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By 
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This dissertation uses a polynomial-operator technique to study stability and 

performance of unconstrained multivariable predictive control.  A simple and direct way 

to determine stability of the closed-loop system is developed. 

It is shown that to guarantee stability of the closed-loop two transfer matrices 

must be stable.  These are represented as fraction descriptions, a ratio of  �numerator� 

and �denominator� polynomial matrices from which the poles can be determined.  

Because both transfer matrices possess the same denominator matrix the position of the 

roots of its determinant give sufficient conditions for stability of the closed-loop.  

Furthermore it is shown that if a coprime fraction description is done for the process 

transfer matrix then it is necessary and sufficient to check if the roots of the determinant 

of the denominator matrix lie inside the unit circle.  This technique avoids the inversion 

of transfer matrices which is a numerically difficult task allowing the tuning of 

multivariable systems with many inputs and outputs. 
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Performance is also studied and it is proven that the system has zero offset 

response to step changes in the reference, a property known to be valid for the single-

input single-output case.  For systems with an equal number of inputs and outputs the 

�inversion of the plant� is also proven.  In this case the weights on the input are zero and 

the solution to the optimization problem results in a controller that inverts the plant and 

the output matches the reference.   

The use of a multivariable predictive control for an oil-water-gas separator is 

studied.  The nonlinear model of the plant is linearized around a steady state and different 

predictive controllers are designed for it.  The controller responds positively to changes in 

the parameters and performance objectives are pursued.  Results show agreement with 

the simulations done for the linear model, it is concluded that predictive control is a 

successful control strategy for oil-water-gas separators. 

This method becomes an important tool for the analysis of predictive controllers, 

allowing the study of the effect of tuning parameters on the behavior of the system when 

the constraints are removed. 
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CHAPTER 1 
INTRODUCTION 

The process industry is characterized by ever tighter product quality 

specifications, increasing productivity demands, new environmental regulations and fast 

changes in the economical market.  Over the last two decades predictive control has 

proven to be a very successful controller design strategy, both in theory and practice.  

The main reason for this acceptance is that it provides high performance controllers that 

can easily be applied to difficult high-order and multivariable processes.  Process 

constraints are handled in a simple and systematic way.  However a general stability and 

robustness theory is lacking. 

Predictive control is a class of control strategies based on the explicit use of a 

process model to generate the predicted values of the output at future time instants, which 

are then used to compute a sequence of control moves that optimize the future behavior 

of a plant. Predictive control is rather a methodology than a single technique.  The 

difference in the various methods is mainly the way the problem is translated into a 

mathematical formulation.  

The explicit use of a model is the main difference between predictive control and 

the classical PID controller.  Its advantage is that the behavior of the controller can be 

studied in detail, simulations can be done and performance can be evaluated.  One of the 

drawbacks is the need of an appropriate model of the process.  The benefits obtained are 

affected by the discrepancies existing between the real process and the model.  According 

to some researchers 80% of the work done is in modeling and identification of the plant.  
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The results almost always show that the effort is paid back in short time.  Another 

drawback is that although the resulting control law is easy to implement and requires 

little computation, its derivation is more complex than that of the PID.  If the process 

dynamics do not change, the derivation can be done beforehand, but in the adaptive 

control case all the computation has to be carried out at each sampling time. When 

constraints are considered, the amount of computation is even higher. 

Predictive control was pioneered simultaneously by Richalet et al. (1978) and 

Cutler and Ramaker (1980).  The use of finite-impulse response models and finite-step 

response models, which are easily obtained for open loop stable processes, partly 

explains the acceptance in the process industry. 

t+ 2t+ 1t-2 ... t+Nytt-1t-3

�( | )y t i t+

( )u t i+( )u t

( )y t

Figure 1:  Predictive control strategy 
 

The methodology of all predictive controllers consists in predicting, at each time 

t, the future outputs for a determined horizon Ny , called the prediction horizon.  This 
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prediction of the outputs, �( | )y t i t+  for i = 1� Ny , is based on the model of the process 

and depends on the known values of past inputs and outputs up to instant t.   

The set of future control signals is calculated by optimizing a given criterion 

(called objective function or performance index) in order to keep the process as close as 

possible to the reference trajectory ( )r t i+ , which can be the set point or an 

approximation of it.  Different algorithms present different forms of objective functions, 

which usually take the form of a quadratic function of the errors between the predicted 

output signal and the predicted reference trajectory.  Some algorithms use the states of 

the process as opposed to the outputs. The control effort is included in the objective 

function in most cases.  Weights are used to adjust the influence of each term in the 

equation.  The solution to the problem is the future control sequence that minimizes the 

objective function equation.  For that, a model is used to predict future outputs or states. 

A typical objective function equation of a single-output single-input process is  

 
2

2 2

1 1

�( )( ( ) ( | )) ( )∆ ( 1)
Ny Nu

i Ny i
J i r t i y t i t i u t i

= =

= φ + − + + λ + −∑ ∑   

It is a quadratic function of future inputs, ( )u t i+ , and the error between future values of 

reference ( )r t i+  and predicted outputs, �( | )y t i t+ .  Weights φ and λ  are used to adjust 

the influence of the error and inputs respectively. 

The sequences of predicted outputs and future inputs are limited to horizons 2Ny  

and Nu  respectively.  The limitation on the sequence of inputs, ( )u t i+  from i=1 to Nu , 

comes from the assumption that the control action is constant after Nu  steps ahead.  The 

prediction horizon, on the other hand, limits the sequence of predicted output considered 
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in the objective function equation.  The control horizon has to be smaller than the 

prediction horizon.  Weights and horizons are tuning parameters of the controller. 

The optimization of the objective function requires a prediction of the future 

outputs.  The predicted output is the addition of two signals: 

 0�( | ) ( | ) ∆ ( )y t i t y t i t u t i+ = + + +G  

the constant forcing response and forced response. The constant forcing response, 

0 ( | )y t i t+ , corresponds to the prediction of the evolution of the process under the 

consideration that future input values will be constant.  The forced response, ∆ ( )u t i+G  

where G is the dynamic matrix of the process, corresponds to the prediction of the output 

when the control sequence is made equal to the solution of the minimization of the 

objective function.   

The expression for the predicted outputs can be substituted in the objective 

function and the solution to the minimization problem leads to the desired control 

sequence.  Once the control sequence has been obtained only the first control move is 

implemented.  Subsequently the horizon is shifted and the values of all sequences are 

updated and the optimization problem is solved once again.  This is known as the 

Receding Horizon Principle and is adopted by all predictive control strategies.  It is not 

advisable to implement the entire sequence over the next Nu  intervals because it is 

impossible to perfectly estimate the unavoidable disturbances that cause the actual output 

to differ from the predictions made.  Furthermore the operation might decide to change 

the set point over the next Nu  intervals. 

The various predictive control algorithms only differ themselves in the model 

used to represent the process, the model for the noise and the objective function to be 
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minimized.  The models used can be Impulse/Step response models, transfer function 

models or state space models. 

• Impulse/Step response models:  Predictive control has part of its roots in the process 
industry where the use of detailed dynamical models is uncommon.  Getting reliable 
dynamical models of these processes on the basis of physical laws is difficult and the 
first models used were Impulse/Step response models.  The models are easily 
obtained by rather simple experiments and give good results.  The disadvantage is 
that it requires a large amount of parameters. 

• Transfer function models:  For some processes good models can be obtained on the 
basis of physical laws or by parametric system identification.  In this case a transfer 
function model is preferred.  Less parameters are used than in the Impulse/Step 
response models.  

• State Space models:  These models are the most general description for a linear time 
invariant system and being so are the most elaborate and difficult to generate. 

Generalized Predictive Control (GPC) is a class of predictive control, proposed by 

Clarke et al. (1987).  It provides an analytical solution (in the absence of constraints) and 

can deal with unstable and non-minimum phase plants.  It uses transfer function model 

for the plant leading to lower-order representations.   

Different transfer function models are used by GPC such as Controller Auto-

Regressive Integrated Moving Average (CARIMA), Controller Auto-Regressive Moving 

Average (CARMA), etc.  In this dissertation a Deterministic Auto-Regressive Moving 

Average (DARMA) model is considered  

 1 1( ) ( ) ( ) ( 1)q t q t− −= −A y B u  (1.1) 

which can be obtained by a left matrix fraction description (see Appendix C) of the 

transfer function model. 

Most industrial plants have many outputs and manipulated variables.  In certain 

cases a manipulated variable mainly affects the corresponding controlled variable and 

each of the input-output pairs can be considered as a single-input single-output (SISO) 
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plant and controlled by independent loops.  In cases where the interaction between the 

different variables is not negligible the plant must be considered as a multiple-inputs and 

multiple-outputs (MIMO) process.  These interactions may result in poor performance 

and even instability if the process is treated as multiple SISO loops. 

In practice all processes are subject to restrictions and these can be considered in 

the objective function equation as constraints on the inputs and outputs.  In many 

industrial plants the control system will operate close to the boundaries due to operational 

conditions.  This has lead to the widespread belief that the solution to the optimization 

problem lies at the boundaries.  On the other hand the design of multivariable predictive 

controllers requires the specification of horizons and weights for all inputs and outputs.  

Therefore a big number of parameters must be selected, a task that may prove 

challenging even for systems of modest size.  Badly tuned predictive controllers tend to 

take the plant to extreme and sometimes unstable conditions, frequently unnoticed 

because of physical constraints such as valve opening, maximum flow rate, etc., masking 

the instability problem and fooling operational groups into concluding that the plant has 

been optimized.   

Many different predictive control algorithms have treated multivariable systems 

in some way or another but none has established the mathematical basis for a 

comprehensive analysis of the system, such as performance or stability.   

In this dissertation a practical method for analyzing the stability of classical 

multivariable predictive control systems is pursued.  The focus is on unconstrained 

systems in order to allow the identification of the destabilizing choices of tuning 

parameters, avoiding the masking effect introduced by the presence of hard constraints.   
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CHAPTER 2 
LITERATURE REVIEW 

Model predictive control (MPC) has had an enormous impact in the process 

industry over the last 15 years.  It is an effective means of dealing with multivariable 

constrained control problems and the many reports of industrial applications confirm its 

popularity.   

2.1  History of Model Predictive Control 

The development of modern control concepts can be traced back to the work of 

Kalman in the early 1960s with the linear quadratic regulator (LQR) designed to 

minimize an unconstrained quadratic objective function of states and inputs.  The infinite 

horizon endowed the LQR algorithm with powerful stabilizing properties.  However it 

had little impact on the control technology development in the process industries.  The 

reason for this lies in the absence of constraints in its formulation, the nonlinearities of 

the real systems, and above all the culture of the industrial process control community at 

the time, in which instrument technicians and control engineers either had no exposure to 

optimal control concepts or regarded them as impractical.  Thus the early proponents of 

MPC for process control proceeded independently, addressing the needs of the industry. 

In the late 1970s various articles reported successful applications of model 

predictive control in the industry, principally the ones by Richalet et al. (1978) presenting 

Model Predictive Heuristic Control (later known as Model Algorithmic Control (MAC)) 

and those of Cutler and Ramaker (1980) with Dynamic Matrix Control (DMC).  The 
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common theme of these strategies was the idea of using a dynamic model of the process 

(impulse response in the former and step response in the later) to predict the effect of the 

future control actions, which were determined by minimizing the predicted error subject 

to operational restrictions.  The optimization is repeated at each sampling period with 

updated information from the process.  These formulations were algorithmic and also 

heuristic and took advantage of the increasing potential of digital computers at the time.  

Stability was not addressed theoretically and the initial versions of MPC were not 

automatically stabilizing.  However, by focusing on stable plants and choosing a horizon 

large enough compared to the settling time of the plant, stability is achieved after playing 

with the weights of the cost function. 

Later on a second generation of MPC such as quadratic dynamic matrix control 

(QDMC; Garcia, Morshedi, 1986) used quadratic programming to solve the constrained 

open-loop optimal control problem where the system is linear, the cost quadratic, the 

control and state constraints are defined by linear inequalities. 

Another line of work arose independently around adaptive control ideas 

developing strategies essentially for mono-variable processes formulated with transfer 

function models (for which less parameters are required in the identification of the 

model) and Diophantine equation was used to calculate future input. The first initiative 

came from Astron et al. (1970) with the Minimum Variance Control where the 

performance index to be minimized is a quadratic function of the error between the most 

recent output and the reference (i.e. the prediction horizon Ny=1).  In order to deal with 

non-minimum phase plants a penalized input was placed in the objective function and 

this became the Generalized Minimum Variance (GVM) control.  To overcome the 
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limitation on the horizon, Peterka (1984) developed the Predictor-Based Self-Tuning 

Control.  Extended Prediction Self�Adaptive Control (EPSAC) by De Keyser et al. 

(1985) proposes a constant control signal starting from the present moment while using a 

sub-optimal predictor instead of solving a Diophantine equation.  Later on the input was 

replaced by the increment in the control signal to guarantee a zero steady-state error.  

Based on the ideas of GVM Clarke et al. (1987) developed the Generalized Predictive 

Control (GPC) and is today one of the most popular methods.  A closed form for the GPC 

is given by Soeterboek.  State-space versions of unconstrained GPC were also developed. 

2.2  Stability 

Stability has always been an important issue for those working with predictive 

control.  Due to the finite horizon stability is not guaranteed and is achieved by tuning the 

weights and horizons.  Mohtadi proved specific stability theorems of GPC using state-

space relationships and studied the influence of filter polynomials on robustness 

improvement.  However a general stability property for predictive controllers, in general, 

with finite horizons was still lacking.  This lead researchers to pursue new predictive 

control methods with guaranteed stability in the 1990s.  With that purpose a number of 

design modifications have been proposed since then including the use of terminal 

constraints (Kwon et al., 1983; Meadows et al. 1995), the introduction of dual-mode 

designs (Mayne and Michalska, 1993) and the use of infinite prediction horizons 

(Rawlings and Muske, 1993), among others.  Clarke and Scattolini (1991) and Mosca et 

al. (1990) independently developed stable predictive controllers by imposing end-point 

equality constraints on the output after a finite horizon.  Kouvaritakis et al. (1992) 

presented a stable formulation for GPC by stabilizing the process prior to the 



10 

 

minimization of the objective function.  Many of these techniques are specialized for 

state-space representations of the controlled plant, and achieve stability at the expense of 

introducing additional constraints and modifying the structure of the design.  

Practitioners, however, avoid changing the structure of the problem and prefer to achieve 

stability by tuning the controller.  For that a good doses of heuristics is used.  

2.3  Model Predictive Control: An Optimal Control Problem 

Recently a theoretical basis for MPC has started to emerge. Researchers have 

revisited the LQR problem arguing that model predictive control essentially solves 

standard optimal control problems with receding horizon, ideas that can be traced back to 

the 1960s (Garcia et al., 1989).  MPC is characterized as a mathematical programming 

problem since the slow dynamics of process industry plants allow on-line solution to 

open-loop problems in which case the initial state is the current state of the system being 

controlled.  Determining the feedback solution, on the other hand, requires the solution of 

the Hamilton-Jacobi-Bellman (a dynamic programming problem) differential or 

difference equation which turns out to be more difficult.  Riccati equation appears as a 

particular case to some optimal control problems.  It is shown (Mayne et al., 2000) that 

the difference between MPCs approach and the use of dynamic programming is purely 

one of implementation.  This line of research has an early representative in the work of 

Kwon and Pearson (1983) and Keerthi and Gilbert (1988) and has recently gained 

popularity through multiple advocates, such as the work of Muske and Rawlings (1993).   

More recently two major approaches to the control problem are very popular.  The 

first one employs the optimal cost function, for a fixed horizon, as a Lyapunov function 

and the second approach takes advantage of the monotonicity property of a sequence of 
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the optimal cost function for various horizons.  Note that for linear systems the presence 

of hard constraints makes the design of the controller a nonlinear problem so that the 

natural tool for establishing stability is Lyapunov theory. 

Obtaining a formulation which can relate the tuning parameters of MPC to 

properties such as stability and performance is the major goal of this line of work and 

recent advances show promising results.  Solving the dynamic programming problem, 

however, is not practical and this can be accounted for the resistance of the industry to 

adopt these new methods.  
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CHAPTER 3 
FORMULATION AND SOLUTION OF THE CONTROL PROBLEM 

In this chapter the predictive control law is derived for an unconstrained MIMO 

system with m controlled outputs and p inputs.  The problem of minimizing the objective 

function is solved analytically using least squares.  The formulation is done in vector 

matrix format.  A final expression, function of future values of reference and output, is 

reached.  Diophantine equation is used to generate the predicted values of the output. 

3.1  Objective Function of Multivariable Predictive Control 

Unconstrained multivariable predictive controllers are designed to minimize the 

objective function: 

 
1 2

2 2
1 1 1 2 2 2

1 1

� �( )( ( ) ( | )) ( )( ( ) ( | ))
Ny Ny

i i
J i r t i y t i t i r t i y t i t

= =

= φ + − + + φ + − + +∑ ∑ …  

                       
1

2 2
1 1

1 1

�( )( ( ) ( | )) ( )∆ ( 1)
mNy Nu

m m m
i i

i r t i y t i t i u t i
= =

+ φ + − + + λ + −∑ ∑  (3.1) 

                       
2

2 2
2 2

1 1

( )∆ ( 1) ( )∆ ( 1)
pNuNu

p p
i i

i u t i i u t i
= =

+ λ + − + + λ + −∑ ∑…  

where: 

� jy  is the jth output 

jr  is the desired trajectory for the jth output 

u"  is the " th input 

jφ are the weights on the error between the desired trajectory and the output 

λ " are the weights on the control signal 

Nyj are the prediction horizons  
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Nu" are the control horizons 

The general aim of the objective function is to make the future output, on the 

considered horizon, follow a desired reference signal and, at the same time, penalize the 

control effort (∆u ) in order to avoid unfeasible inputs.  Many formulations of predictive 

control consider an initial and a final prediction horizon to account for the dead times of 

the process.  In this dissertation the initial prediction horizon considered is always 1 and 

if dead time is to be considered then the weights can be appropriately set to zero. 

