.

60

CHAPTER 6
CONCLUSIONS

Research on semistructured data is aiming to extend database management

techniques to include data with irregular, unknown structure. Integration of

heterogeneous data sources is a very complex and challenging task and methodologies for

providing efficient and effective integration are in great demand. The intent of this thesis

is to provide a solution to the problem of integrating XML with RDBMS.

In this thesis, we provide algorithms and implementation details of the XMLQL-

2-SQL Query Translator (QT), the Decision Module (DM), and the Maintenance Query

Generator (MQG), which are part of the Warehouse Manager (WHM) component of the

IWiz prototype. The internal data model and query language used in IWiz is XML and

XMLQL. The data warehouse is implemented using Oracle 8i.

6.1 Contributions

Through this research, we have identified a method to analyze the user query to

verify whether the data warehouse can satisfy the query requirements. If the warehouse

can satisfy the user query, translate the XML query on the XML view into SQL query on

the data stored in the relational database. If not, send the user query to the sources

through the mediator and generate maintenance queries based on information that the

data in the warehouse is not up-to-date.

The fundamental differences between structure of an XMLQL query and a SQL

query has been resolved. XMLQL can have different types of filters and conditions such

61

as implicit and explicit filters and conditions, which must be translated to where

conditions of a SQL query. Also, these filters and conditions can be present with/without

quotes which must be resolved.

Another issue is that XMLQL can bind a variable to an element which has

PCDATA as its child or a set of sub-elements. So, the mapping of the element to a table

or column in the relational schema must be discovered. If the element was mapped to a

table, then all the columns of the table must be selected.

In XML, all elements are considered to have a datatype of string. Hence joins and

filters with relational operators like <, >, <=, and >= pose a problem when translated

into a SQL query since the datatype associated with these operators are numbers. This

problem has been identified and taken care of in our implementation of QT.

Operations like restructuring, which is taken care of in the XMLQL query by the

CONSTRUCT clause should also be satisfied. We have implemented the method of

aliasing the variables of the select clause of the SQL query with the mapping of the

element from the root of the global schema. The XML document is created from the

relational result obtained, by using the mappings to restructure the document.

The principal contributions of this thesis are as follows. We have designed and

implemented an algorithm to automate the process of deciding whether the information

requested by the user is stored in the data warehouse, or if it has to be fetched from the

underlying sources in real-time. The principal focus of this research was to design an

algorithm to translate the user queries from their XMLQL representation into SQL and

process them in relational systems without manual intervention. In case the sources have

to be queried, we have developed an algorithm to create a maintenance query to obtain

62

the current content of the sources so as to load and update the contents of the warehouse.

The updation of the contents of the warehouse provides persistence, faster processing of

frequently asked queries, and automatic maintenance of data contents of the warehouse.

6.2 Future Work

The research done so far on semistructured data may offer some solutions to

database problems posed by XML. But XML research on semistructured data has not yet

addressed other problems like type inference, distributed evaluation or a proper storage

mechanism.

Our approach uses DTDs as the mechanism for data definition. Hence the

relational mapping is based on the hierarchical structure of the DTD. The richer data

definition of XML Schema makes it superior over DTD and has been advanced to

proposed recommendation status. Hence in future, our prototype may shift to using XML

Schema as the global schema.

The current implementation of QT implements all basic features of an XMLQL

query like selection, extraction, flattening, preserving structure, restructuring, complex

restructuring by nesting, changing structure by explicit grouping. While most of the

queries can be written with these functionalities, there are other features of XMLQL

which are not currently handled. Primary among these, which must be taken care of

would be recursive definitions, tag variables (the bound variable can be from a set of

different elements), sorting. We assume that the next implementation of the QT will

incorporate these features. Other features include external functions and aggregation.

Using relational storage for XML has received considerable attention. The

performance of the relational approach depends on the effectiveness of the system’s

63

query optimizer . Semantically equivalent queries expresses as different SQL queries can

cause relational databases to choose different execution plans which may degrade the

performance. Our approach generates “correct plans,” though not necessarily optimal.