Similarly to the SISO case, where the prediction horizon has to be greater than the 

control horizon, the sum of all prediction horizons has to be greater than the sum of all 

control horizons; Ny Nu≥  where 

  
1

m

j
j

Ny Ny
=
∑#  and 

1

p

Nu Nu
=
∑ "
"

#  

Note that no control horizon should be greater than the max prediction horizon: 

 max jNu Ny≤"  for all j 

The many different indices required in the derivations that follow makes notation 

an important issue.  The following rules are applied hereon:  

• polynomials are written in upper case letters 

• vectors in bold lower case letters 

• matrices in bold upper case letters and in some exceptional cases bold lower case 
letters.  

Vectors and matrices are created to represent the time expansion of the equations. 

Whenever the sequence of values from 1 to i has to be represented in a vector then t + i 

will be written in between parenthesis.  Its absence is indicative of a sequence of values 
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from 1 to the given horizon.  As an example, let us represent the values of 1�y  from step 1 

to i and also from step 1 to Ny1: 

 

1

1
1

1

� ( 1| )
� ( 2 | )

� ( | )  

� ( | )

y t t
y t t

t i t

y t i t

+ 
 + + =
 
 +  

y
$

        

1

1
1 1 1

1 1

� ( 1| )
� ( 2 | )

� � ( | )  

� ( | )

y t t
y t t

t Ny t

y t Ny t

+ 
 + = + =
 
 +  

y y
$

  

Notice the difference between the scalar 1� ( | )y t i t+ and the vector 1� ( | )t i t+y .  The former 

indicates the value of 1�y  at time step t + i while the latter denotes the vector of values of 

1�y  from time step 1 to i.   Subscripts are used in matrices for the same purpose. 

The objective function can be written in the more elegant vector-matrix format.  

This will simplify the notation and help visualization of the solutions. 

Claim 3.1.  Equation (3.1) can be written in compact vector-matrix notation as  

 � �( ) ( ) ∆ ∆T TJ = − − +r y r y u uΦ ΛΦ ΛΦ ΛΦ Λ  (3.2) 

where the augmented vectors �y  and Ny∈ ℜr  and Nu∈ ℜu  are given by 

 

1

2

�
�

�

�m

 
 
 =
 
 
  

y
y

y

y
$

, 

1

2

m

 
 
 =
 
 
  

r
r

r

r
$

, 

1

2

p

 
 
 =
 
 
  

u
u

u

u
$

 (3.3) 

and where matrices Ny Ny×∈ ℜΦΦΦΦ  and Nu Nu×∈ℜΛΛΛΛ  are given by  
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2
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$ $ % $
…

ΦΦΦΦ
ΦΦΦΦ

ΦΦΦΦ

ΦΦΦΦ

      

1

2

0 0
0 0

0 0 p

 
 
 =
 
 
  

…
…

$ $ % $
…

ΛΛΛΛ
ΛΛΛΛ

ΛΛΛΛ

ΛΛΛΛ

 (3.4) 

where in turn 
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� ( 1| )
� ( 2 | )

�

� ( | )

j

j
j

j j

y t t
y t t

y t Ny t

+ 
 + =
 
 +  

y
$

, 

( 1)
( 2)

( )

j

j
j

j j

r t
r t

r t Ny

+ 
 + =
 
 +  

r
$

, 

( )
( 1)

( 1)

u t
u t

u t Nu

u

"

"
"

" "

$

 
 + =
 
 + −  

, (3.5) 

 

(1) 0 0
0 (2) 0

0 0 ( )

j

j
j

j jNy

φ 
 φ =
 
 φ  

ΦΦΦΦ

&
&

$ $ % $
&

,       

(1) 0 0
0 (2) 0

0 0 ( )Nu

λ 
 λ =
 
 λ  

ΛΛΛΛ

"

"
"

" "

&
&

$ $ % $
&

 (3.6) 

and  yj and jNy
j ∈ ℜr , Nu∈ ℜu "

" , j jNy Ny
j

×∈ℜΦΦΦΦ  and Nu Nu×∈ℜΛΛΛΛ " "
" .    

Proof. From definitions (3.5) to (3.6), the summations in (3.1) can be written as 

 
1

2
1 1 1 1 1 1 1 1

1

� ��( )( ( ) ( | )) ( ) ( )
Ny

T

i
i r t i y t i t

=

φ + − + = − −∑ r y r yΦΦΦΦ  

 
2

2
2 2 2 2 2 2 2 2

1

� ��( )( ( ) ( | )) ( ) ( )
Ny

T

i
i r t i y t i t

=

φ + − + = − −∑ r y r yΦΦΦΦ  

$  

 2

1

� �( )( ( ) ( | )) ( ) ( )
mNy

T
m m m m m m m m

i
i r t i y t i t

=

φ + − + = − −∑ r y r yΦΦΦΦ  

and  

 
1

2
1 1 1 1 1

0
( )∆ ( ) ∆ ∆

Nu
T

i
i u t i

=

λ + =∑ u uΛΛΛΛ  

 
2

2
2 2 2 2 2

0
( )∆ ( ) ∆ ∆

Nu
T

i
i u t i

=

λ + =∑ u uΛΛΛΛ  

$  

 2

0
( )∆ ( ) ∆ ∆

pNu
T

p p p p p
i

i u t i
=

λ + =∑ u uΛΛΛΛ  
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substituting the above equations in (3.1) and using the definitions of vectors and 

matrices in (3.3) to (3.4) it follows that the objective function equation can be written 

as � �( ) ( ) ∆ ∆T TJ = − − +r y r y u uΦ ΛΦ ΛΦ ΛΦ Λ .        Q.E.D. 

3.2  Derivation of the Predictive Control Law 

The problem of minimizing J with relationship to ∆u requires an expression for 

the predicted outputs as a function of future inputs.   

Claim 3.2. Future values of the output, y , are the sum of the constant forcing response, 

0y , and the response to future inputs ∆G u : 

 0� ∆= +y y G u    (3.7) 

where 

 

0
1
0

0 2

0
m

 
 
 =
 
 
  

y
y

y

y
$

       

11 12 1

21 22 2

1 2

p

p

m m mp

 
 
 =
 
 
  

G G G
G G G

G

G G G

&
&

$ $ % $
&

 

where in turn 

 

0

0
0

0
1

( 1| )
( 2 | )

( | )

j

j
j

j

t t
t t

t Ny t

 +
 + =  
 

+  

y
y

y

y
$

            

1 2

0

1 0

0 0
0

j j j

j

Ny Ny Ny Nu j

g
g g

g g g− − −

 
 
 =  
 
  

G

"

"

"

&
&

$ $ % $
&

 

and Ny Nu×∈ ℜG , 0 Ny∈ ℜy , 0 Ny
j ∈ ℜy .  Each dynamic matrix is truncated to the 

corresponding control and prediction horizons, i.e. jNy Nu
j

×∈ ℜG "
" . 

Proof  Consider the future values of the first output of the system 

  0
1 1 11 1 12 2 1� ∆ ∆ ∆p p= + + + +y y G u G u G u…  (3.8) 
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where 0
1y  is the constant forcing response and 1G "  are the dynamic matrices relating 

input "  to output 1.  Similar equations can be written for the remaining outputs of the 

MIMO system as follows 

 0
2 2 21 1 22 2 2� ∆ ∆ ∆p p= + + + +y y G u G u G u…  

$  

 0
1 1 2 2� ∆ ∆ ∆m m m m mp p= + + + +y y G u G u G u…  

The above equations can be put together as 

 

0
11 12 1 11 1

0
21 22 2 22 2

0
1 2

� ∆
� ∆

� ∆

p

p

m m mp pm m

      
      
       = +
      
      

            

G G G uy y
G G G uy y

G G G uy y

&
&

$ $ % $ $$ $
&

 (3.9) 

from where we conclude that  

 0� ∆= +y y G u  Q.E.D.  

This is the equation needed for an analytical solution of the objective function 

equation since it shows, explicitly, the influence of future inputs in the future outputs.  

The solution is a function of the future reference trajectory and the constant forcing 

response as seen in the next claim.  

Claim 3.3.  Given the objective function equation � �( ) ( ) ∆ ∆T TJ = − − +r y r y u uΦ ΛΦ ΛΦ ΛΦ Λ  and 

the prediction equation for future outputs, 0� ∆= +y y G u , then the optimal control 

sequence is given by 

 1 0∆ ( ) ( )T T−= + −u G G G r yΦ Λ ΦΦ Λ ΦΦ Λ ΦΦ Λ Φ  (3.10) 

Proof  Substitute equation (3.7) in the objective function equation to get 

 0 0( ∆ ) ( ∆ ) ∆ ∆T TJ = − − − − +r y G u r y G u u uΦ ΛΦ ΛΦ ΛΦ Λ  
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Let T= R RΦΦΦΦ  

 0 0( ∆ ) ( ∆ ) ∆ ∆T T TJ = − − − − +r y G u R R r y G u u uΛΛΛΛ  

then 

 0 0( ∆ ) ( ∆ ) ∆ ∆T TJ = − − − − +Rr Ry RG u Rr Ry RG u u uΛΛΛΛ  

differentiating with respect to ∆u 

 02( ∆ ) 2∆
∆

T TJ∂ = − − − +
∂

Rr Ry RG u RG u
u

ΛΛΛΛ  

equating the derivative to zero in order to get the minimum of the function then 

 02( ∆ ) 2∆ 0T T− − − + =Rr Ry RG u RG u ΛΛΛΛ  

and 

 0∆ ( ∆ )T T T= − −u r y G u R RGΛΛΛΛ  

 0∆ ( ) ∆T T T T= − −u r y G u G GΛ Φ ΦΛ Φ ΦΛ Φ ΦΛ Φ Φ  

 0∆ ( ) ( )T T T+ = −u G G r y GΛ Φ ΦΛ Φ ΦΛ Φ ΦΛ Φ Φ  

transposition yields 

 0( ) ∆ ( )T T T T+ = −G G u G r yΛ Φ ΦΛ Φ ΦΛ Φ ΦΛ Φ Φ  

Note that ( )T+G GΛ ΦΛ ΦΛ ΦΛ Φ  and ΦΦΦΦ  are symmetric matrices (making the transposition 

irrelevant).  Thus the optimal control sequence is given by 

 1 0∆ ( ) ( )T T−= + −u G G G r yΦ Λ ΦΦ Λ ΦΦ Λ ΦΦ Λ Φ  Q.E.D. 

From the receding horizon principle only the part corresponding to the first 

control move of matrix 1( )T T−+G G GΦ Λ ΦΦ Λ ΦΦ Λ ΦΦ Λ Φ  is used.  That way matrix 

1( )T T−+G G GΦ Λ ΦΦ Λ ΦΦ Λ ΦΦ Λ Φ  can be replaced by a smaller dimension matrix. 

Claim 3.4.  The control law for the multivariable predictive control is given by  

 0∆ ( ) ( )t = −u K r y  (3.11) 
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where matrix pNy∈ ℜK  is defined as 

 

 

11 12 1

21 22 2

1 2

T T T
m

T T T
m

T T T
p p pm

 
 
 =  
 
  

k k k
k k k

K

k k k

&
&

$ $ % $
&

 (3.12) 

and its elements  

 1 2[ ]
j

T
j Ny jk k k=k" "&  (3.13) 

are the rows of 1( )T T−+G G GΦ Λ ΦΦ Λ ΦΦ Λ ΦΦ Λ Φ  corresponding to the first control move.  

See Appendix E for the proof. 

3.3  Derivation of the Constant Forcing Function 

In order to solve the control law equation, 0( )= −u K r y , an expression for future 

values of the constant forcing response, 0y , is needed.  This can be done via the solution 

of a series of Diophantine equations.  For SISO cases the developments are widely 

documented in the literature (Clarke et al., 1987; Clarke and Mohtade, 1989; Crisalle et 

al., 1989).  The derivation for the MIMO systems will be done here.  The approach 

consists of first extending the SISO results to the MISO plants, and then applying the 

MISO approach to each of the outputs of the MIMO plant.  The individual MISO 

predictors are then stacked into augmented vectors and matrices as needed to build the 

final MIMO operators sought, as was done in section 3.2 in the derivation of the 

predictive control law.  The many different equations for the MIMO case make the 

derivation quite cumbersome and only the vectorial equations will be shown here while a 

detailed derivation is found in Appendix A.  The definitions for the terms of the equations 
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that follow will not be repeated here and the reader should refer to the appendix 

whenever necessary. 

Consider the multivariable system defined by the DARMA model of equation 

(1.1), 1 1( ) ( ) ( ) ( 1)q t q t− −= −A y B u .  The predicted values of the output can be generated 

using Matrix Diophantine equation,  

 1 1 1( )∆ ( ) ( )i
i i iq q q− − − −+ =E A q F I  (A.9) 

where 1( )i q−E  and 1( )i q−F  are unique polynomial matrices defined in Appendix A.  For 

that, multiply equation (1.1) by 1( )∆i q−E  to get  

 1 1 1 1( )∆ ( ) ( ) ( ) ( )∆ ( 1)i iq q t q q t− − − −= −E A y E B u    

From Matrix Diophantine equation we see that 1 1 1( )∆ ( ) ( )i
i i iq q q− − − −= −E A I q F  and 

consequently 

 1 1 1( ) ( ) ( ) ( )∆ ( 1)i
i i iq t q q t− − − − − = − I q F y E B u  (3.14) 

Simple manipulation leads to 1 1 1( ) ( ) ( )∆ ( 1) ( ) ( )i
i it q q t q t− − − −= − +y E B u q F y .  Multiply by 

iq  to get an expression for predicted values of the output 

 1 1 1� ( ) ( ) ( )∆ ( 1) ( ) ( )i it i q q t i q t− − −+ = + − +y E B u F y  (3.15) 

Recognizing that  

 1 1 1 1( ) ( ) ( ) ( )i
i i iq q q q− − − − −= +E B G q P   (3.16) 

then  

 1 1 1 1� ( ) ( ) ( ) ( )∆ ( 1) ( )∆ ( )i i it i q t q t i q q t− − − −+ = + + − +y F y G u P u  (3.17) 
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Finally, verifying that the predicted values of the output, � ( )t i+y , are the unforced 

response of the system, 0 ( )t i+y , when future values of the input are kept constant, i.e. 

∆ ( 1) 0t i+ − =u  for 0i > , then  

 0 1 1 1( ) ( ) ( ) ( )∆ ( )i it i q t q q t− − −+ = +y F y P u  (3.18) 

or if we consider the whole prediction and control horizons 

 0 1 1 1( ) ( ) ( )∆ ( )q t q q t− − −= +y F y P u  

3.4  Final Control Law Equation 

The control law equation (3.11) can be written, according to the notation adopted, 

in terms of a hypothetical sample time t + i as 

 0∆ ( ) ( ) ( )it t i t i = + − + u K r y  

and substituting the constant forcing function of equation (3.18) then 

 1 1 1∆ ( ) ( ) ( ) ( ) ( )∆ ( )i i it t i q t q q t− − − = + − − u K r F y P u   

which can be rewritten as  

 1 1 1( ) ∆ ( ) ( ) ( ) ( )i
i i i i iq q t t q t− − − + = − I K P u K q r K F y  

 Define  

 1 1 1( ) ( ) ∆i i iq q q− − − = + R I K P  (3.19) 

 1 1( ) ( )i i iq q− −=S K F  (3.20) 

 ( ) ( ) i
i iq q=T K q  (3.21) 

to get  

 1 1( ) ( ) ( ) ( ) ( ) ( )i i iq t q t q t− −= −R u T r S y  (3.22) 

Considering the prediction horizons it yields 
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 1 1( ) ( ) ( ) ( ) ( ) ( )q t q t q t− −= −R u T r S y  (3.23) 

Note that 1( )q−R  and 1( )q−S are polynomial matrices in backward shift-operator while 

matrix ( )qT  is in forward shift-operator.  

A Matlab code was created to generate matrices 1( )q−R , 1( )q−S  and ( )qT . Once 

the set of parameters is specified, namely prediction horizons, control horizons, weights l 

and f, then matrices 1( )q−R , 1( )q−S  and ( )qT  are generated for a given linear model of 

a process plant. 

3.5  Conclusion 

In this chapter a concise mathematical development of the control law for the 

multivariable predictive control is shown.  The appropriate definition of vectors and 

matrices allowed a mathematical formalism similar to the SISO case and a design 

procedure is derived from it.  A Matlab code has been developed for the design of 

multivariable unconstrained predictive controllers.   
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CHAPTER 4 
ANALYSIS OF CLOSED-LOOP BEHAVIOR  

In this chapter the closed-loop system is analyzed for stability and performance.  

For that a practical method to determine the closed-loop poles of multivariable predictive 

control is searched.  Proof of properties known to be valid for the SISO case are pursued 

for the multivariable case.   