Since the quality of query optimizers in commercial systems are high and with a fixed

schema, and queries on XML documents exhibit predictable access patterns, we can

implement a method to indicate what mapping strategy can be used for a given query.

64

APPENDIX

Ontology.DTD

<!ELEMENT Ontology (Bib)*>
<!ELEMENT Bib (Article | Book | Booklet | InBook | InCollection | InProceedings |

Manual | MastersThesis | PhdThesis | Misc | Proceedings | TechReport |
UnPublished)*>

<!ELEMENT Article (Author+, Editor*, Title, Year, Month?, Pages?, Note?, Journal)>
<!ELEMENT Book ((Author+ | Editor+), Title, Publisher, Year, Month?, (Volume |

Number1)?, Series?, Address?, Edition?, ISBN, Cost?, Note?)>
<!ELEMENT Booklet (Author*, Title, HowPublished?, Year?, Month?, Address?,

Note?)>
<!ELEMENT InBook (Author+, Title, Year, Month?, Publisher,(Pages | Chapter?), Book

)>
<!ELEMENT InCollection (Author+, Title, Year, Month?, (Pages | Chapter?), Type?,

Note?, Collection)>
<!ELEMENT InProceedings (Author+, Title, Year, Month?, (Pages | Chapter?), Note?,

Proceedings)>
<!ELEMENT Manual (Title, Author*, Year?, Month?, Edition?, Address?,

Organization?, Note?)>
<!ELEMENT MastersThesis (Author, Title, School, Address?, Year, Month?, Type?,

Note?)>
<!ELEMENT Misc (Author?, Title?, HowPublished?, Year?, Month?, Note?)>
<!ELEMENT PhdThesis (Author, Title, School, Address?, Year, Month?, Type?,

Note?)>
<!ELEMENT TechReport (Author+, Title, Institution, Year, Month?, Type?, Number1?,

Address?, Note?)>
<!ELEMENT UnPublished (Author+, Title, Year?, Month?, Note)>
<!ELEMENT Address (#PCDATA)>
<!ELEMENT Author (Firstname?, Lastname, Address?)>
<!ELEMENT Chapter (#PCDATA) >
<!ELEMENT Collection ((Author+ | Editor+), Title, Publisher?)>
<!ELEMENT Cost (#PCDATA)>
<!ELEMENT Editor (#PCDATA)>
<!ELEMENT Edition (#PCDATA)>
<!ELEMENT Firstname (#PCDATA)>
<!ELEMENT ISBN (#PCDATA)>
<!ELEMENT HowPublished (#PCDATA) >
<!ELEMENT Institution (#PCDATA) >
<!ELEMENT Journal (Title, Year?, Month?, Volume?, Number1?)>

65

<!ELEMENT Lastname (#PCDATA)>
<!ELEMENT Month (#PCDATA) >
<!ELEMENT Note (#PCDATA) >
<!ELEMENT Number1 (#PCDATA) >
<!ELEMENT Organization (#PCDATA) >
<!ELEMENT Pages (#PCDATA) >
<!ELEMENT Proceedings (Title, Editor*, Year?, Month?, (Volume | Number1)?,

Series?, Address?, Organization?, Publisher?, Note?)>
<!ELEMENT Publisher (#PCDATA) >
<!ELEMENT School (#PCDATA) >
<!ELEMENT Series (#PCDATA)>
<!ELEMENT Title (#PCDATA) >
<!ELEMENT Type (#PCDATA) >
<!ELEMENT Volume (#PCDATA) >
<!ELEMENT Year (#PCDATA) >

Maintenance hashtable

Book Ontology.Bib.Book
InProceedings Ontology.Bib.InProceedings
Article Ontology.Bib.Article
Journal Ontology.Bib.Article.Journal
UnPublished Ontology.Bib.UnPublished
TechReport Ontology.Bib.TechReport
InCollection Ontology.Bib.InCollection
Misc Ontology.Bib.Misc
MastersThesis Ontology.Bib.MastersThesis
InBook Ontology.Bib.InBook
Manual Ontology.Bib.Manual