4.1  Stability Analysis of Closed-loop Multivariable Systems 

The issue of ensuring stability of a closed-loop feedback controller is of utmost 

importance to control system design.  Albeit the increasing popularity of predictive 

control over the last decades a general method for the analysis of stability of the resulting 

closed-loop is still not available for multivariable systems.  Although unconstrained 

systems present analytical solutions to the problem of minimizing the objective function, 

obtaining the closed-loop transfer matrices is a major challenge.  Numerical difficulties in 

inverting transfer matrices have limited the size of systems for which the poles can be 

calculated. 

A stable system is a dynamic system with a bounded response to a bounded input.  

Many descriptions of stability exist, namely external stability, internal stability, marginal 

stability and exponential stability.  In this dissertation external (also known as BIBO for 

bounded input bounded output) stability is analyzed.   

During the design phase of predictive control no a priori guarantee of stability 

exists for the resulting closed-loop system.  Stability of a system is determined by the 
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position of its poles in the complex plane, which can be determined, among other ways, 

by analyzing the individual transfer functions of the closed-loop matrix.  Matrix fraction 

descriptions can also be used to decompose rational matrices into �numerator� and 

�denominator� matrices allowing for the determination of poles and zeros of multivariable 

systems.  Under certain circumstances the latter method proves to be better. 

Since the aim of this chapter is to study stability of the closed-loop system, in the 

sequel, the complex variable z is substituted for the forward shift operator q.  This 

substitution is allowed by the analogy between shift-operator theory and transfer function 

theory for linear systems with zero initial conditions.  Hence matrix 1( )z−R  is substituted 

for matrix 1( )q−R  and so on.  Furthermore, for simplicity of notation, the arguments 1z−  

and z are omitted whenever the interpretation of the transfer function in question is 

deemed unambiguous.   

4.2  Closed-loop Transfer Function Matrices 

Figure 4.1 shows the block diagram of the multivariable predictive control applied 

to a plant ( )zH . 

 

+T R H

S

-1r yw e u

 

               Figure 4.1  Closed-loop System 
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Let ( )zH  be the process plant.  Using block-diagram algebra operations, the 

dynamics of the system shown in Figure 4.1 can be captured by the closed-loop transfer 

matrices 

 [ ] 1( ) ( ) ( ) ( ) ( )ur z z z z z−= +G R S H T  (4.1) 

and  

 [ ] 1( ) ( ) ( ) ( ) ( ) ( )yr z z z z z z−= +G H R S H T  (4.2) 

Transfer function matrix T(z) is a polynomial matrix applied to the future reference 

trajectory.  Hence ( )zw  is a bounded signal for a bounded reference signal ( )zr  and if 

all possible disturbances and noises are considered then it is seen (refer to Appendix D) 

that for the analysis of stability it suffices to analyze the transfer functions relating the 

control signal ( )zu  to ( )zw  and the output ( )zy  to ( )zw ; ( )uw zG  and ( )yw zG  

respectively.  

 [ ] 1( ) ( ) ( ) ( )uw z z z z −= +G R S H  (4.3) 

and  

 [ ] 1( ) ( ) ( ) ( ) ( )yw z z z z z −= +G H R S H  (4.4) 

THEOREM 4.1  Transfer function matrix ( )zR  is biproper. 

Proof  Recall that a proper transfer matrix whose inverse is also proper is called biproper.  

From the definitions of K and ( )zP  its immediate to verify that the product 1 ( )z z− KP  is 

a proper transfer matrix.  The addition of the identity matrix to it, 1 ( )z z−+I KP , causes 

the determinant to be biproper and as a consequence 1( ) ( ) ∆z z z− = + R I KP  is a 

biproper transfer matrix.          Q.E.D. 
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This property of ( )zR  makes 1( )z −R  biproper and allows the implementation of 

the controller.   

THEOREM 4.2  Let ( )zH  be a proper transfer matrix, then ( )uw zG  is biproper and 

( )yw zG  is proper. 

Proof  Matrix ( )zS  is the product of K and ( )zF .  From the definitions of K and ( )zF  it 

is concluded that ( )zS  is a proper transfer matrix.  Once ( )zH  is proper then the product 

( ) ( )z zS H  is also proper.  Consequently the sum ( ) ( ) ( )z z z+R S H  is biproper since 

( )zR  is, according to Theorem 4.1, biproper.  Thus ( )uw zG  is biproper.  Bearing in mind 

that ( ) ( ) ( )yw uwz z z=G H G  then it is concluded that ( )yw zG  is proper.  Q.E.D. 

4.3  MFD of Transfer Function Matrices 

A transfer matrix may be represented as the �ratio� of two polynomial matrices as 

 1 1( ) ( ) ( ) ( ) ( )R R L Lz z z z z− −= =G N D D N  

where both matrices have the same number of columns.  For an m p×  matrix G(z) then 

D(z) is m m×  and N(z) is p m× .  The first representation is a right matrix fraction 

description, MFD, while the second is called a left MFD of G(z).  Since duality exists 

between these descriptions, for the most part, only right MFDs will be mentioned hereon.  

The subscript R  shall be omitted and restored only when necessary. 

Example 4.1  Consider  

 

1 0.5

( )
0.04 0.05

z zz

z z

 
 

=  
 
  

G  

which can be decomposed in a right MFD as: 
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1.5 0.5

( )
0.04 0.05
z

z
z

+ 
=  
 

N  
( 2.5) 0

( )
2

z z
z

z z
+ 

=  − 
D  ■ 

An MFD is not unique and an infinity of others can be obtained by choosing any non-

singular polynomial W(z) such that 

 1( ) ( ) ( )z z z−=N N W   1( ) ( ) ( )z z z−=D D W  

are polynomial matrices. Then 

 1 1( ) ( ) ( ) ( ) ( )z z z z z− −= =G N D N D  

since 

 ( ) ( ) ( )z z z=N N W   ( ) ( ) ( )z z z=D D W  

Matrix W(z) is right divisor of N(z) and D(z).   

Some polynomial matrices have inverses that are also polynomial.  These are 

called unimodular and possess a determinant that is independent of z (a nonzero 

constant).  When all right divisors of two matrices are unimodular these matrices are 

called right coprime and the MFD is called irreducible.  Analogous to the scalar case, 

coprimeness of two polynomial matrices means that no cancellation of common terms is 

possible.   

DEFINITION 4.1  A right MFD 1( ) ( ) ( )z z z−=G N D  is called irreducible if N(z) and 

D(z) are right coprime.                 ■ 

No direct method for the generation of irreducible MFDs is known.  The MFD 

should be tested for coprimeness and, if necessary, both matrices should be  �divided� by 

their greatest common divisor.  Bezout Identity can be used to determine if two matrices 

are coprime as N(z) and D(z) will be right coprime if and only if there exist polynomial 

matrices X(z) and Y(z) such that  
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 ( ) ( ) ( ) ( )z z z z+ =X N Y D I  

The construction of a greatest common divisor is done by finding a unimodular 

matrix ( )zU  such that at least p of the bottom rows on the right hand side are identically 

zero: 

 11 12

21 22

( ) ( ) ( ) ( )
( ) ( ) ( ) 0
z z z z
z z z

     
=     

    

U U D C
U U N

 

Proof of this is done by Kaylath.   

Example 4.2  Consider the MFD of Example 4.1. Matrices ( )zD  and ( )zN  are not 

coprime.  Their greatest common divisor is 

 
1 0.5

( )
0 2.5

z
z
− 

=  + 
C   

Make 1−N NC====  and 1−D DC====  then  

 1 1.5 0.5
( ) ( ) ( )

0.04 0.02
z

z z z
z

− + 
=  
 

N N C====  

 1 ( 2.5) 0.5
( ) ( ) ( )

2 0
z z z

z z z
z

− + 
=  − 

D D C====  

which are now coprime.  Note that this new MFD still represents ( )zG  correctly. 

 
1

1

1 0.5
1.5 0.5 ( 2.5) 0.5

( ) ( ) ( )
0.04 0.02 2 0 0.04 0.05
z z z z z zz z z

z z
z z

−
−

 
 + +   

= =     −     
  

G N D ====          ■ 

4.4  Poles and Zeros of a Transfer Matrix 

Poles and zeros of transfer matrices can be defined and determined in several 

ways one of which consists in decomposing the transfer matrix into a canonical form 
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known as the Smith-McMillan form.  Every rational transfer matrix ( )zG  can be reduced 

to its Smith-McMillan form M(z) as 

 1 2

1 2

( ) ( )( ) , ,..., ,0,...,0
( ) ( ) ( )

r

r

z zz diag
z z z

 ε ε ε=  ψ ψ ψ 
M  

where ( )i zε  are called the invariant factors of M(z).  Each pair { }( ), ( )i iz zε ψ  is coprime. 

Note that multivariable systems can have poles and zeros at the same location once iε  

and jψ , for i j≠ , do not have to be coprime.  Multiplication by unimodular matrices 

does not affect the basic properties of transfer matrices.  Therefore matrices that differ 

only by unimodular factor, called equivalent matrices, have the same Smith-McMillan 

form. 

Example 4.3  Consider a process ( )zH  

 

1.5 0.5
( 1) ( 1)

( )
0.04 0.05

( 1) ( 1)

z
z z z

z

z z

+ 
 − − =
 
 − − 

H  

The Smith-McMillan form of ( )zH  is given by 

 

1 0
( 1)( )

2.50
1

z zz
z
z

 
 − =

+ 
  − 

M  

from where we conclude that the poles and zeros are {0,1,1}p =  and { 2.5}z = − .  The 

relative position of poles and zeros is seen along the diagonal of ( )zM .  Thus it is best to 

rewrite the Smith-McMillan form as  

 1 2.5( ) ,
( 1) 1

zz diag
z z z

 +=  − − 
M  ■ 
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The Smith-McMillan form tells us more than we need to know.  For the analysis 

of stability the relative position of poles and zeros, unless cancellations occur, is 

irrelevant.  Ultimately it is the presence of unstable poles in any of the closed-loop 

transfer matrices that will determine instability.   The Smith-McMillan form is also very 

elaborate computationally and not practical for real systems.  

Another way of determining the poles of a system is by direct verification of the 

poles of the individual transfer functions in the transfer matrix.  This, however, requires 

the calculation of the inverse of +R SH  which is, in general, a computationally difficult 

task.  The round off errors associated to the many different convolutions, required during 

the process of inversion of polynomial matrices, makes the cancellation of common terms 

unfeasible.  Even for systems of modest sizes, e.g. systems with two inputs and two 

outputs, the necessary cancellations, in general, do not occur.  The use of Matlab 

commands, such as minreal, which reduces a realization to a minimal realization, solved 

the problem partially but cannot be considered a reliable procedure.  Thus, from a 

practical point of view, a solution to the design problem that would avoid or reduce the 

number of inversion of matrices is preferred.   

Matrix fraction descriptions may be used, instead, to determine poles of 

multivariable systems and are more suitable for computational purposes. 

PROPERTY 4.1  Let '  denote the complex plane. Let G(z) be a proper transfer 

function matrix and N(z), D(z) be an irreducible right MFD of G(z) such that  

 1( ) ( ) ( )z z z−=G N D    

where D(z) is nonsingular. Then p ∈  '  is a pole of G(z) if and only if p is a root of the 

determinant of D(z).                   ■ 
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For square transfer matrices the zeros can also be determined from the MFD of 

G(z) as they are the roots of the determinant of N(z).  For non-square systems, however, 

the concept of zeros is unclear.   

The closed-loop transfer matrices can be represented as MFDs.  Let 1−=H BA  be 

a right MFD of H .  Then 1 1( )uw
− −= +G R SBA  and 1( )uw

−= +G A RA SB .  Let  

 = +RA SBΩΩΩΩ  (4.5) 

 then  

 1
uw

−=G AΩΩΩΩ  (4.6) 

the same substitutions in ywG  give 1 1 1( )yw
− − −= +G BA R SBA  and 1( )yw

−= +G B RA SB .  

Finally 

 1
yw

−=G BΩΩΩΩ  (4.7) 

Thus in order to be able to determine the poles of the closed-loop system the right 

MFDs of uwG  and ywG  need to be reduced to lowest terms.  For that, let uwC  be the 

greatest right common divisor of A  and ΩΩΩΩ , i.e. ( , )uw gcrd=C A ΩΩΩΩ , then uw uw=A A C  and 

uw uw= CΩ ΩΩ ΩΩ ΩΩ Ω .  Substituting in equation (4.6) we get 

 1
uw uw uw

−=G A ΩΩΩΩ  (4.8) 

Similarly let ( , )yw gcrd=C B ΩΩΩΩ , then yw yw=B B C , yw yw= CΩ ΩΩ ΩΩ ΩΩ Ω  and 

 1
yw yw yw

−=G B ΩΩΩΩ  (4.9) 

We now have the necessary conditions to determine the poles of the closed-loop 

transfer matrices.   
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THEOREM 4.3  Consider the closed-loop system of Figure 4.1 with ( )zH  proper.  

Then py is a pole of ( )yw zG  if and only if py is a root of the determinant of ( )yw zΩΩΩΩ  and pu 

is a pole of ( )uw zG  if and only if pu is a root of the determinant of ( )uw zΩΩΩΩ .  If ( )zH  is 

square and nonsingular then zy is a zero of ( )yw zG  if and only if zy is a root of the 

determinant of ( )yw zB  and zu is a zero of ( )uw zG  if and only if zu is a root of the 

determinant of ( )uw zA . 

Proof  Proof follows from Property 4.1.      Q.E.D. 

Note that the determination of the poles ( )uw zG  or ( )yw zG  does not require the inversion 

of ( )uw zΩΩΩΩ  or ( )yw zΩΩΩΩ .  Instead we only need to calculate their determinants.   

Example 4.4  Consider a process ( )zH  

 

1.5 0.5
( 1) ( 1)

( )
0.04 0.05

( 1) ( 1)

z
z z z

z

z z

+ 
 − − =
 
 − − 

H  

with irreducible right MFD 1( ) ( ) ( )z z z−=H B A  

 
1.5 0.5

( )
0.04 0.05
z

z
z

+ 
=  
 

B   
( 1) 0

( )
0 ( 1)

z z
z

z
− 

=  − 
A  

let the predictive controller designed for this plant be such that ( )zΩΩΩΩ  is 

 
( 2.5) 0

( )
2

z z
z

z z
+ 

=  − 
ΩΩΩΩ  

The roots of the determinants of ( )zB , A(z) and ( )zΩΩΩΩ  are {-2.5}, {0, 1, 1} and {-2.5, 0, 

0,} respectively.  Thus ( )uw zG  is unstable once its zeros, {0, 1, 1}, cannot cancel the 
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unstable pole of ( )zΩΩΩΩ  located at �2.5.  Refer to examples 1 and 2 to see that matrices 

( )zB  and ( )zΩΩΩΩ  are not coprime. 

Matrix 1( )z−ΩΩΩΩ  is always polynomial when expressed in backward shift-operators.  

In forward shift-operators, however, it will normally be a rational matrix where the 

denominators are powers of z.  Because the poles of a system are defined in forward 

shift-operators, this conversion must be executed before the poles are calculated.  

Multiplication by a diagonal matrix with appropriate powers of z will do this 

transformation but the numerator matrix must be considered also so that no poles at the 

origin are lost.  Although the backward and forward shift-operator versions of a transfer 

function are mathematically equivalent changing the arguments may be misleading.  

Therefore the symbol ( )zG
(

 will be used to refer to the forward shift-operator version of 

1( )z−G .  

DEFINITION 4.2  The conjugate of a polynomial 1 1
0 1( ) nM

nMM z m m z m z− − −= + + +…  in 

backward shift-operator is defined as 1 1
0 1( ) ( ) nM nM nM

nMM z M z z m z m z m− −= = + + +) … .  

The degree of the polynomial in backward shift-operator is the degree of its conjugate 

polynomial.                   ■ 

DEFINITION 4.3  The conjugate of a polynomial matrix 1( )z−M  in backward shift-

operator is defined as 1( ) ( ) nz z−=) MM M z  where 1 2{ , ,..., }mnn nn diag z z z= MM MMz  is a 

diagonal matrix and jnz M  is defined as the maximum degree of all polynomials along the 

jth column of 1( )z−M                   ■ 

Note that for matrices with polynomials of different degree along its columns this 

procedure places excess zs in the lower degree polynomials.  This is not the case of 



34 

 

1( )z−ΩΩΩΩ  where degree of all polynomials along its columns are the same.  This can be seen 

from the definitions of R, A, S and B.  Thus 1( )z−ΩΩΩΩ  possesses a conjugate matrix 

1 Ω( ) ( ) nz z−=) zΩ ΩΩ ΩΩ ΩΩ Ω  where no excess zs are present.  

When transforming backward shift-operators MFDs into forward shift-operators 

MFDs the respective nMz  of numerator and denominator matrices must be reduced to 

lowest terms to guarantee coprimeness. 

DEFINITION 4.4  The degree of a transfer function 

  
11

0 1
1 1

0 1

( )
( )

nB
nB

nA
nA

b b z b zB z
A z a a z a z

− −−

− − −

+ + +=
+ + +

…
…

  

is the max{nB,nA}.                        ■ 

DEFINITION 4.5  The conjugate of a right MFD 1 1 1 1( ) ( ) ( )z z z− − − −=H B A  is 

1( ) ( ) ( )z z z−=H B A)) )  where 1( ) ( ) nz z−= HA A z)  and 1( ) ( ) nz z−= HB B z) .  Matrix nHz  is a 

diagonal matrix defined as 1 2{ , ,..., }mnn nn diag z z z= HH HHz  where jnH  is the maximum 

degree of all transfer functions along the jth column of 1( )z−H .                  ■ 

From Definition 4.5 it is trivial to see that 1 1 1 1( ) ( ) ( ) ( )z z z z− − − −= ))B A B A . 

In the case of the closed-loop transfer matrices, where numerator and denominator 

matrices do not have the same degree, a coprime factorization of the individual nz  

matrices is necessary.  Thus for 1( )uw z−G  we have that  

 1 1 1 Ω 1 Ω 1( ) ( ) ( ) ( ) ( ( ) ) ( ) ( )n n n n
uw z z z z z z z− − − − − − − −= = =H HG A A z z A z zΩ Ω ΩΩ Ω ΩΩ Ω ΩΩ Ω Ω) )) )  

Multiply matrices Ωn n− Hz z  to get Ω
min min
n n− Hz z  where the common terms have been 

cancelled.  Then 



35 

 

 1 1 1 1 Ω 1
min min( ) ( ) ( ) ( ) ( ( ) )n n

uw z z z z z− − − − −= = HG A A z zΩ ΩΩ ΩΩ ΩΩ Ω) )  

 1 1 Ω 1 Ω 1
min min( ) ( ) ( ( ) )n n n n

uw z z z− − − −= H HG A z z z zΩΩΩΩ  

define 1 Ω
min( ) ( ) n nz z−= HA A z z

(
 and 1 Ω

min( ) ( ) n nz z− Hz zΩ = ΩΩ = ΩΩ = ΩΩ = Ω
(

 

 1( ) ( ) ( )uw z z z −=G A ΩΩΩΩ
( ( (

 

and similarly 

 1 1 1 1 Ω 1
min min( ) ( ) ( ) ( ) ( ( ) )n n

yw z z z z z− − − − −= = ) ) HG B B z zΩ ΩΩ ΩΩ ΩΩ Ω  

 1 1 Ω 1 Ω 1
min min( ) ( ) ( ( ) )n n n n

yw z z z− − − −= H HG B z z z zΩΩΩΩ  

define 1 Ω
min( ) ( ) n nz z−= HB B z z

(
 

 1( ) ( ) ( )yw z z z−=G B ΩΩΩΩ
( ( (

 

and the determinants are given by: 

 1 Ω
mindet( ( )) det( ( )) det( ) det( )n nz z−= Hz zΩ ΩΩ ΩΩ ΩΩ Ω

(
 

 1 Ω
mindet( ( )) det( ( ))det( )det( )nz z−= HB B z z

(
 

 1 Ω
mindet( ( )) det( ( ))det( )det( )nz z−= HA A z z

(
 

Note that for non-square systems the determinant of det( ( ))z
(
ΩΩΩΩ  does not exist.  For the 

analysis of stability and performance the above development shows that the backward 

shift-operator polynomial matrices contain all the relevant information.  

DEFINITION 4.6  Let 1 1 1( ) ( )z z− − −N D  be a coprime MFD of 1( )z−G .  The finite roots 

of 1 1det( ( ))z− −D  are the relevant poles of 1( )z−G .                     ■ 

Example 4.5  Consider the process of Example 4.4 

 

1 2 1

1 1
1

1 1

1 1

1.5 0.5
1 1( )
0.04 0.05
1 1

z z z
z zz
z z

z z

H

− − −

− −
−

− −

− −

 +
 − − =
 
  − − 
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1

1
1

1 0
( )

0 1
z

z
z

−
−

−

 −
=  − 

A                     
2 0

0
n z

z
 

=  
 

Hz  

 
1 2 1

1
1 1

1.5 0.5
( )

0.04 0.05
z z z

z
z z

B
− − −

−
− −

 +
=  
 

 

 
1

1
1

1 2.5 0
( )

2 1
z

z
z

−
−

−

 +
=  − 

ΩΩΩΩ                      Ω 0
0 1

n z 
=  
 

z  

then 

 
1 2

1
1

( 1) 01 0 0
( ) ( )

0 ( 1)0 1 0
n z zz z

z z
zz z

−
−

−

−   −  
= = =     −−     

HA A z)  

 
1 2 1 2

1
1 1

1.5 0.51.5 0.5 0
( ) ( )

0.04 0.050.04 0.05 0
n zz z z z

z z
zz z z

− − −
−

− −

+   +  
= = =     

    
HB B z)  

 
1

1 1 Ω
1

0 2.5 01 2.5 0
( ) ( )

0 1 2 12 1
n z zz

z z
z

−
− −

−

+ +    
= = =     −−     

) zΩ ΩΩ ΩΩ ΩΩ Ω  

 Ω

1 0

10

n n z

z

−

 
 

=  
 
  

Hz z  

 Ω
min

1 0
0 1

nz  
=  
 

        min

0
0

n z
z

z
 

=  
 

H                 

then 

 min

2.5 0 0 ( 2.5) 0
( ) ( )

2 1 0 2
n z z z z

z z z
z z z

+ +     
= = =     − −     

HΩ ΩΩ ΩΩ ΩΩ Ω
( )  

 Ω
min

( 1) 0 1 0 ( 1) 0
( ) ( )

0 ( 1) 0 1 0 ( 1)
z z z z

z z z
z z

− −     
= = =     − −     

A A
( )  

 Ω
min

1.5 0.5 1 0 1.5 0.5
( ) ( )

0.04 0.05 0 1 0.04 0.05
z z

z z
z z

+ +     
= = =     

     
B B z
( )  

and 
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 1 Ω 1 2 2
mindet( ( )) det( ) det( ) (1 2.5 )( )( ) ( 2.5)n nz z z z z z− −= + = +Hz zΩΩΩΩ  

 1 Ω 2 3 3
mindet( ( ))det( )det( ) (0.03 0.075 )( )(1) 0.03 0.075nz z z z z− − −= + = +HB z z  

 1 Ω 1 2 3 2
mindet( ( ))det( )det( ) (1 ) ( )(1) ( 1)nz z z z z− −= − = −HA z z   

if we use the backward shift-operator to obtain the determinants 

 1 1 2.5det( ( )) 1 2.5 zz z
z

− − += + =ΩΩΩΩ  

 1 2 3
3

0.03 0.075det( ( )) 0.03 0.075 zz z z
z

B − − − += + =   

 
2

1 1 2
2

( 1)det( ( )) (1 ) zz z
z

A − − −= − =  ■ 

The particular format of the closed-loop transfer matrices and the possibility of 

determination of the poles of the system lead to the following theorems: 

THEOREM 4.4  Let H  be a proper transfer function.  The closed-loop system will be 

stable if the roots of det( uwΩΩΩΩ ) and det( ywΩΩΩΩ ) are within the unit circle. 

Proof  From Theorem 4.3 the poles of transfer matrices uwG  and ywG  are given by the 

roots of det( uwΩΩΩΩ ) and det( ywΩΩΩΩ ).  Thus if these roots are within the unit circle then the 

system is stable.         Q.E.D. 

However if A  and B  are coprime then these matrices cannot cancel the same 

unstable poles of uwG  and ywG . 

THEOREM 4.5  Let H  be a proper transfer function. Let 1−=H BA  be a coprime 

matrix fraction description of H . The closed-loop system will be stable if and only if the 

roots of det( ΩΩΩΩ ) are within the unit circle. 
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Proof  The closed-loop transfer matrices uwG  and ywG  have, before any cancellation of 

common terms, the same denominator matrix ΩΩΩΩ .  Therefore, if the roots of the det( ΩΩΩΩ ) 

are within the unit circle, then  uwΩΩΩΩ  and ywΩΩΩΩ  have their roots within the unit circle and 

according to Theorem 4.3 the system is stable.  Conversely if any one of the roots of the 

det( ΩΩΩΩ ) are outside the unit circle they cannot all be cancelled by A  and by B once these 

are coprime matrices and either uwΩΩΩΩ  or ywΩΩΩΩ , or both, will have roots outside the unit 

circle and according to Theorem 4.4 the system is unstable    Q.E.D. 

Although there is no direct method for obtaining a coprime matrix fraction 

representation of the process transfer matrix it is, in general, a simple procedure if the 

transfer matrix of the plant is minimal.  Stability can be determined by evaluating the 

position of the roots of det( ΩΩΩΩ ) which can be done with Jury�s criteria. 

Theorem 4.5 is very important for the implementation of a design procedure for 

multivariable predictive control once it allows a fast initial test of stability of the system.    

4.5  Performance Analysis 

Crisalle et al. (1989) have proven that for the SISO case if Nu=Ny and λ =0 then 

the predictive controller generates a control that results in the inversion of the plant and 

the output matches the reference.  A similar result is obtained for the MIMO case as can 

be seen next. 

THEOREM 4.6  Consider a system with equal number of inputs and outputs, i.e. m p= .  

Let 0=ΛΛΛΛ  and j jNu Ny=  for all j, then the resulting closed-loop transfer matrix is the 

identity, 1( )yr
−+ ≡G H R SH T I# . 
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Proof  Recall equation (3.10), 1 0∆ ( ) ( )T T−= + −u G G G r yΦ Λ ΦΦ Λ ΦΦ Λ ΦΦ Λ Φ , in the derivation of the 

control law.  The condition that ΛΛΛΛ=0 and Nuj=Nyj for all j implies that 

1 1( )T T− −+ =G G G GΦ Λ ΦΦ Λ ΦΦ Λ ΦΦ Λ Φ .  Matrix G  is a block lower triangular matrix and its inverse 

has a similar structure.  Therefore, recalling that K is the matrix of rows corresponding to 

the first control move of 1( )T T−+G G GΦ Λ ΦΦ Λ ΦΦ Λ ΦΦ Λ Φ  (which is 1−G  in this case), its elements are 

vectors with a nonzero first element followed by zeros, in this case.  This particular 

format of K has a similar effect of restricting the prediction horizons to 1jNy =  in the 

formulation of the control problem, once the elements of K (defined as 

1 2[ ]
j

T
j Ny jk k k=k" "& ) are 1[ 0 0]T

j jk=k" "& .  Thus 1 1≡KP K P  and 1 1≡KF K F  

(see Appendix B for details of both proofs).  From the definitions of R  and S  then  

 1
1 1∆( )z−= +R I K P  

 1 1=S K F  

Therefore ΩΩΩΩ  becomes 

 1 1
1 1 1 1∆( ) R Rz z− −= + +I K P A K F BΩΩΩΩ  (4.10) 

From Matrix Diophantine equation, for 1i =  and bearing in mind that 1 =E I , then 

1 ( ∆ )Lz= −F I A  and from equation (3.16) we get 1 1( )Lz= −P B G .  Substituting in the 

expression for ΩΩΩΩ  then 

 1 1
1 1 1∆ ( ) ( ∆ )L R L Rz z z z− − = + − + − I K B G A K I A BΩΩΩΩ  (4.11) 

but 1
1 1

−≡K G  and  

 1 1 1
1 1 1∆ ∆ ∆ ∆R L R R R L R
− − −= + − + −A G B A A G B G A BΩΩΩΩ .   
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The coprime factorizations of H  imply that L R L R=B A A B .  Cancellation of common 

terms leads to 

 1
1 R
−= G BΩΩΩΩ  (4.12) 

This way  

 1 1
1 1( )yr R R
− −= =G B G B G I  Q.E.D. 

Example 4.6  Consider the process of Example 4.4. 

 

1.5 0.5
( 1) ( 1)
0.04 0.05

( 1) ( 1)

z
z z z

z z

+ 
 − − =
 
 − − 

H  

A multivariable predictive controller was designed for this process and the 

following parameters were used: 1 2 1 21, 1, 1, 1, 0, 0Ny Nu= = φ = φ = λ = λ = .  Matrices 

R, S and T are: 

 

2

2

2

1.5 2.5 0

2( 1) 1

z z
z
z z
z z

 + −
 

=  
− − − 

  

R    

5(2 1) 50(2 1)
3 3

4(2 1) 100(2 1)
3 3

z z
z z
z z
z z

− − − 
=  

− − −  

S    

5 50
3 3
4 100
3 3

z z

z z

 − 
=  
 −  

T  

and 

 
( 2.5) 0

( )
2

z z
z z

+ 
+ =  − 

RA SB  

 1
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It is of interest to establish conditions under which the multivariable predictive 

controller produces offset-free responses to step changes in the set point of any given 

output as was proven by Crisalle et al. (1989) for SISO systems.   

THEOREM 4.7  Consider a plant H  with equal number of inputs and outputs where (i) 

(1)H  is nonsingular, (ii) the weights jφ  in the objective function equation are > 0 for all 

j and (iii) the resulting closed-loop is stable.  Then it achieves zero offset response 

 [ ]lim ( ) ( ) 0t t t→∞ − =r y  

to step changes in the reference r(t). 

Proof  In the z domain ( ) ( )= ( ) ( )yrz z z z − − r y I G r .  From the Final Value Theorem 

 1lim [ ( ) ( )] lim ∆ ( )
∆t z yrt t z→∞ →  − = − r y I G αααα  (4.13) 

where 
∆
αααα  is a vector of step inputs of amplitude αααα .  The transfer matrix ( )yr zG  is 

 1( )yr
−= +G H R SH T  

From the definitions of R  and S  (3.19) to (3.21) yrG  becomes 

 1 1(∆( ) )yr i i i i iz− −= + +G H I K P K F H T  

From Matrix Diophantine equation ( ∆ )i
i iz= −F I E A  and  

 
11∆( ) ( ∆ )i

yr i i i iz z
−− = + + − G H I K P K I A H T  

Recall that i
i iz =K T . At 1z =  the delta operator becomes ∆ 0=  and therefore  

 1(1) (1)( (1) (1)) (1)=yr
−=G H T H T I  

and substituting in (4.13) 

 [ ]lim ( ) ( ) 0t r t y t→∞ − =  Q.E.D. 
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Condition (i) requires the plant to have a nonsingular gain, i.e., there exits the 

inverse matrix 1(1)−H .  This condition is a necessary requirement for offset-free 

behavior, otherwise, there is no solution u  to the steady-state equation (1)=r H u  where 

r  is the final value of the step-function in the set point and u  is the final value of the 

input required to deliver an output that exactly matches the final value of the reference.  

Systems with singular gains are functionally uncontrollable (Skogestad, 1996) and hence 

perfect tracking for any arbitrary step change is impossible to attain.  Finally, condition 

(iii) is necessary because 0jφ =  for some value of j, then deviations from the set point 

for output jy  are not penalized in the objective function equation, and consequently, the 

controller cannot ensure attainment of perfect tracking. 

4.6  Implementation 

The mathematical development of this chapter allowed the generation of a Matlab 

code for the analysis of stability of unconstrained multivariable predictive control.   

Based on Theorem 4.5 a design procedure was created where the critical step is 

the generation of a right coprime description of a process model, H, for which no direct 

method is known.  Maple was used to generate the greatest common divisors for systems 

where reduction of MFDs to lowest terms was necessary.  In order to avoid the round-off 

errors of floating point operations a rational representation of the coefficients of the 

polynomials was done allowing the division algorithm for polynomials to give exact 

results.  This way the elementary row and column operations, required in the process of 

obtaining the greatest common divisors, are executed correctly.  The drawback of this 

approach resides in the fact that as the convolutions of the polynomials are executed the 
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rational number representations of the coefficients tend to have increasing numerators 

and denominators.  This imposes a limitation on the size of MFDs that can be reduced to 

lowest terms.  

For square systems the �numerator� matrix possesses (in general) a determinant 

and a simple (initial) test of coprimeness is possible once coprime matrices will not have 

common roots in their determinant.  The presence of common roots, however, does not 

imply reducibility of the MFD once poles and zeros can be located in different positions 

in the transfer matrix. 

Thus given matrices R  and S  (refer to Chapter 3) and a right coprime MFD of 

the process matrix ( 1−=H BA ) then ΩΩΩΩ  is generated, Jury�s criteria is applied to the 

determinant of ΩΩΩΩ  to check for stability.  In the presence of unstable roots then these 

parameters are discarded for another set until only stable roots are present.   

Performance is verified by simulating the system in Simulink.  The block diagram 

structure of Simulink allows the simulation of the closed-loop system without the need to 

invert +R SH  as would be the case if a numerical integrator were to be used.  Although 

the inversion of R  is still necessary the following algebraic manipulation manages to use 

the block diagram properties of Simulink to execute the inversion: 

 1 1( )∆ ( ∆ )z z− −= + = − −R I KP I I KP  

Let 1( ∆ )z−′ = −R I KP  then  

 ′= −R I R   

and 1 1( )− −′= −R I R .  This way the inversion of matrix  R can be represented in block 

diagram as seen in Figure 4.2. 
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R ( )z +

R´( )z

=
-1

 

Figure 4.2  Inversion of R in Simulink 
 

The Matlab code was modified to generate matrix ′R .  Simulations done showed very 

good results. 

4.7  Conclusion  

In this chapter the closed-loop behavior of a plant with a multivariable 

generalized predictive controller is analyzed and a method, based on matrix fraction 

description (MFD), is developed to check for stability and determine the closed-loop 

poles for any choice of tuning parameters.  Performance is analyzed by simulating the 

closed-loop system in Simulink. 

Properties such as �zero offset response to step changes in the reference� and 

�inversion of the plant� are proven for plants with equal number of inputs and outputs.   
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CHAPTER 5 
THREE-PHASE SEPARATOR  

Offshore production systems are responsible for the treatment of the petroleum 

produced in the sea fields.  These systems are subject to intense fluctuations in its feed 

due to the multiphase nature of the fluids coming from the reservoir.  The feed consists of 

a mixture of oil, water and gas with different degrees of dispersion between phases.  