Tag Info hashtable

InProceedings:Pages INLINED-FIELD
Bib:InCollection CONCEPT
Article:Journal CONCEPT
PhdThesis:Year INLINED-FIELD
Proceedings:Editor CONCEPT
Collection:Publisher INLINED-FIELD
Manual:Organization INLINED-FIELD
UnPublished:Author CONCEPT
PhdThesis:Title INLINED-FIELD
InProceedings:Year INLINED-FIELD
Bib:Book CONCEPT
Bib:Manual CONCEPT
Proceedings:Series INLINED-FIELD

66

InCollection:Type INLINED-FIELD
Article:Note INLINED-FIELD
Manual:Author CONCEPT
Misc:HowPublished INLINED-FIELD
InCollection:Author CONCEPT
Book:Publisher INLINED-FIELD
MastersThesis:Note INLINED-FIELD
InBook:Author CONCEPT
Collection:Author CONCEPT
Proceedings:Year INLINED-FIELD
PhdThesis:Author CONCEPT
InBook:Publisher INLINED-FIELD
PhdThesis:Address INLINED-FIELD
Book:Address INLINED-FIELD
UnPublished:Note INLINED-FIELD
MastersThesis:Month INLINED-FIELD
Book:Edition INLINED-FIELD
InBook:Month INLINED-FIELD
Misc:Title INLINED-FIELD
Booklet:Note INLINED-FIELD
InCollection:Year INLINED-FIELD
Misc:Note INLINED-FIELD
Book:Month INLINED-FIELD
Manual:Year INLINED-FIELD
MastersThesis:Address INLINED-FIELD
Manual:Month INLINED-FIELD
Collection:Editor CONCEPT
InProceedings:Month INLINED-FIELD
Proceedings:Month INLINED-FIELD
Collection:Title INLINED-FIELD
InCollection:Title INLINED-FIELD
InBook:Book CONCEPT
InCollection:Pages INLINED-FIELD
InCollection:Collection CONCEPT
PhdThesis:Month INLINED-FIELD
PhdThesis:Note INLINED-FIELD
Proceedings:Number1 INLINED-FIELD
Bib:InProceedings CONCEPT
Proceedings:Publisher INLINED-FIELD
InBook:Chapter INLINED-FIELD
InProceedings:Note INLINED-FIELD
TechReport:Type INLINED-FIELD
Bib:Article CONCEPT
Ontology:Bib CONCEPT
InProceedings:Proceedings CONCEPT
Bib:Proceedings CONCEPT

67

UnPublished:Title INLINED-FIELD
Author:Lastname INLINED-FIELD
Article:Title INLINED-FIELD
Journal:Title INLINED-FIELD
Article:Pages INLINED-FIELD
InBook:Year INLINED-FIELD
Booklet:HowPublished INLINED-FIELD
Booklet:Author CONCEPT
Proceedings:Note INLINED-FIELD
MastersThesis:School INLINED-FIELD
Book:Year INLINED-FIELD
Bib:TechReport CONCEPT
Editor:#text INLINED-FIELD
TechReport:Year INLINED-FIELD
Misc:Month INLINED-FIELD
Journal:Year INLINED-FIELD
Bib:Booklet CONCEPT
Manual:Edition INLINED-FIELD
InCollection:Note INLINED-FIELD
TechReport:Title INLINED-FIELD
Booklet:Title INLINED-FIELD
Author:Address INLINED-FIELD
TechReport:Author CONCEPT
MastersThesis:Type INLINED-FIELD
Journal:Number1 INLINED-FIELD
Manual:Note INLINED-FIELD
Book:Author CONCEPT
TechReport:Institution INLINED-FIELD
Bib:UnPublished CONCEPT
Bib:MastersThesis CONCEPT
Manual:Address INLINED-FIELD
InCollection:Month INLINED-FIELD
InProceedings:Author CONCEPT
Book:Cost INLINED-FIELD
Proceedings:Address INLINED-FIELD
Article:Year INLINED-FIELD
TechReport:Number1 INLINED-FIELD
Booklet:Address INLINED-FIELD
MastersThesis:Year INLINED-FIELD
Author:Firstname INLINED-FIELD
Book:Volume INLINED-FIELD
Bib:InBook CONCEPT
InCollection:Chapter INLINED-FIELD
UnPublished:Year INLINED-FIELD
InProceedings:Chapter INLINED-FIELD
MastersThesis:Author CONCEPT

68

Proceedings:Organization INLINED-FIELD
Article:Author CONCEPT
_:Ontology CONCEPT
UnPublished:Month INLINED-FIELD
Book:Editor CONCEPT
Booklet:Year INLINED-FIELD
Article:Month INLINED-FIELD
MastersThesis:Title INLINED-FIELD
Journal:Month INLINED-FIELD
Bib:PhdThesis CONCEPT
InBook:Title INLINED-FIELD
Misc:Year INLINED-FIELD
PhdThesis:School INLINED-FIELD
InBook:Pages INLINED-FIELD
Journal:Volume INLINED-FIELD
PhdThesis:Type INLINED-FIELD
Book:ISBN INLINED-FIELD
Book:Note INLINED-FIELD
Misc:Author CONCEPT
Bib:Misc CONCEPT
Proceedings:Volume INLINED-FIELD
Book:Title INLINED-FIELD
Book:Series INLINED-FIELD
TechReport:Note INLINED-FIELD
TechReport:Address INLINED-FIELD
Manual:Title INLINED-FIELD
TechReport:Month INLINED-FIELD
Book:Number1 INLINED-FIELD
Booklet:Month INLINED-FIELD
InProceedings:Title INLINED-FIELD
Proceedings:Title INLINED-FIELD

Table Info hashtable

InProceedings [INPROCEEDINGS_PK_ID, TITLE, YEAR, MONTH, PAGES,

CHAPTER, NOTE]
Journal [JOURNAL_PK_ID, TITLE, YEAR, MONTH, VOLUME, NUMBER1]
Bib [BIB_PK_ID]
Proceedings [PROCEEDINGS_PK_ID, TITLE, YEAR, MONTH, VOLUME,

NUMBER1, SERIES, ADDRESS, ORGANIZATION, PUBLISHER,
NOTE]

MastersThesis [MASTERSTHESIS_PK_ID, TITLE, SCHOOL, ADDRESS, YEAR,
MONTH, TYPE, NOTE]

69

PhdThesis [PHDTHESIS_PK_ID, TITLE, SCHOOL, ADDRESS, YEAR, MONTH,
TYPE, NOTE]

InCollection [INCOLLECTION_PK_ID, TITLE, YEAR, MONTH, PAGES,
CHAPTER, TYPE, NOTE]

TechReport [TECHREPORT_PK_ID, TITLE, INSTITUTION, YEAR, MONTH,
TYPE, NUMBER1, ADDRESS, NOTE]

InBook [INBOOK_PK_ID, TITLE, YEAR, MONTH, PUBLISHER, PAGES,
CHAPTER]

UnPublished [UNPUBLISHED_PK_ID, TITLE, YEAR, MONTH, NOTE]
Ontology [ONTOLOGY_PK_ID]
Misc [MISC_PK_ID, TITLE, HOWPUBLISHED, YEAR, MONTH, NOTE]
Author [AUTHOR_PK_ID, FIRSTNAME, LASTNAME, ADDRESS]
Editor [EDITOR_PK_ID, EDITOR]
Book [BOOK_PK_ID, TITLE, PUBLISHER, YEAR, MONTH, VOLUME,

NUMBER1, SERIES, ADDRESS, EDITION, ISBN, COST, NOTE]
Article [ARTICLE_PK_ID, TITLE, YEAR, MONTH, PAGES, NOTE]
Manual [MANUAL_PK_ID, TITLE, YEAR, MONTH, EDITION, ADDRESS,