Separators are responsible for absorbing fluctuations of the feed as well as for promoting 

the separation.  Its performance is of vital importance for the quality of both, the oil 

exported to refineries and the water discharged to the sea.  Economic and environmental 

restrictions have led the industry to research means of improving the efficiency of the 

equipment.  Little has been done, though, in the use of advanced control techniques. 

Separators possess three independent SISO PI (proportional and integral) control 

loops, one for each phase.  Frequently, bad tuning of the controllers is responsible for a 

low yield in the separation process.  The apparent periodicity of the multiphase flow of 

the feed raises hope that it can be predicted at some degree.  Although this phenomenon 

will not be studied here, future values of set points (reference trajectory) are assumed to 

be known.    

Therefore this dissertation will, hopefully, show the benefits and lay the formal 

grounds for the future development of predictive controllers for three phase separators.   

Most separators are horizontal as will be considered in this dissertation. 
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5.1  Description of the Separator 

Separators use gravity as the driving force for separation.  For that reason small 

droplets tend not to separate and a low efficiency is normally observed.   

 

               Figure 5.1  Oil-Water-Gas Separator 

 
The vessel is divided in two sections separated by a weir; a separation chamber 

and an oil chamber.  Gravitational force promotes the segregation of phases and a water 

rich phase with dispersed oil settles at the bottom of the separation chamber while an oil 

rich phase with dispersed water lays atop.  An interface between the two phases is 

formed.  The liquids flow in the direction of the weir and along this path a series of 

parallel plates help the liquid-liquid separation.  The oil rich phase flows over the weir 

into the oil chamber.  The water rich phase is discharged just before the weir to the water 

treatment unit.  

An interface level controller manipulates the opening of the water (outlet) valve.  

A level controller controls the level of oil in the oil chamber.  Pressure inside the vessel is 

regulated by a controller acting on the gas valve.   
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The outputs (measurable states) are pressure, height of water (height of interface) 

and height of oil in the oil chamber.  The inputs are the opening of the valves.   

Parallel plates are used to reduce the length of space required for the separation of 

dispersed droplets.  These adhere to the plates and coalesce.  The plates are inclined 

allowing for the fall (in the case of water droplets) or rise (in the case of oil) droplets. 

               Figure 5.2  Parallel Plates 

 

5.2  Rigorous Model 

The model here developed is a simplification of a rigorous model (Nunes, 1994) 

which has the following aspects: 

• The feed is composed of 15 chemical components and one pseudo-component. 

• The model possesses a total of 81 variables. 

• Thermodynamic equilibrium of phases.  This is assumed because liquid phase 
residence time is approximately 5 minutes while thermodynamic equilibrium 
takes approximately 30 seconds to occur. Soave-Redlich-Kwong (SRK) equation 
of state is used. 

• Droplet distribution of dispersions at the entrance of the separator is known. 

• Stokes regime is considered for the calculation of terminal velocity of droplets of 
water and oil.  This is a reasonable assumption since the liquid phases have low 
velocities and laminar flow is observed.   

• Droplets are perfect spheres. 
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• Effects of wall and concentration are negligible in the calculation of terminal 
velocities 

• No coalescence of droplets occurs.  

• No emulsifying agents present.  This implies that the system is a dispersion. 

• No dispersion of liquid particles in the gas phase. 

• A parabolic profile for the velocity of water is considered in the formulation. 

• Droplets are uniformly distributed in space at the entrance of parallel plates. 

               Figure 5.3  Velocity Profile 

 

5.3  Simplified Model 

Simulations done with the rigorous model show that thermodynamic 

representation of phases is important in studying the behavior of the gas but has little 

effect on the dynamics of liquid-liquid separation.  Because the main interest here is to 

control and improve the oil-water separation, the following assumption is made: 

• No mass transfer between thermodynamic phases occurs. 

The major impact of this assumption is that variations in pressure, temperature or 

composition do not cause a mass change of the individual (thermodynamic) phases.  
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Because fluctuations observed (in practice) are negligible, the assumption is justified and 

allows for a simpler model with 7 state variables.  

Thermodynamic calculations determine the total amount of each phase present in 

the vessel.  The degree of dispersion between phases, however, is calculated using 

dynamic population balances.  To avoid confusion between thermodynamic phases and 

dispersions, notation is carefully defined.  

 

               Figure 5.4  Volumes 
 

Following common practice, �water� will, hereon, refer to the water rich phase 

lying at the bottom of the separation chamber as seen in Figure 5.4.  Note that it is a 

mixture of two thermodynamic phases, namely, the oil particles (dispersed phase) and the 

water (continuous phase).  Properties associated to the �water� will have a subscript W 

while lower case italic superscripts will refer to the thermodynamic phases; w standing 

for the water and ! for the oil.  Thus WV "  is the volume of oil in the �water� and W
wV  is the 

volume of water in the �water�.  The total volume of the �water� is: 

 W W W
wV V V= +"  
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Following the same rationale �oil� will be used to name the mixture of oil 

(continuous phase) and water (dispersed phase) present in the separation chamber and the 

oil chamber.  Distinction, however, must be made between the two since they have 

different properties such as volume, concentration of water, etc.  Properties associated to 

the �oil� in the oil chamber will have a subscript L while to represent the �oil� in the 

separation chamber a subscript Lsc will be used.  Thus L
wV  is the volume of water in the 

�oil� in the oil chamber. 

Subscript G will be used for the gas phase. Note that the assumption of no 

dispersion of droplets of oil or water in the gas phase makes it unnecessary to distinguish 

continuous and dispersed phases. 

The above definitions allow the following algebraic relations to be established for 

volumes and concentrations: 

Total volume restriction     G W Lsc LV V V V V= + + +  

Volume of �water� in separation chamber:    VW = VW
" + VW

w  

Volume of �oil� in separation chamber    Lsc Lsc Lsc
wV V V= +"  

Volume of �oil� in oil chamber       VL = VL
" + VL

w  

Concentration of dispersed water in �oil� at separation chamber Lsc
Lsc

Lsc

w
w VC

V
=  

Concentration of dispersed oil in �water� at separation chamber 
  
CW

" =
VW

"

VW
 

Concentration of dispersed water in �oil� at oil chamber  CL
w =

VL
w

VL
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5.4  Flow Equations 

Figure 5.5 shows the heights and flow rates of each phase.  The equations are seen 

next: 

 

               Figure 5.5  Heights and Flow rates 
 

 W W W W W W Lsc T W
W

W

( )+ ( )
0.0693

out
Cv s d p p h h h

Q
− γ + γ −

=
ρ

 (5.1) 

 1.524.88 2 ( 0.2( ))( )weir T weir T weirweirQ g length h h h h= − − −  (5.2) 

 L L L L L L
L

L

( )+
0.0693

out
Cv s d p p h

Q
− γ

=
ρ

 (5.3) 

 G G G G G
G

G

( )( )
2.832

out
Cv s d p p p p

Q
− +

=
ρ

 (5.4) 

5.5  Differential Equations 

Total height at separation chamber (derived from the total material balance): 

 L W WT

T T2 ( )sc

in in weir outQ Q Q Qdh
dt C D h h

+ − −=
−

 (5.5) 

Height of water (derived from the mass balance of the water phase): 
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 W W W L L

W W

(1 )
2 ( )

w

sc

in indh Q TOG Q BSW
dt C D h h

− ⋅ − ⋅=
−

ε ε"

 (5.6) 

Height of oil at the oil chamber (derived from the mass balance of the oil phase): 

 L L

L L2 ( )lc

weir outdh Q Q
dt C D h h

−=
−

 (5.7) 

Balance of volume of water dispersed in the �oil� in the separation chamber: 

 Lsc Lsc
L Lsc

Lsc

(1 )
w w

win weir
dV VQ BSW Q

dt V
= − −ε  (5.8) 

Balance of volume of oil dispersed in the �water� in the separation chamber 

 W W
W W W

W

(1 )-in out
dV VQ TOG Q
dt V

= −ε
" "

"  (5.9) 

Balance of water dispersed in the �oil� in the oil chamber 

 LscL L
L L

Lsc L

ww w

weir out
VdV VQ Q

dt V V
= −  (5.10) 

Pressure equation (derived from the material balance of gas) 

 
2

G G
L W L W

W Lsc L G

( ) ( )1 ( )in out
in in out out

RT Q Qdp p Q Q Q Q
dt V V V V p MW

 −= − ⋅ + − − − − − ⋅ 
(5.11) 

 

5.6  Conclusion 

In this chapter a simplified dynamic model of the separator was created based on 

a more rigorous model previously developed.  This simplification greatly reduced the 

number of states without loss of accuracy for the variables of interest in the development 

of a controller for the equipment. This model was programmed in Matlab and 

Simulations done in Simulink were used to check it against the rigorous model giving 

good results.    
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5.7  Nomenclature 

hT   total height (�water� and �oil�) at separation chamber [m] 

hLsc   height of �oil� in separation chamber    [m] 

hL   height of �oil� in the oil chamber    [m] 

hW   height of �water� in separation chamber   [m] 

D  diameter of separator      [m] 

Csc  length of separation chamber     [m] 

Clc  length of oil chamber      [m] 

Lsc
wC  concentration of  water in the �oil� in the sep. chamber [m3/m3] 

WC"  concentration of  oil in the �water� in the sep. chamber [m3/m3] 

L
wC  concentration of  water in the �oil� in the sep. chamber [m3/m3] 

dL density of �oil� in oil chamber     [kgf/cm3] 

dW density of �water� in oil chamber    [kgf/cm3] 

dG density of �gas� in oil chamber    [kgf/cm3] 

L
wε  efficiency of removal of water from �oil� in oil chamber  [dimensionless] 

Wε"  efficiency of removal of oil from �water� in oil chamber  [dimensionless] 

Lsc
wε  efficiency of removal of water from �oil� in sep. chamber  [dimensionless] 

QinL flow rate of �oil� into separator    [m3/minutes] 

QinW flow rate of �water� into separator    [m3/minutes] 

QinG flow rate of �gas� into separator    [m3/minutes] 

Qweir flow rate of �oil� over weir     [m3/minutes] 
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QoutL flow rate of �oil� out of separator    [m3/minutes] 

QoutW flow rate of �water� out of separator    [m3/minutes] 

QoutG flow rate of gas out of separator    [m3/minutes] 

V  Total volume of separator     [m] 

VG  Volume of the gas      [m3] 

VW  Volume of the �water�      [m3] 

LscV  Volume of the �oil� in separation chamber   [m3] 

VL
 Volume of the �oil� in oil chamber    [m3] 

LscV "  Volume of oil in the �oil� in separation chamber  [m3] 

Lsc
wV  Volume of dispersed water in �oil� in separation chamber  [m3] 

 VL
"  Volume of oil in �oil� in oil chamber     [m3] 

VL
w  Volume of dispersed water in �oil� in oil chamber   [m3] 

 VW
"  Volume of oil in the �water� in oil chamber    [m3] 

VW
w  Volume of water in the �water� in oil chamber   [m3] 

p Pressure       [kgf/cm3] 

R Constant of gases      [atm.liter/mol.K] 

sL opening of the �oil� valve     [dimensionless] 

sW opening of the �water� valve     [dimensionless] 

sG opening of the �gas� valve     [dimensionless] 

T Temperature       [K] 

BSW concentration of water in the �oil� in the feed   [m3/m3] 

TOG concentration of oil in the �water� in the feed   [m3/m3] 



 

55 

CHAPTER 6 
DESIGN OF A PREDICTIVE CONTROLLER FOR THE SEPARATOR 

In this chapter a multivariable predictive controller is designed for the separator 

with the help of the Matlab code previously developed.  A linearized model of the 

separator is used and the closed-loop system is simulated for the analysis of performance.   

Many different combination of tuning parameters are tested.  For the set of 

parameters where stability is verified, performance is analyzed by simulating the closed-

loop system.  Initially two sets of parameters are chosen, a first one, which results in very 

intense oscillations in the height of water and a second set where the parameters are 

successfully changed with the purpose of reducing these oscillations.  Further on another 

set up where the pressure is controlled separately and the two remaining controlled 

variables (heights of water and oil) are controlled by a multivariable predictive controller 

is proposed and studied. 

6.1  Discrete Linear Model of the Separator 

To design a predictive controller for the separator a discrete linear model of the 

equipment is necessary.  The nonlinear model of the separator, developed in Chapter 5, 

was identified by evaluating the open loop response of the system to step perturbations in 

inputs (opening of valves).  The following model was generated where the variables are 

now deviation variables.  
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W W

L L

G

17 2.40
206 1 367 1

126 169 43
322 1 330 1 508 1

2.40 0
2 1

s sh s
h s

s s s
p s

s

 − + +    
    = − −    + + +
       

 −
 + 

 

This model was discretized with a sampling time of 0.01 minutes or 0.6 seconds to give:  

 

1 1

1 1

W W1 1 1

L L1 1 1

1 G

1

0.000825 0.00006500
1 1

0.00391 0.00512 0.000846
1 1 1

0.011970 0
1 0.995

z z
z zh s

z z zh s
z z z

p s
z
z

− −

− −

− − −

− − −

−

−

 
− − −    
    = − −    − − −        − − 

 

The following list shows the relationship between the variables of the objective 

function equation and the variables of the model: 

• y1 output 1�����..�� Wh  height of water 

• y2 output 2�����..�� Lh  height of oil 

• y3 output 3�����..�� p  pressure 

• u1 control action 1�����.. Ws   opening of water valve 

• u2 control action 2�����. Ls  opening of oil valve 

• u3 control action 3�����. Ps  opening of gas valve 

The linearized model implies the use of deviation variables (null initial 

conditions).  Consequently the changes in the reference are deviations around the original 

steady state of the nonlinear model.  The trajectory of the reference (or set point) is seen 

in Table 6.1: 
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Table 6.1  Variations in magnitude and time of change of set point 
 Time (minutes) Initial Value Final Value 

Wh  25 0 0.1 

Lh  50 0 0.1 
p  75 0 0.1 

 

6.2  Design of Predictive Controller 

Following the development of Chapter 4 a left MFD and a right irreducible MFD 

are created for the model. 

 

1 1

1 1 1 1

1

0.000825 0 0.0000650
( ) 0.00391 0.00512 0.000846

0 0 0.0120
L

z z
z z z z

z

− −

− − − −

−

 −
 = − − 
 − 

B  

 

1

1 1

1

1 0 0
( ) 0 1 0

0 0 1 0.995
L

z
z z

z

−

− −

−

 −
 = − 
 − 

A  

 

1 1

1 1 1 1

1

0.000825 0 0.0000651
( ) 0.00391 0.00512 0.000842

0 0 0.0120
R

z z
z z z z

z

− −

− − − −

−

 − −
 = − − − 
 − 

B  

 

1

1 1

1

1 0 0.000396
( ) 0 1 0.000525

0 0 (1 0.995 )
R

z
z z

z

−

− −

−

 − −
 = − − 
 − − 

A  

The determinant of BR has no relevant roots while the determinant of AR has the 

following set of relevant roots: {1,1,0.995}.  Recall that because the system has same 

number of inputs as outputs these roots correspond to the zeros of ywG  and uwG  

respectively. 
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6.3  Case 1:  First Tuning 

To tune the controller many different combinations of tuning parameters were 

tested and most of them generated unstable systems.  Table 6.2 lists a set of parameters 

for which stability was verified.  

Table 6.2  Tuning parameters for Case 1 
 Wh  Lh  p  

Ny  20 20 20 
Nu  8 8 8 
λ  10 8 5 
f  5 3 7 

 

Matrices R and S are: 

 

1

1 1

1

1 0 0
( ) 0 1 0

0 0 1

z
z z

z

−

− −

−

 −
 = − 
 − 

R  

 

1 1 1

1 1 1 1

1 1 1

1.2 1.118 3.004 2.797 0.1537 0.1433 
( ) 0.1073 0.1004 4.953 4.612 0.2454 0.2288

0.05104 0.04703 0.388 0.3574 13.98 12.86 

z z z
z z z z

z z z

− − −

− − − −

− − −

 − + − + − +
 = − − + + 
 − − − + 

S
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and the resulting matrix W  is  

1 1 1 1 1

1 2 1 2 1 2

1 2 1 2 1 2

1

( ) ( ) ( ) ( ) ( )

1 1.987 0.9882 0.01538 0.01432 0.0003962 0.001164 0.0007128
0.01923 0.01790 1 1.975 0.9764 0.0005247 0.001752 0.001138
0.001555 0

R Rz z z z z

z z z z z z
z z z z z z
z

− − − − −

− − − − − −

− − − − − −

−

= + =

− + − − + −
− − + − + −

− +

R A S BΩΩΩΩ

2 1 2 1 2.001433 0.001987 0.001830 1 1.827 0.8408z z z z z− − − − −

 
 
 
 − + − + − 

 

The determinant of 1( )z−ΩΩΩΩ  is  

 
6 5 4 3 2

1
6

5.7893 13.9692 17.9827 13.0261 5.0343 0.81101det( ( )) z z z z z zz
z

− − + − + − + −=ΩΩΩΩ  

whose relevant roots are  

 Ω {0.9137  0.0772 ,0.9813  0.0471 ,0.9996  0.0069 }p i i i= ± ± + .   