ORGANIZATION, NOTE]
Booklet [BOOKLET_PK_ID, TITLE, HOWPUBLISHED, YEAR, MONTH,

ADDRESS, NOTE]
Collection [COLLECTION_PK_ID, TITLE, PUBLISHER]

Associated Table Info hashtable

InCollection [Author, Collection]
TechReport [Author]
Article [Author, Journal]
Ontology [Bib]
Collection [Author, Editor]
Misc [Author]
Booklet [Author]
Manual [Author]
InBook [Author, Book]
Bib [Article, Book, Booklet, InBook, InCollection, InProceedings, Manual,

MastersThesis, Misc, PhdThesis, Proceedings, TechReport, UnPublished]
InProceedings [Author, Proceedings]
Book [Author, Editor]
UnPublished [Author]
Proceedings [Editor]
MastersThesis [Author]
PhdThesis [Author]

70

Time Stamp Info hashtable

ARTICLE:MONTH 2001-03-25 16:17:25.0
PROCEEDINGS:SERIES 2001-03-25 16:17:25.0
ARTICLE:AUTHOR 2001-03-25 16:17:25.0
AUTHOR:LASTNAME 2001-03-25 16:17:25.0
BOOKLET:MONTH 2001-03-25 16:17:25.0
BOOK:NOTE 2001-03-25 16:17:25.0
ONTOLOGY:BIB 2001-03-25 16:17:25.0
BIB:ARTICLE 2001-03-25 16:17:25.0
_:ONTOLOGY 2001-03-25 16:17:25.0
BIB:BOOK 2001-03-25 16:17:25.0
BOOK:TITLE 2001-03-25 16:17:25.0
BOOK:MONTH 2001-03-25 16:17:25.0
BOOK:ISBN 2001-03-25 16:17:25.0
BOOK:YEAR 2001-03-25 16:17:25.0
AUTHOR:ADDRESS 2001-03-25 16:17:25.0
BOOK:PUBLISHER 2001-03-25 16:17:25.0

71

LIST OF REFERENCES

1. S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Wiener, "The Lorel Query
Language for Semistructured Data," International Journal of Digital Libraries, vol.1,
1997.

2. C. Beeri, T. Milo, "Schemas for Integration and Translation of Structured and Semi-
Structured Data," Proceedings of the International Conference on Database Theory,
Jerusalem, Israel, 1999.

3. S. Bergamaschi, S. Castano, M. Vincini, "Semantic Integration of Semistructured and
Structured Data Sources," SIGMOD Record, vol.28, 1999.

4. P. Buneman, S. Davidson, G. Hillebrand, D. Suciu, "A query language and
optimization techniques for unstructured data," Proceedings of ACMSIGMOD
International Conference on Management of Data, pp. 505-516, Montreal, Canada,
1996.

5. D. Chamberlin, J. Robie, and D. Florescu, "Quilt: An XML Query Language for
Heterogeneous Data Sources, " In ACM SIGMOD Workshop on The Web and
Databases (WebDB'00), Dallas, Texas, pp. 53-62, May 2000.

6. N. Clayton, "DTDs: Walkthrough of a simple DTD," June 2001, available at
http://www.nothing-going-on.demon.co.uk/SGML/DTDs/simple.html

7. S. Cluet, J. Simeon, "YATL: a functional and declarative language for XML," Draft
manuscript, Mar 2000.

8. C. Cooper, "Benchmarking XML Parsers: A performance comparison of six stream-
oriented XML parsers," June 2001, available at
http://www.xml.com/pub/a/Benchmark/article.html .

9. E. Derksen, P. Fankhauser, E. Howland, G. Huck, I. Macherius, M. Murata, M.
Resnick, H. Schöning, "XQL (XML Query Language)," Submission to the World
Wide Web Consortium, June 2001, available at http://www.ibiblio.org/xql/xql-
proposal.html.

10. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Maier, and D. Suciu. "Querying
XML data, " Data Engineering Bulletin, Vol. 22, No 3 pp.10-18, 1999

72

11. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu, "XML-QL: A Query
Language for XML," Proceedings of 8th International World Wide Web Conference
(WWW8), 1999.