All roots lie within the unitary circle and the system is stable.  Matrix T is seen next: 

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19

(1,1) 0.0004 0.0008 0.0012 0.0016 0.002 0.0024 0.0028 0.0031 0.0035
0.0039 0.0043 0.0047 0.0051 0.0055 0.0058 0.0062
0.0066 0.007 0.0074 0.0077

T z z z z z z z z
z z z z z z z
z z z z

= − − − − − − − − −
− − − − − − −
− − − −
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2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18

(2,1) 0.000007 0.00002 0.00004 0.00007 0.0001 0.00014 0.00018 0.00022 0.00027
0.0003 0.00036 0.0004 0.00045 0.00049 0.00054 0.00058 0.0006
0.0007 0.0007 0

T z z z z z z z z
z z z z z z z z
z z

= + + + + + + + +
+ + + + + + + +
+ + + 19.00076z

 

 

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 1

(3,1) 0.000054 0.0001 0.00014 0.00016 0.00018 0.0002 0.0002 0.00021 0.00021
0.00022 0.00022 0.00022 0.0002 0.00023 0.000523 0.00023 0.00024
0.00024 0.00024

T z z z z z z z z
z z z z z z z z
z z

= + + + + + + + +
+ + + + + + + +
+ + 8 190.00025z+

 

 

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19

(1, 2) 0.0011 0.0022 0.0033 0.0043 0.005 0.0063 0.007 0.008 0.009
0.01 0.01 0.012 0.013 0.014 0.015 0.016
0.016 0.017 0.018 0.019

T z z z z z z z z
z z z z z z z

z z z z

= − − − − − − − − −
− − − − − − −
− − − −

 

 

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19

(2,2) 0.0019 0.0036 0.0054 0.007 0.0087 0.01 0.012 0.013 0.015
0.016 0.018 0.019 0.021 0.013 0.013 0.014
0.027 0.029 0.03 0.032

T z z z z z z z z
z z z z z z z
z z z z

= − − − − − − − − −
− − − − − − −
− − − −
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2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19

(3,2) 0.0004 0.00077 0.001 0.0013 0.0014 0.0015 0.0016 0.0016 0.0016
0.0016 0.0017 0.0017 0.0017 0.0017 0.0018 0.0018
0.0018 0.0018 0.0018 0.0019

T z z z z z z z z
z z z z z z z
z z z z

= + + + + + + + +
+ + + + + + +
+ + + +

 

 

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18

(1,3) 0.000012 0.000035 0.000067 0.00011 0.00016 0.0002 0.00028 0.00034 0.00041
0.00047 0.00054 0.0006 0.00067 0.00073 0.0008 0.0009 0.0009
0.001 0.001 0

T z z z z z z z z
z z z z z z z z

z z

= − − − − − − − − −
− − − − − − − −
− − − 19.001z

 

 

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18

(2,3) 0.00002 0.000056 0.0001 0.00017 0.00025 0.00034 0.00044 0.00055 0.00065
0.00076 0.00086 0.00096 0.001 0.0012 0.0013 0.0014
0.0015 0.0016 0.0017 0.00

T z z z z z z z z
z z z z z z z

z z z

= − − − − − − − − −
− − − − − − −
− − − − 1918z

 

 

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19

(3,3) 0.014 0.026 0.035 0.043 0.048 0.053 0.055 0.057 0.058
0.059 0.061 0.062 0.064 0.065 0.066 0.068
0.069 0.07 0.072 0.073

T z z z z z z z z
z z z z z z z
z z z z

= − − − − − − − − −
− − − − − − −
− − − −
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Figure 6.1 shows the results of the simulation of the linear model for the height of 

water.  Excessive oscillation occurs and this can be explained by the fact that a very small 

sampling time was chosen in order to deal with the very fast dynamics of the pressure.  

Besides this, during the design of the controller, the greatest weight was placed on the 

first control action, ∆u1 (opening of the valve of water), as λ1 is 10 and less importance 

was given to the error between the reference (set point) and the output (water level), r1-y1, 

as φ1 is 5.  This causes a restriction on the opening of the water valve while the level is 

free to reach higher values of error. 
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               Figure 6.1  Height of Water 
 

The multivariable aspect of the controller can be observed by the apparent 

absence of perturbations in the level of water when the height of oil changes (set point 

change at 50 minutes) and when the pressure changes (set point change at 75 minutes).  

Both these changes will promote an increase in the pressure of the separator, which in 
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turn would increase the outflow of water.  Consequently a decrease in the water level 

would be seen.  Due to the predictive and multivariable nature of the predictive control 

the water valve (see Figure 6.4) closes while the oil valve is closing thus avoiding the 

decrease in the level.  The end result is a smooth curve of height of water. 
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               Figure 6.2  Height of Oil 
 

The height of oil oscillates much less. If we recognize that fluctuations in the 

height of water directly affect the flow of oil over the weir (which is the feed to the oil 

chamber) then we see that most of the oscillations were caused by the behavior of the 

water level.  

The peak seen at 50 minutes is caused by the change in the set point of level of 

oil.  The level rapidly reduces and if it were not for the oscillations in the height of water 

a final value would soon have been reached.  Thus we may conclude that the control of 

oil level had a good performance.  
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The results for the pressure show an excellent tracking of the set point as seen in 

Figure 6.3.  Because the change in heights of oil and water have very little effect on the 

pressure this variable is almost independent of the others.  However the opposite is not 

true, the pressure has a very strong effect on the heights since the flow rates leaving the 

vessel are a direct function of the internal pressure of the separator.  
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               Figure 6.3  Pressure 
 

The independence of the pressure added to the multivariable and predictive 

aspects of the controller create the expectation of a good performance for the control of 

pressure.  The opening of the valves are seen in Figures 6.4, 6.5 and 6.6.  



65 

 

 

0 10 20 30 40 50 60 70 80 90 100 
-0.8 

-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

time(min) 

 sW 

               Figure 6.4  Opening of the Water Valve 
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               Figure 6.5  Opening of the Oil Valve 
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               Figure 6.6  Opening of the Gas Valve 
 

Thus the control of the oil level and pressure gave good results. The control of 

water level, however, did not show a good performance and another set of parameters is 

searched next.  Looking for a better performance of the predictive controller the weights 

are changed.  The aim of this new tuning is to reduce the oscillations of the level of water 

while maintaining the performance of the other two variables.   
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6.4  Case 1:  Second Tuning 

A second set of parameters was tested.  Again, a series of different tuning 

parameters were tested and from the set of parameters that resulted in a stable closed-loop 

systems one was chosen.  Table 6.3 shows the set of parameters used in this case. 

Table 6.3  Tuning parameters for the second tuning of Case 1  
 Wh  Lh  p  

Ny  20 20 20 
Nu  9 9 9 
λ  3 5 3 
f  5 1 2 

 

The weight on the control action of the water valve was reduced (from 10 to 3). 

The weights on the other control actions were also reduced.  The weight on the error 

between the level of water and the set point, φ1, was maintained.  Thus the relative 

importance of this term in the objective function equation is higher and an improvement 

in the performance of the control of water level is expected while for the other variables, 

oil level and pressure, it should deteriorate.  Control actions should be more intense.   

Matrices R and T are: 

 

1

1 1

1

1 0 0
( ) 0 1 0

0 0 1

z
z z

z

−

− −

−

 −
 = − 
 − 

R  

 

1 1 1

1 1 1 1

1 1 1

3.914 3.646 3.444 3.207 0.1445 0.1348
( ) 0.2047 0.1913 2.757 2.567 0.1058 0.09866

0.1245 0.1152 0.3421 0.3168 10.25 9.470 

z z z
z z z z

z z z

− − −

− − − −

− − −

 − + − + − +
 = − − + − + 
 − − − + 

S



 

 

68

and matrix W  is giving by 

1 1 1 1 1

1 2 1 2 1 2

1 2 1 2 1 2

1

( ) ( ) ( ) ( ) ( )

1 1.983 0.9845 0.01764 0.01642 0.003962 0.001821 0.001324
0.01058 0.09854 1 1.986 0.9869 0.0005247 0.001567 0.0009685
0.001437 0.

R Rz z z z z

z z z z z z
z z z z z z
z

− − − − −

− − − − − −

− − − − − −

−

= +

− + − − + −
= − − + − + −

− +

R A S BΩΩΩΩ

2 1 2 1 2001330 0.001752 0.001622 1 1.8720 0.8814z z z z z− − − − −

 
 
 
 − + − + − 

 

 
6 5 4 3 2

1
6

5.841 14.22 18.47 13.50 5.266 0.8561det( ( ) z z z z z zz
z

− − + − + − + −=Ω )Ω )Ω )Ω )  

whose relevant roots are  

 Ω {0.9360  0.0725 ,0.9855  0.0423 ,0.9992  0.0106 }p i i i= ± ± + .   

This lets us conclude that the system is stable.  Matrix T is seen next:  

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19

(1,1) 0.001354 0.00269 0.004 0.0053 0.00658 0.00785 0.0091 0.0104 0.0116
0.0128 0.014 0.015 0.0165 0.0178 0.02 0.02
0.0215 0.0227 0.024 0.025

T z z z z z z z z
z z z z z z z
z z z z

= − − − − − − − − −
− − − − − − −
− − − −

 

 

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18

(2,1) 0.0000137 0.00004 0.000078 0.00013 0.00019 0.00025 0.00033 0.0004 0.0005
0.00058 0.00067 0.00076 0.00085 0.00094 0.001 0.0011 0.0012
0.0013 0.0014 0

T z z z z z z z z
z z z z z z z z

z z

= + + + + + + + +
+ + + + + + + +
+ + + 19.0015z
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2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18

(3,1) 0.000095 0.00018 0.00025 0.0003 0.00035 0.00039 0.00042 0.00045 0.00047
0.00049 0.0005 0.0005 0.0005 0.00056 0.00058 0.0006 0.00062
0.0006 0.00066 0.

T z z z z z z z z
z z z z z z z z

z z

= + + + + + + + +
+ + + + + + + +
+ + + 1900067z

 

 

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19

(1, 2) 0.0013 0.0025 0.0037 0.0049 0.006 0.0071 0.0082 0.009 0.01
0.011 0.0125 0.014 0.015 0.0157 0.017 0.018
0.019 0.02 0.021 0.022

T z z z z z z z z
z z z z z z z
z z z z

= − − − − − − − − −
− − − − − − −
− − − −

 

 

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19

(2, 2) 0.001 0.002 0.003 0.004 0.0048 0.0057 0.0065 0.0074 0.008
0.009 0.01 0.01 0.012 0.013 0.013 0.014
0.015 0.016 0.017 0.018

T z z z z z z z z
z z z z z z z
z z z z

= − − − − − − − − −
− − − − − − −
− − − −

 

 

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19

(3,2) 0.00025 0.00046 0.00064 0.0008 0.0009 0.001 0.001 0.0012 0.0013
0.0013 0.0014 0.001 0.0015 0.0015 0.0016 0.0017
0.0017 0.0018 0.0018 0.0019

T z z z z z z z z
z z z z z z z
z z z z

= + + + + + + + +
+ + + + + + +
+ + + +
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2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18

(1,3) 0.00001 0.00003 0.00006 0.0001 0.00014 0.00019 0.00025 0.00031 0.00037
0.00044 0.0005 0.00056 0.00063 0.00069 0.00075 0.0008 0.00088
0.00094 0.001

T z z z z z z z z
z z z z z z z z
z z

= − − − − − − − − −
− − − − − − − −
− − − 190.001z

 

 

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17

(2,3) 0.000008 0.000023 0.000044 0.00007 0.0001 0.00014 0.00018 0.0002 0.00027
0.00032 0.00037 0.0004 0.00046 0.0005 0.00055 0.00059
0.00064 0.00069 0.00073

T z z z z z z z z
z z z z z z z
z z

= − − − − − − − − −
− − − − − − −
− − − 18 190.0008z z−

 

 

2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19

(3,3) 0.0071 0.013 0.019 0.023 0.027 0.031 0.034 0.036 0.038
0.04 0.042 0.044 0.046 0.048 0.05 0.052
0.054 0.056 0.058 0.06

T z z z z z z z z
z z z z z z z

z z z z

= − − − − − − − − −
− − − − − − −
− − − −
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By comparison to Figure 6.1 it is clear how this tuning causes less oscillations in 

the height of water.  The amplitudes are smaller and the attenuation is faster. 
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               Figure 6.7  Height of Water 
 

Figure 6.8 shows the results for the height of oil.  If we compare it to Figure 6.2 

we see that the oscillations have increased.  Bearing in mind that with the improvement 

of the control of water level the oscillations in the flow rate of oil to the oil chamber 

(Qweir) will decrease, then it is easy to conclude that the performance of the control of oil 

level has worsened.  This is an expected downside to the change made in the parameters. 

For the pressure this new tuning has had little effect.  The results are very close to 

the last tuning (see Figure 6.9).  Once again this is caused by the independence of the 

pressure with relationship to the other variables.   
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               Figure 6.8  Height of Oil 
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               Figure 6.9  Pressure 
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               Figure 6.10  Opening of Water Valve 
 

 

0 10 20 30 40 50 60 70 80 90 100 
-0.8 

-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

time(min) 

 sL 

               Figure 6.11  Opening of Oil Valve 
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The control action for the opening of the water valve (see Figure 6.10) is more 

aggressive while the opposite has happened to the oil valve and the gas valve.  This 

behavior was also expected from the modification in parameters. 
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               Figure 6.12  Opening of the valve of Gas 
 

It was very difficult to tune the 3x3 predictive control for the separator.  The 

above tuning does not show a good performance.  The reason for this lies in the fact that 

the transfer function relating the opening of the gas valve to the pressure has a time 

constant very small (τ=2) if compared to the other transfer functions.  That way a very 

small sampling time was required (Ts=0.01minutes), which, for the horizons used 

(Ny=20 and Nu=9), caused the loss of the predictiveness of the predictive control once 20 

sampling times correspond to 1.2 seconds.  The controller became very sensitive to the 

tuning parameters and only a few sets of these generated stable closed-loop systems. 
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6.5  Case 2 

In this case the control of pressure was left out of the loop and a predictive 

controller was designed for a system with two inputs (openings of water and oil valve) 

and two outputs (height of water and oil).  

 W W

L L

17 0
206 1

126 169
322 1 330 1

h ss
h s

s s

 −    +=     
    − − + + 

 

The absence of the pressure in the transfer matrix allowed the sampling time to be 

much higher (0.1 minutes).  With this new sampling time the model was discretized 

yielding: 

 

1

1
W W

1 1
L L

1 1

0.00825 0
1

0.0391 0.0512
1 1

z
h sz
h sz z

z z

−

−

− −

− −

 
−    − =   
    − −  − − 

 

A sensitivity analysis was done to measure the influence of the prediction horizon 

on the location of the closed-loop poles. Table 6.4 shows the control horizon and weights 

adopted.  

Table 6.4  Tuning parameters for Case 2 
 Wh  Lh  

Nu  9 9 
λ  1 10 
f  10 5 

 

The prediction horizon and the relevant roots of 1det( ( ))z−ΩΩΩΩ  are seen on Table 

6.5.  It is seen that as the prediction horizon increases the location of the roots of 

1det( ( ))z−ΩΩΩΩ  move (slightly) towards the origin.  Because the change in the position of the 
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roots of 1det( ( ))z−ΩΩΩΩ  are small with prediction horizon, the value of Ny=20 was chosen 

for the design of the controller. 

Table 6.5  Variations of relevant roots of 1det( ( ))z−ΩΩΩΩ  with prediction horizon 
Ny Roots of 1det( ( ))z−ΩΩΩΩ  
20 0.9986±0.0138i     0.9362±0.0726i 
30 0.9956±0.0199i     0.9223±0.0541i 
40 0.9906±0.0243i     0.9205±0.0451i 
50 0.9839±0.0260i     0.9204±0.0432i 
60 0.9765±0.0245i     0.9203±0.0446i 

 

Matrices R, S and ΩΩΩΩ  are 

 
1

1
1

1 0
( )

0 1
z

z
z

−
−

−

 −
=  − 

R     

 
1 1

1
1 1

12.84 11.91 25.82 23.92
( )

1.488 1.393 3.693 3.425
z z

z
z z

− −
−

− −

 − + − +
=  − − + 

S  

 
1 2 1 2

1
1 2 1 2

1 1.888 0.8966 0.1322 0.1225
( )

0.01322 0.01225 1 1.981 0.9825
z z z z

z
z z z z

− − − −
−

− − − −

 − + −
=  − − + 

ΩΩΩΩ  

whose determinant is 

 
4 3 2

1
4

3.8695 5.6184 3.6283 0.8794det( ( )) z z z zz
z

− − + + +=ΩΩΩΩ  

and the relevant roots of 1det( ( ))z−ΩΩΩΩ  are 

 Ω {0.9362  0.0726 ,0.9986 0.0138 }p i i= ± ±  
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Matrix T is seen next: 

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18

(1,1) 0.00741 0.01405 0.01998 0.02526 0.02997 0.03416 0.03789 0.04122 0.0442
0.04688 0.04956 0.05224 0.05492 0.0576 0.06028 0.06296 0.06564
0.06832 0.071

T z z z z z z z z
z z z z z z z z
z z

= − − − − − − − − −
− − − − − − − −
− − − 190.07368z

 

 

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

(2,1) 0.0000995 0.00029 0.000566 0.000916 0.001336 0.001817 0.002352 0.002934 0.003558
0.004217 0.004876 0.005535 0.006195 0.006854 0.007513 0.008172 0.008831
0.00

T z z z z z z z z
z z z z z z z z

= + + + + + + + +
+ + + + + + +

17 18 199491 0.01015 0.01081z z z+ +
 

 

2 3 4 5 6 7 8

9 10 12 13 14 15 16 17 18 19

(1, 2) 0.01725 0.03238 0.04558 0.05702 0.06687 0.07531 0.08249 0.08857 0.09369
0.098 0.1023 0.1066 0.1109 0.1152 0.1195 0.1238 0.1281 0.1325 0.1368

T z z z z z z z z
z z z z z z z z z z

= − − − − − − − − −
− − − − − − − − − −

 

 

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17

(2, 2) 0.00228 0.004302 0.006088 0.00766 0.009039 0.01024 0.0113 0.0122 0.01302
0.01372 0.01443 0.01513 0.01583 0.01653 0.01724 0.01794 0.01864
0.01935 0.0200

T z z z z z z z z
z z z z z z z z
z

= − − − − − − − − −
− − − − − − − −
− − 18 195 0.02075z z−
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For the PID control of pressure the tuning parameters were: 

Table  6.6  Tuning Parameters of PID 
Proportional 0.5 
Integral 0.1 
Derivative 0 

 

The results for this case are very good.  The height of water doesn�t show the 

oscillatory behavior seen in Case 1.  From Figure 6.13 the predictive nature of the 

controller is clearly seen.  The height of water starts rising at 10 sampling times, or 1 

minute, before the actual change in the set point occurs.  A smooth transition to the final 

value follows and a very small overshoot is seen.   
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               Figure 6.13  Height of Water 
 

The peak seen at 50 minutes is due to the change in height of oil.  The increase in 

oil level elevates the pressure of the vessel and the water valve (Figure 6.16) closes 

preventively to counteract this higher pressure.   
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               Figure 6.14  Height of Oil 
 

A PID controls the pressure and the response is seen in Figure 6.15. 
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               Figure 6.15  Pressure 
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               Figure 6.16  Opening of Valve of Water 
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               Figure 6.17  Opening of the Valve of Oil 
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               Figure 6.18  Opening of the Valve of Gas 
 

6.6  Conclusion 

The design of a predictive controller with three inputs and three outputs for the 

separator was difficult due to the difference in time constants between the pressure and 

the levels.  Initially a small sampling time was required and the search for a stable system 

with good performance required many trials.  A second case was studied where a 

predictive controller with two inputs and two outputs was designed for the control of 

levels while a PID controller was used for the pressure.  A sensitivity study was done 

where the closed-loop poles are calculated for different prediction horizons.  Tuning the 

controller was much easier in this case and a good performance was observed.   
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CHAPTER 7 
SIMULATION AND RESULTS 

In this chapter both predictive controllers designed in Chapter 6 are tested against 

the nonlinear model of the separator by simulating the closed-loop in Simulink of Matlab.  