12. A. Deutsch, M. Fernandez, D. Suciu, "Storing semistructured data with STORED,"
Proceedings of ACM SIGMOD International Conference on Management of Data ,
Philadelphia, Pennsylvania, pp. 431-442, 1999.

13. M. Fernandez, D. Florescu, J. Kang, A. Levy, D. Suciu, "Catching the boat with
strudel: Experiences with a web-site management system, " In Proceedings. of the
ACM SIGMOD Conference. on Management of Data, pp. 414-425, 1998

14. M. Fernandez, J. Simeon, P. Walder, S. Cluet, A. Deutsch, D. Florescu, A. Levy, D.
Maier, J. McHugh, J. Robie, D. Suciu, J. Widom, "XML Query Languages:
Experiences and Exemplars", June 2001, available at http://www-db.research.bell-
labs.com/user/simeon/xquery.html.

15. D. Florescu, D. Kossmann, "A Performance Evaluation of Alternative Mapping
Schemes for Storing XML Data in a Relational Database, " INRIA Technical Report,
INRIA, No. 3680, May, 1999

16. D. Florescu, D. Kossmann, "Storing and Querying XML Data Using an RDBMS,"
Data Engineering Bulletin, Special Issue on XML, Vol. 22, No 3, pp. 27-34,
September 1999

17. D. Florescu, A. Levy, A. Mendelzon, "Database techniques for the World-Wide Web:
A survey," SIGMOD Record, Vol. 27, No. 3 pp. 59-74, 1998.

18. H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, J. Widom,
"Integrating and Accessing Heterogeneous Information Sources in TSIMMIS,"
presented at AAAI Symposium on Information Gathering, Stanford, California, 1995.

19. GMD: GDM-IPSI XQL Engine, June 2001, available at
http://xml.darmstadt.gmd.de/xql/.

20. R. Goldman, J. McHugh, J. Widom, "From Semistructured Data to XML: Migrating
the Lore data Model and Query Language," Proceedings of the 2nd International
Workshop on the Web and Databases, 1999.

21. J. Hammer, "The Information Integration Wizard (IWiz) Project," Project Description
TR99-019, University of Florida, Gainesville, Florida, 1999.

22. J. Hammer, H. Garcia-Molina, W. Labio, J. Widom, Y. Zhuge. "The Stanford Data
Warehousing Project", Data Engineering Bulletin, Special Issue on Materialized
Views and Data Warehousing, vol. 18, pp. 41-48, 1995.

23. IBM's alphaWorks, "XML Parser for Java," June 2001,
http://alphaworks.ibm.com/tech/xml4j.

73

24. W. J. Labio, Y. Zhuge, J. L. Wiener, H. Gupta, H. Garcia-Molina, and J. Widom,
"The WHIPS Prototype for Data Warehouse Creation and Maintenance," SIGMOD
Record (ACM Special Interest Group on Management of Data), vol. 26, pp. 557-559,
1997.

25. D. Maier, "Database desiderata for an XML Query Language," In Proceedings of the
Query Languages workshop QL'98, Cambridge, Mass., Dec. 1998

26. I. Manolescu, D. Florescu, D. Kossmann, "Pushing XML queries inside relational
databases," Tech. Report no. 4112, INRIA, 2001

27. I. Manolescu, D. Florescu, D. Kossmann, F. Xhumari, D. Olteanu, "Agora: Living
with XML and Relational," pp. 623-626, Software Demonstration at VLDB 2000.

28. D. Martin, M. Birbeck, M. Kay, B. Loesgen, J. Pinnock, S. Livingstone, P. Stark, K.
Williams, R. Anderson, S. Mohr, D. Baliles, B. Pear, N. Ozu, "Professional XML,"
Wrox Press, 2000.

29. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, J. Widom, "Lore: A Database
Management System for Semistructured Data", SIGMOD Record, vol. 26, pp. 54-66,
1997.