The same series of step changes of set point made in Chapter 6 (see Table 1) is used. 

7.1  Results of Case 1 

Figure 7.1 shows the change in the height of water.  The results resemble the 

simulations done for the linearized model in Chapter 6 (see Figure 6.1).  The fluctuations 

decay very fast and a steady state is reached before the set point of oil height is changed. 
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               Figure 7.1  Height of Water 
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At 50 minutes a peak occurs due to the change in height of oil.  If we observe the 

opening of the water valve in Figure 7.4 we see that the controller initially closes the 

valve to counteract the increase in pressure caused by the increase in oil level.  This is 

done before the change in set point of oil level demonstrating the predictive and 

multivariable characteristics of the controller.  While this peak is almost unnoticed for the 

linear model it is very evident in this case as it is a consequence of the nonlinearities of 

the model.   

Figure 7.2 shows the response of the oil level.  Compared to Figure 6.8 we see 

that, here, the decay is slightly faster.  Once again the nonlinearities are responsible for 

this change in response.  In general terms the performance is good. 
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               Figure 7.2  Height of Oil 
 

The response of the pressure is very similar to that of the linear model.     
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               Figure 7.3  Pressure 
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               Figure 7.4  Opening of Water Valve 
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               Figure 7.5  Opening of Oil Valve 
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               Figure 7.6  Opening of Gas Valve 
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7.2  Results of Case 2 

Figure 7.2 shows the response of the water level.  Compared to the linear model 

(Figure 6.13) the overshoot is smaller while the peak around 50 minutes is very similar.   
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               Figure 7.7  Height of Water 
 

All other simulations show that the results for the nonlinear model are very close 

to that of the linear model.  It is important to note that the height of the weir (0.9 meters) 

is the maximum allowable value for the height of water and that the change in set point 

was 0.1 (from 0.5 to 0.6 meters).  Thus the new set point corresponds to a change in 20% 

in the height of water, which makes it a good test on how the linear model applies to the 

separator.   

Figures 7.8 through 7.12 show the response of the nonlinear model to the 

remaining variables. 
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               Figure 7.8  Height of Oil 
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               Figure 7.9  Pressure 
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               Figure 7.10  Opening of Water Valve 
 

 

0 10 20 30 40 50 60 70 80 90 100 
0.6 

0.65 

0.7 

0.75 

0.8 

0.85 

0.9 

0.95 

1 

time(min) 

 sL 

               Figure 7.11  Opening of Oil Valve 
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               Figure 7.12  Opening of Gas Valve 
 

7.3  Conclusion 

The nonlinear simulations gave results close to the linear model of Chapter 6.  

Thus we conclude that the linearization was successful and the design of the predictive 

controller for the separator using the techniques of linear control is a good approach. 
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CHAPTER 8 
CONCLUSIONS 

 

This dissertation has successfully developed a method based on matrix fraction 

descriptions (MFD) for determining the closed-loop poles of unconstrained multivariable 

predictive control. 

The method, proposed here, takes advantage of the polynomial nature of the 

matrices of the controller to represent the closed-loop transfer matrices as an MFD, a 

ratio of  �numerator� and  �denominator� polynomial matrices.  It is shown that if a right 

coprime matrix description of the process transfer matrix is done then the closed-loop 

poles of the system are determined by evaluating the roots of the determinant of the 

denominator matrix giving necessary and sufficient conditions for stability.  This method 

avoids the inversion of transfer matrices which is a numerically difficult task.  Instead 

only the determinant of the denominator matrix is required and stability is verified with 

the help of Jury�s criteria by determining if there are any poles that lie outside the unitary 

circle.  Because in this formulation of predictive control a transfer function model was 

used to represent the process, as opposed to over-parametrized models such as 

step/impulse response models of DMC like methods, the degree of the determinant is 

considered minimal.  This approach reduces enormously the numerical complexity of the 

problem allowing the tuning of multivariable systems with many inputs and outputs. 

It is proven that the system has zero offset response to step changes in the 

reference, a property known to be valid for the single input single output case.  For 
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systems with equal number of inputs and outputs the �inversion of the plant� is also 

proven.  In this case it is seen that if the weights on the input are zero then the solution to 

the optimization problem is a controller that inverts the plant and the output matches the 

reference.   

This method becomes an important tool for the analysis of predictive controllers 

allowing practitioners and researchers to follow the effect of tuning parameters on the 

behavior of the system. 

The use of a multivariable predictive controller for an oil-water-gas separator is 

studied.  The nonlinear model of the plant is linearized around a steady state and a three-

inputs three-outputs predictive controller is designed for it.  It is seen that the controller 

responds positively to changes in the parameters and performance objectives can be 

pursued.  Another setup is also studied where a controller with two inputs and two 

outputs is designed to control the levels of water and oil.  The pressure is controlled 

separately.  Results show agreement with the simulations done for the linear model and it 

is concluded that predictive control is a successful control method for oil-water-gas 

separators. 
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APPENDIX A  
DETAILED DERIVATION OF CONTROL LAW EQUATION 

In this appendix intermediate equations used in the derivation of the control law 

equation are developed, starting from the model of the plant.  Multiple input single output 

(MISO) formulation is initially used to show the basic structure of the equations.  MIMO 

system equations are derived as a combination of these. 

A.1 Derivation of Matrix Diophantine Equation 

Consider the Darma model 
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Analyze, initially, a MISO system of one output, 1( )y t , and p inputs, 1( )u t , 

2 ( )u t ,�, ( )pu t .  For that the first row of the above matrices can be represented as 

follows: 

 

1

2
11 1 11 12 1

( 1)
( 1)

( )

( 1)

p

p

u t
u t

A y t B B B

u t

− 
 −  =    
 −  

&
$

 (A.1) 

where  

 11

11 11 1111

1 1 2
11 1 2( ) 1 nA

nAA q a q a q a q−− − −= + + + +…  
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The first and second indices of polynomials B represent the output and input 

respectively.  Polynomials A have equal indices once matrix A, a m m×  diagonal matrix, 

is related to the outputs only.  

Diophantine equation  

 
1 111∆ 1i
i iE A q F−+ =  (A.2) 

can be used to derive an expression for future values of ( )y t .  Here 
1i

E  and 
1i

F  are 

polynomials in backward shift operator 
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i i i iF f f q f q−−= + + +…  (A.4) 

and index i  shows the time dependence of these equations.  Subscript 1 denotes the 

output (y1 in this case).  Expanding Diophantine equation for time steps from 1 to i then, 
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which can be written in vector-matrix form as 
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Defining  
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we may write equation (A.6) as: 
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For the other MISO systems we get similar equations: 
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and writing in vector-matrix form 
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to get the Matrix Diophantine equation 

 i
i i i

−+ =E A q F I  (A.9) 

A.2 Derivation of Predictor Equation 

If we continue to investigate the first MISO system we see from Diophantine 

equation, that 
1 111 1 1∆ ( ) (1 ) ( )i
i iE A y t q F y t−= − .  Multiply equation (A.1) by 

1
∆iE  to get  
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multiply by iq  to get the expression for the predicted values of 1y  
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the above equations can be written as 
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to get  
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For the other MISO systems we get 
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where once again the subscripts related to the outputs were doubled.  If we define 
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we then get the matrix form of the predictor equation 
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A.3 Simplification of Predictor Equation 

Back to the scalar equations again, if we recognize that  iEB G q P−= + then each 

element of 1B  gives us 
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substituting in equation (A.10) then 
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and expanding in time we get  
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1 1 1 1 1 1 1 1 2

1
1 1

� ( 1) ( ) ( )∆ ( ) ( )∆ ( )

                ( )∆ ( )
p p p

y t F y t G q P u t G q P u t

G q P u t

− −

−

+ = + + + + + +

+

…
 

 1 11 11 12 12

1 1

2 2
1 2 1 2 2 1 2 2 2

2
2 2

� ( 2) ( ) ( )∆ ( 1) ( )∆ ( 1)

                 ( )∆ ( 1)
p p p

y t F y t G q P u t G q P u t

G q P u t

− −

−

+ = + + + + + + + +

+ +

…
 

 $  

 1 11 11 12 12

1 1

1 1 1 2� ( ) ( ) ( )∆ ( 1) ( )∆ ( 1)

                ( )∆ ( 1)
p p

i i
i i i i i

i
i i p

y t i F y t G q P u t i G q P u t i

G q P u t i

− −

−

+ = + + + − + + + − + +

+ + −

…
 

and rearranging common terms we get 

 1 11 12 1

11 12 1

1 1 1 1 1 1 2 1

1 1 1 2 1

� ( 1) ( ) ∆ ( ) ∆ ( ) ∆ ( )

             ∆ ( 1) ∆ ( 1) ∆ ( 1)
p

p

p

p

y t F y t G u t G u t G u t

P u t P u t P u t

+ = + + + +

+ − + − + + −

…

…
 

 1 11 12 1

11 12 1

1 2 1 2 1 2 2 2

2 1 2 2 2

� ( 2) ( ) ∆ ( 1) ∆ ( 1) ∆ ( 1)

              ∆ ( 1) ∆ ( 1) ∆ ( 1) 
p

p

p

p

y t F y t G u t G u t G u t

P u t P u t P u t

+ = + + + + + +

+ − + − + + −

…

…
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 $  

 1 11 12 1

11 12 1

1 1 1 2

1 2

� ( ) ( ) ∆ ( 1) ∆ ( 1) ∆ ( 1)

∆ ( 1) ∆ ( 1) ∆ ( 1)
p

p

i i i i p

i i i p

y t i F y t G u t i G u t i G u t i

P u t P u t P u t

+ = + + − + + − + + + −

+ − + − + + −

…

…
 

which can be written as 

 

11 12 1

11 12 1

11 12 1

1 1 1 1 111
2

2 2 2 221
1

1 1 1

∆ ( 1)� ( 1) 0 0
∆ ( 1)� ( 2) 0 0

( )

∆ ( 1)� ( ) 0 0

p

p

p

i
pi i i i

G G G u tFy t q
G G G u tFy t q

y t

u tFy t i q G G G

P

  −+             −+        = + +              −+                 

&&
&&

$$$ $ $ % $ $ $ % $
& &

11 12 1
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2 2 2 2

∆ ( 1)
∆ ( 1)

∆ ( 1)

p

p

p
pi i i

P P u t
P P P u t

u tP P P

  − 
   −   
   
   −     

&

&
$$ $ % $
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Defining: 

 

1 1 1

1
11 12

111 12

11 12 1

11 12 1

11 1

22 2          

p

p

p

p

i i i

Ny Ny Ny

GG G
GG G

G G G

= = =

    
    
    
    
    
         

G G G&$ $ $
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1
11 12

111 12

11 12 1

11 12 1

11 1

22 2         

p

p

p

p

i i i

Ny Ny Ny

PP P
PP P

P P P

    
    
    = = =     
    
         

P P P&$ $ $
 

then 

1 11 12 1 11 12 1

1

2
1 1 1

∆ ( 1)
∆ ( 1)

� ( ) ( )

∆ ( 1)

p p

i
i i i i i i i

p

u t
u t

t i y t

u t

− 
 −     + = + +      
 −  

y F q G G G P P P… …
$

 

For the other MISO systems we get 



99 

 

2 21 22 2 21 22 2

1

2
2 2 2
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i
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p

u t
u t
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 −  

y F q G G G P P P… …
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3 31 32 3 31 32 3

1

2
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∆ ( 1)
∆ ( 1)

� ( ) ( )

∆ ( 1)

p p

i
i i i i i i i

p

u t
u t

t i y t

u t

− 
 −     + = + +      
 −  

y F q G G G P P P… …
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$  

1 2 1 2

1

2

∆ ( 1)
∆ ( 1)
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m m m mp m m mp

i
m i m m i i i i i i

p

u t
u t

t i y t

u t

− 
 −     + = + +      
 −  

y F q G G G P P P… …
$

 

which can be written as 
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( )

( )

1

2
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21 22 2

1 2
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2

0 0� ( )
0 0� ( )
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m

p

p
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i
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i
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i
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i
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t

 +   
   +     = +
   
   +          
   −
  
  
  
  
     
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&
&

$ $ % $ $$
&

&&
&&
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2

1)
∆ ( 1)

∆ ( 1)

∆ ( 1)
∆ ( 1)
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p

p
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p
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i i i
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t

t

u t
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 
 −  +
 
 −  

  − 
   −   
   
   −     

u
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&
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&

 

Finally 

 � ( ) ( ) ∆ ( 1) ∆ ( 1)i
i i it i t t t+ = + − + −y F y q G u P u  (A.15) 

Note that the elements of each matrix 
jiG
"
and 

jiP
"
are defined as: 

 1 ( 1)
0 1 ( 1)j jj j

i
i iG g g q g q− − −

−= + + +
" "" "

…   
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0 1 1

( 1)1 j

j nBj j j

nB
i i i iP p p q p q

−

− −−= + + + "

" " " "
…   

A.4 Derivation of Constant Forcing Response Equation 

Back to the scalar equations, if we recognize that 0�( )= ( )y t i y t i+ +  when the 

inputs are kept constant 

 

1

2

∆ ( 1) 0
∆ ( 1) 0
           
∆ ( 1) 0p

u t i
u t i

u t i

+ − =
+ − =

+ − =
$

 (A.16) 

then equation (A.15) yields  

 
1 11 12 1

0
1 1 1 2( ) ( ) ∆ ( 1) ∆ ( 1) ∆ ( 1)

pi i i i py t i F y t P u t P u t P u t+ = + − + − + + −…  (A.17) 

For the matrix equations we get the same result if ∆ ( 1) 0i
i t − =q G u .  This way 

equation (A.15) yields 

 0 1( ) ( ) ∆ ( )i it i t q t−+ = +y F y P u  (A.18) 

A.5 Substitution of Constant Forcing Response in the Control Law Equation 

Back again to the MISO case, if we substitute the expression of 0
1 ( )y t i+ , in 

equation (A.17), in the control law equation, (3.11)  

 

[ ]
[ ]

[ ]

0
1 11 21 11

0
1 22 21 1 1

01 2 1 1 1

( 1) ( 1)∆ ( )
∆ ( ) ( 2) ( 2)

∆ ( ) ( ) ( )

i

i

ip p

r t y tk k ku t
k k ku t r t y t

k k ku t r t i y t i

 + − +  
    + − +    =    
   
     + − +     

&
&
$$ $
&

 

then 
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  
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+ − + + + +

&
&
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&

…

…

$

1 11 12 1

1 1 1
1 1 2) ( ) ∆ ( ) ∆ ( ) ∆ ( )

pi i i i pt i F y t q P u t q P u t q P u t− − −

 
 
 
 
 
 + − + + + + …

 

which can be written as 
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1 2 11 1
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k k ku t Fr t i P P P

−

   +           +       = − +              +                
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&&

$$ $$ $ $ % $
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u t
u t

u t
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or 

 
1 11 12 1

1 111

2 221 1
1 1
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∆ ( ) ∆ ( )
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     
      = + − −       
     

            

k
k

r F P P P

k

…
$ $$

 

Thus for a MIMO system we get: 
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which can be expressed as 
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defining  
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we finally get 

 1∆ ( ) ( ) ( ) ∆ ( )i i it t i t q t− = + − − u K r F y P u  (A.19) 
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or yet 

 1( )∆ ( ) ( ) ( )i
i i i i i iq t t t−+ = −I K P u K q r K F y  (A.20) 

Define 

 1( )∆i i i iq−= +R I K P  (A.21) 

 i i i=S K F  (A.22) 

 i
i i=T K q  (A.23) 

The final control law equation is 

 ( ) ( ) ( )i i it t t= −R u T r S y   

If the whole prediction horizon is considered then  

 1( )∆q−= +R I KP  (A.24) 

 =S KF  (A.25) 

 Ny=T Kq  (A.26) 

where  
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then the final control law is  

 ( ) ( ) ( )t t t= −Ru Tr Sy  
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APPENDIX B 
DERIVATION OF PRODUCT KP AND KF 

B.1 Product of KP 

Consider the definitions of K and P as in Appendix A. 