30. Oracle XML SQL Utility (XSU) for Java and XSQL Servlet, June 2001, available at
http://technet.oracle.com/tech/xml.

31. D. Quass, J. Widom, "On-Line Warehouse View Maintenance for Batch Updates," In
Proceedings of the ACM SIGMOD Conference, pp. 147-158, Tucson, Arizona, May,
1997

32. A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey, and
R. Busse. "The XML Benchmark Project," Technical Report INS-R0103, CWI,
Amsterdam, The Netherlands, April 2001

33. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, J. Naughton,
"Relational Databases for Querying XML Documents: Limitations and
Opportunities", Proceedings of the 25th Conference on Very Large Databases,
Edinburg, Scotland, 1999.

34. Software AG: Tamino – The Information Server for Electronic Business, June 2001,
available at http://www.softwareag.com/tamino/

35. D. Suciu, "An Overview of Semistructured Data," SIGACT News, 29(4), 1998.

36. F. Tian, D. DeWitt, J. Chen, and C. Zhang, "The Design and Performance Evaluation
of Alternative XML Storage Strategies," Technical report, University of Wisconsin,
2000, Available at http://www.cs.wisc.edu/niagara/papers/vldb00XML.pdf

74

37. J. Widom, "Data Management for XML: Research Directions," Data Engineering
Bulletin, Special Issue on XML, Vol. 22, No 3, September 1999.

38. J. Widom, "Research Problems in Data Warehousing," Fourth International
Conference on Information and Knowledge Management, Baltimore, MD, 1995.

39. World Wide Web Consortium, "Document Object Model (DOM) Level 1
Specification," W3C Recommendation, June 2001, available at
http://www.w3.org/TR/REC-DOM-Level-1/

40. World Wide Web Consortium, "Document Object Model (DOM) Level 2
Specification," W3C Recommendation, June 2001, available at
http://www.w3.org/TR/DOM-Level-2/

41. World Wide Web Consortium, "Extensible Markup Language (XML) 1.0," W3C
Recommendation, June 2001, available at http://www.w3.org/TR/1998/REC-xml-
19980210

42. World Wide Web Consortium, "Extensible Stylesheet Language (XSL)," Candidate
Recommendation, June 2001, available at http://www.w3.org/TR/xsl/

43. World Wide Web Consortium, "The Query Languages Workshop," June 2001,
available at http://www.w3.org/TandS/QL/QL98/

44. World Wide Web Consortium, "XML Accessibility Guidelines," W3C Working
Draft, June 2001, available at http://www.w3.org/WAI/PF/xmlgl

45. World Wide Web Consortium, "XML Path Language (XPath)," W3C
Recommendation, June 2001, available at http://www.w3.org/TR/xpath

46. World Wide Web Consortium, "XML Query Requirements," Working Draft, June
2001, available at http://www.w3.org/TR/xmlquery-req

47. World Wide Web Consortium, "XML Schema Part 1: Structures," W3C
Recommendation, June 2001, available at http://www.w3.org/TR/xmlschema-1/

48. World Wide Web Consortium, "XML Schema Part 2: Datatypes," W3C
Recommendation, June 2001, available at http://www.w3.org/TR/xmlschema-2/

49. World Wide Web Consortium, "XQuery: A Query Language for XML," Working
Draft, June 2001, available at http://www.w3.org/TR/xquery/

50. XML-QL : A Query Language for XML, Version 0.9, June 2001, available at
http://www.research.att.com/~mff/xmlql/

51. XMLShark, developed by infoShark, June 2001, available at
http://www.infoshark.com/products/index.shtml

75

BIOGRAPHICAL SKETCH

Rajesh Kanna was born in Chennai, India. He received his BE degree in computer

engineering from the National Institute of Engineering, University of Mysore, Mysore,

India in 1998. In 1999, Rajesh was admitted into the CISE graduate program at the

University of Florida. He graduated in August 2001 with the Master of Science degree.

His research interests include XML-based management systems, data warehousing

systems, and database and World Wide Web technologies.