11 12 1

21 22 2

1 2

T T T
m

T T T
m

T T T
p p pm

 
 
 =  
 
  

k k k
k k k

K

k k k

&
&

$ $ % $
&

        

11 12 1

21 22 2

1 2

p

p

m m mp

 
 
 =
 
 
  

P P P
P P P

P

P P P

&
&

$ $ % $
&

 

where 1 2[ ]
j

T
j Ny jk k k=k" "&    are the elements of matrix K.  The elements of matrix 

P are column vectors  

 

1

2

j

j

Ny j

P
P

P

 
 
 =  
 
  

P "

"

$  

of polynomials in backward shift operator defined as 

0 1 1

( 1)1 j

j nBj j j

nB
i i i iP p p q p q

−

− −−= + + + "

" " " "
… .  The product KP is 

11 11 12 21 1 1 11 12 12 22 1 2 11 1 12 2 1

21 11 22 21 2 1 21 12 22 22 2 2 21 1 22 2 2

1 11 2 21 1 1 12 2 22

T T T T T T T T T
m m m m p p m mp

T T T T T T T T T
m m m m p p m mp

T T T T T
m m pm m p p

+ + + + + + + + +
+ + + + + + + + +

+ + + + + +

k P k P k P k P k P k P k P k P k P
k P k P k P k P k P k P k P k P k P

k P k P k P k P k P k

… … & …
… … & …

$ $ % $
… … 2 1 1 2 2

T T T T
pm m p p p p pm mp

 
 
 
 
 

+ + +  P k P k P k P& …

 

Note that each product T
j j" "k P  is 
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1

2
1 2[ ]  

j

j

T
j j Ny j

Ny j

P
P

k k k

P

 
 
 =  
 
  

k P" " "

"

& $  

The structure of K, in this case, is such that its elements are vectors with a first 

non-zero term followed by zeros, i.e. [ ]1 0 0T
j j

k=k" "
& , which, except for the 

sequence of zeros, is identical to [ ]1 j
k

"
, i.e. [ ]1 1j

T
j

k≡k
" "

.  Then except for the first 

polynomial 1j
P

"
, where 1i = , the remaining polynomials, 2 j jjNyP P

" "
… , are cancelled by the 

zeros of T
jk"  during the process of multiplication.   

 [ ]
1

2
1 1 1 1 1 1 1[ 0 0] [ ]  

j j j j

j

T T
j j j j j

Ny j

P
P

k k P k P

P

 
 
 = = ≡ = 
 
  

k P k P
" " " "" " " " "

"

& $  

That way the product of KP is 

11 11 12 21 1 1 11 12 12 22 1 2 11 1 12 2 1

21 11 22 21 2 1 21 12 22 22 2 2 21 1 22 2 2

1 11 2 21

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

m m m m p p m mp

m m m m p p m mp

m m pm

k P k P k P k P k P k P k P k P k P

k P k P k P k P k P k P k P k P k P

k P k P k P

+ + + + + + + + +

+ + + + + + + + +

+ + +

… … & …

… … & …

$ $ % $
…

1 1 12 2 22 2 1 1 2 21 1 1 1 1 1 1 1 1 1 1 1m p p pm m p p p p pm mp
k P k P k P k P k P k P

 
 
 
 
 
 + + + + + + … & …

 

which is identical to K1P1.  Thus it is concluded that under the given conditions KP ≡ 

K1P1.   
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B.2 Product of KF 

Consider the definition of F as in (A.8): 

 

 

1

2

0 0
0 0

0 0 m

 
 
 =
 
 
  

F
F

F

F

&
&

$ $ % $
&

 

where

1

2

j

j

Ny j

F
F

F

 
 
 =  
 
  

F $ and each 
0 1

1 jj

j j j nA jjj

nA
i i i iF f f q f q−−= + + +…  is a polynomial in 

backward shift operator.  Similarly to the previous case the product KF is 

 

11 1 12 2 1

21 1 22 2 2

1 1 2 2

T T T
m m

T T T
m m

T T T
p p pm m

 
 
 =  
 
  

k F k F k F
k F k F k F

KF

k F k F k F

&
&

$ $ % $
&

 

and for the specific format of K then  

 

 

11 1 12 2 1

21 1 22 2 2

1 1 2 2

1 1 1 1 1 1

1 1 1 1 1 1
1 1

1 1 1 1 1 1

m m

m m

m p pm m

k F k F k F
k F k F k F

k F k F k F

 
 
 = ≡ 
 
  

KF K F

&
&

$ $ % $
&

 

from which we conclude that KF ≡ K1F1. 
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APPENDIX C 
OBTAINING A LEFT MATRIX DESCRIPTION 

Given a transfer function model 1( ) ( ) ( 1)t z t−= −y H u , the problem consists of 

finding two polynomial matrices 1( )z−A  and 1( )z−B  so that 1 1 1 1( ) ( ) ( )z z z− − − −=H A B  

holds.  The simplest way of doing this is by making 1( )z−A  a diagonal matrix with its 

elements equal to the least common denominators of the corresponding row of 1( )z−H . 

Let 

 

111 12

11 12 1

11
221 22

22
21 22 2

1 2

1 1

( 1)( )
( 1)( )

( 1)( )

p

p

p

p

pm

mpm m

m m mp

BB B
A A A

u ty t
BB B u ty t

A A A

u ty t
BB B

A A A

 
 
  −    

     −    =
    
     −       

 
  

&

&
$$

$ $ % $

&

 (C.1)  

where the first row of 1( )z−H   

 

11

11 11 1111

12

12 12 1212

1

1 1 111

1 1 2
11 1 2

1 1 2
12 1 2

1 1 2
1 1 2

( ) 1

( ) 1

                                      

( ) 1 p

p p p

nA
na

nA
na

nA
p na

A z a z a z a z

A z a z a z a z

A z a z a z a z

−− − −

−− − −

−− − −

= + + + +

= + + + +

= + + + +

…

…

$

…

 (C.2) 

and 
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11

11 11 11 1111

12

12 12 12 1212

1

1 1 1 1 1

1 1 2
11 0 1 2

1 1 2
12 0 1 2

1 1 2
1 0 1 2

( )

( )

                                      

( ) p

p p p p p

nB
nb

nB
nb

nB
p nb

B z b b z b z b z

B z b b z b z b z

B z b b z b z b z

−− − −

−− − −

−− − −

= + + + +

= + + + +

= + + + +

…

…

$

…

 (C.3) 

Suppose no common denominators exist in matrix H .  Multiply matrix H by A such that 

the resulting matrix, B, is a polynomial matrix. 

 =AH B  

 

111 12

11 12 1

11 12 1
221 22

21 22 2
21 22 2

1 2

1 2

1 1

12 13 1 1

0 0
0 0

0 0

           

p

p

p
p

p
p

m m mp

mpm m

m m mp

p

BB B
A A A

A A A
BB BA A A

A A A

A A A
BB B

A A A

A A A B

 
 
                    
 
  

=

A

H

&

… &
&… &

$ $ % $
$ $ % $& …

+,,,,,,,,,-,,,,,,,,,.
&

+,,,,-,,,,.

… 1 11 13 1 12 11 12 1( 1) 1

22 23 2 21 21 23 2 22 21 22 2( 1) 2

2 3 1 1 3 2 1 2 ( 1)

 

p p p

p p p p

m m mp m m m mp m m m m p mp

A A A B A A A B
A A A B A A A B A A A B

A A A B A A A B A A A B

−

−

−

 
 
 
 
 
  

B

… & …
… … & …
$ $ % $
… … & …

+,,,,,,,,,,,,,-,,,,,,,,,,,,,.

 

defining 

 

11 11 12 1

22 21 22 2

1 2

           

p

p

mm m m mp

A A A A

A A A A

A A A A

=

=

=

…

…
$

…

  

then A is 
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11

22

0 0
0 0

0 0 mm

A
A

A

 
 
 =
 
 
  

A

&
&

$ $ % $
&

  

and defining 

            

11 12 13 1 11 21 11 13 1 12 1 11 12 1( 1) 1

21 22 23 2 21 22 21 23 2 22 2 21 22 2( 1) 2

           

                                                                             

p p p p p

p p p p p

B A A A B B A A A B B A A A B

B A A A B B A A A B B A A A B
−

−

= = =

= = =

… … …

… … …
$ $

1 2 3 1 2 1 3 2 1 2 ( 1)

       
   m m m mp m m m m mp m pm m m m p mpB A A A B B A A A B B A A A B−= = =

$
… … …

 

matrix B is 

 

11 12 1

21 22 2

1 2

 

p

p

m m mp

B B B
B B B

B B B

 
 
 =
 
 
  

B

&
&

$ $ % $
&

  

and the deterministic auto-regressive moving-average (DARMA) representation of the 

process is obtained 

 ( ) ( 1)t t= −Ay Bu   

Matrices A  and B  do not have to be coprime in general and may still be used to 

implement the predictive controller.  However this will generate a controller with higher 

degree and may in some cases result in less efficient algorithms.  To guarantee 

coprimeness of the matrix fraction description the greatest common divisor must be 

found and extracted from matrices A  and B .   
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APPENDIX D 
CLOSED-LOOP TRANSFER MATRICES 

D.1 Disturbances in the Closed-loop 

Figure D.1 shows the closed-loop system subject to a series of disturbance 

signals.  These signals represent external disturbances and measurement noise, common 

to real systems.   

+ R

S

H-1
e u yw

d1 d2

n2 n1
 

Figure D.1  Closed-loop system with external disturbance and noise signals 

 

In the sequel all the different transfer functions will be derived for all the signals 

seen in Figure D.1.  Thus we have 

 1 1 1
1 2 1 2( ) ( )I HR S y Hd d HR Sn HR w n− − −+ = − + − + −  

 1 1 1 1
1 2 1 2( ) ( ) ( )I R SH u R SHd R S d n R w n− − − −+ = − − + + −  

 1 1
1 2 1 2( ) ( ) ( )I SHR v SHd S d n SHR w n− −+ = + + + −  

 1
1 2 1 2( ) ( ) ( )I SHR e SHd S d n w n−+ = − − + + −  
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It is immediate to see that 2n  may be discarded from the analysis once it is 

redundant to signal w.  Before proceeding, some helpful properties of transfer matrices 

will be shown. 

PROPERTY D.1  From the Matrix Inversion Lemma it is known that 

1 1 1 1 1 1 1( ) ( )A BCD A A B DA B C DA− − − − − − −+ = − +  where all the inverted matrices possess 

inverses.  As a consequence we have: 

D.1.1 1 1 1( ) ( ) ( )I B I B I B I I B B− − −+ = − + = − +  

D.1.2 1 1( ) ( )I BD I B I DB D− −+ = − +  

D.1.3 1 1( ) ( )I DB D D I BD− −+ = +              ■ 

Matrices 1( )I B −+  and 1( )I B B−+  (or 1( )B I B −+ ) are called complimentary 

matrices.  Stability of a transfer matrix implies in stability of its complimentary transfer 

matrix.  This is a consequence of the fact that the sum of two stable transfer matrices 

generates a stable matrix.  That way only one the two complimentary transfer matrices 

needs to be analyzed. 

All transfer matrices for v can be discarded once 
1 1vd edG G= − , 

2 1 2 1( ) ( )v d n e d nG G+ += −  

and vwG  and ewG  are complimentary transfer matrices.  Transfer matrices 
2ydG  and 

1ynG  

are also complimentary and we have chosen to discard the first one.  That way signals 2d  

and 1n  become redundant and choosing to discard 2d  we are left with: 

 1 1 1 1 1 1 1 1
1 1( ) ( ) ( )y I HR S Hd I HR S HR Sn I HR S HR w− − − − − − − −= − + − + + +  

 1 1 1 1 1 1 1 1 1
1 1( ) ( ) ( )u I R SH R SHd I R SH R Sn I R SH R w− − − − − − − − −= − + − + + +  

 1 1 1 1 1 1
1 1( ) ( ) ( )e I SHR SHd I SHR Sn I SHR w− − − − − −= − + − + + +  

Then we have  
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1

1 1( )ydG I HR S H− −= − + , 
1

1 1 1( )ynG I HR S HR S− − −= − + , 1 1 1( )ywG I HR S HR− − −= − +  

1

1 1 1( )udG I R SH R SH− − −= − + , 
1

1 1 1( )unG I R SH R S− − −= − + , 1 1 1( )uwG I R SH R− − −= +  

1

1 1
1( )edG I SHR SHd− −= − + , 

1

1 1( )enG I SHR S− −= − + , 1 1( )ewG I SHR− −= +  

D.2 Closed-loop Transfer Matrices of Predictive Control 

Substituting 1H BA−=  and bearing in mind that A  and R  are invertible matrices 

we have 
1

1
ydG B R−= − ΩΩΩΩ  where RA SB= +ΩΩΩΩ .  To prove this recall from Property D.1.3 

that 
1

1 1 1 1( ) ( )ydG I HR S H H I R SH− − − −= − + = − + .  Then its immediate to conclude that 

1

1
ynG B S−= − ΩΩΩΩ  and 1

ywG B −= − ΩΩΩΩ .  Similar manipulations and substitutions give 

1
uwG A −= ΩΩΩΩ , 

1

1
unG A S−= − ΩΩΩΩ , 

1

1
udG I A R−= − ΩΩΩΩ , 1

ewG RA −= ΩΩΩΩ , 
1

1
enG RA S−= − ΩΩΩΩ  and 

1

1
edG SB R−= − ΩΩΩΩ .  We then have: 

 1 1 1
1 1y B Rd B Sn B w− − −= − − −Ω Ω ΩΩ Ω ΩΩ Ω ΩΩ Ω Ω  

 1 1 1
1 1( )u I A R d A Sn A w− − −= − − +Ω Ω ΩΩ Ω ΩΩ Ω ΩΩ Ω Ω  

 1 1 1
1 1e SB Rd RA Sn RA w− − −= − − +Ω Ω ΩΩ Ω ΩΩ Ω ΩΩ Ω Ω  

Recalling that all matrices are polynomial matrices (in z-1) then it is seen that 

transfer matrices 1
uwG A −= ΩΩΩΩ  and 1

ywG B −= − ΩΩΩΩ  are fundamental in the analysis of 

stability.  All other matrices are the product of either one of these two matrices and a 

polynomial matrix.  This way if either 1
uwG A −= ΩΩΩΩ  or 1

ywG B −= − ΩΩΩΩ  is unstable then the 

closed-loop system will be unstable.  Note that stability of 1
ywG B −= − ΩΩΩΩ  does not imply 

stability of 1
uwG A −= ΩΩΩΩ  and both matrices should be checked in order to assume stability 

of the closed-loop. 
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APPENDIX E 
OBTAINING MATRIX K 

Proof. Expand expression 1 0∆ ( ) ( )T T−= + −u G G G r yΦ Λ ΦΦ Λ ΦΦ Λ ΦΦ Λ Φ  along the prediction and control horizons to get  

1

1

1 1

11 12 11

21 22 21
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2

2

2 2
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∆ ( 1)

∆ ( )
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∆ ( 1)

∆ ( )

∆ ( )
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  +   
     +    =   +   
 
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r t Ny y t Ny
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r t Ny y t Ny

r t y t

r t y t
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  

+  
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  
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  
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  
  
  + − + 


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
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




and because the first control move alone is of interest, subsequent terms ( 2i =  to Nu" ) are discarded and the above expression 

becomes 
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11 12 1 11 12 1 11 12 11 2

∆ ( )
∆ ( )

∆ ( )

m

m
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Ny Ny Ny m

Ny Ny Ny m

p
Ny Ny Nyp p

k k k k k k k k ku t
k k k k k k k k ku t

u t k k k k k k k k k

          
             =
 
 
           

& & & &

& & & &
$ $ $ % $

& & & &

0
1 1

0
1 1

0
1 1 1 1

0
2 2

0
2 2

0
2 2 2 2

0

0

0

( 1) ( 1)

( 2) ( 2)

( ) ( )

( 1) ( 1)

( 2) ( 2)

( ) ( )

( 1) ( 1)

( 2) ( 2)

( )
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m m

m m

m m m

r t y t

r t y t

r t Ny y t Ny

r t y t

r t y t

r t Ny y t Ny
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r t y t

r t Ny y

 + − +
 

+ − + 
 
 
 + − + 
 + − + 
   + − +  
  
  
 + − +   

  

+ − +

+ − +

+ −

$

$

$

$

( )mt Ny

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
  
  
  +   

 

Eliminating the, now unnecessary, first index of each element of the rows of the new matrix then 11 12 1[ ]
jyN jk k k "&  becomes 

1 2[ ]
jyN jk k k "& which are the elements of matrix K.          Q.E.D
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