
 A GENERALIZED ACTIVE AGENT SYSTEM
FOR EXTENDING THE ACTIVE CAPABILITIES OF A RDBMS

By

YOUNGHUN KIM

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA
2000

Copyright 2000

by

YoungHun Kim

To my parents and HyeKyung Kim

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Sharma Chakravarthy, for his continuous

advice, guidance, support in this research work and for giving me the opportunity to work

on this good topic. His help in making me more knowledgable has been priceless. I am

grateful to Dr. Sumi Halal and Dr. Joachim Hammer for serving as my committee

members.

I would like to thank John Bowers and Ardiniece Caudle for their help and taking

good care of graduate students.

I would like to thank Sharon Grant for maintaining a well-administered research

environment and being so helpful at times of need.

I really thank SeokWon Yang, Mahesh Dudgikar, Hongen Zhang and Zecong

Song for their technical help and fruitful discussions. I will never forget their invaluable

help and the life in the Sentinel group. Also, I would like to thank all my friends for their

support and encouragement.

This work was supported in part by the Office of Naval Research and the

SPAWAR System Center-San Diego, and by the Rome Laboratory, DARPA.

I would like to take this opportunity to thank my family for their endless love.

Without their support, this work would not have been possible. I am cordially grateful to

HyeKyung Kim for her patience and endless love. Her trustfulness and encouragement

made me brave when I was weary.

v

Finally, and supremely, I would sincerely love to thank God for His love. I could

have accomplished absolutely nothing apart from His will.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT …………………………… ……………………………………. .iv

LIST OF TABLES ………………………………… …………………………………. …viii

LIST OF FIGURES. ………………………………… ……………………………………. .x

ABSTRACT ………………………………………… ……………………………………xii

CHAPTERS

1 INTRODUCTION ……………………………… …………………………………….. .1

1.1 Advantage of Providing the Active Capability to the Relational DBMS3
1.2 The Reason for Choosing Oracle...3
1.3 The Contributions ..4

2 OVERVIEW OF RELATED WORK …………… ……………………………………. 6

2.1 Sentinel..6
2.2 Ode..7
2.3 ADAM ..8
2.4 Starburst ..9
2.5 ACCOD...9
2.6 The GATEWAY Approach..11

3 DESIGN ISSUES OF THE ECA AGENT ………………………………………….. . 13

3.1 The Architecture of the ECA Agent ...13
3.2 Java Local Event Detector (Java LED)...16
3.3 Rule Scheduler...17
3.4 Snoop Preprocessor ...18
3.5 Java Database Connectivity..18
3.6 Interaction between the ECA Agent Modules...20

4 IMPLEMENTATION ISSUES OF THE ECA AGENT……………………………. . 22

4.1 System Tables..22
4.1.1 "SysPrimitiveEvent" ...22
4.1.2 "SysCompositeEvent" ...23

vii

4.1.3 "SysEcaTrigger"..24
4.1.4 "SysContext"...25
4.1.5 "EventContext" ...25
4.1.6 "Version" ..26
4.1.7 "Stock" ...27

4.2 The Language Filter and ECA Parser ...27
4.3 Persistent Manager...29
4.4 Snoop Preprocessor ...31
4.5 Action Handling by the Java LED..34

5 IMPLEMENTATION OF PRIMITIVE EVENTS…………………… …………….. . 35

5.1 Trigger Mechanism for Events by the ECA Agent System35
5.2 Syntax of Primitive Events...36
5.3 Processing of Primitive Event ..37
5.4 Syntax for an Existing Primitive Event ..42
5.5 Syntax of Dropping a Trigger ..44

6 IMPLEMENTATION OF COMPOSITE EVENTS…………………………………. 46

6.1 The Syntax of Composite Events ...46
6.2 The Processing of Composite Events ...47
6.3 Event Notification and Composite Event Detection..52
6.4 ECA Action ...55
6.5 Parameter Context ...56

7 CONCLUSIONS AND FUTURE WORK ………………………………………….. . 61

7.1 Conclusions ...61
7.2 Contributions ...62
7.3 Future Work ..62

LIST OF REFERENCES …………………………… ………………………………….. . 64

BIOGRAPHICAL SKETCH ……………………… ……………………………………. 66

viii

LIST OF TABLES

Table Page

4.1 SysPrimitiveEvent ...22

4.2 SysPrimitiveEvent after the event addStk ..23

4.3 SysCompositEvent after the event addDel..23

4.4 SysCompositEvent...24

4.5 SysEcaTrigger ...24

4.6 SysEcaTrigger after the event addStk ..24

4.7 SysContext ..25

4.8 SysContext after addDel related to RECENT context...25

4.9 EventContext...25

4.10 EventContext table after the composite event, addDel..26

4.11 Version ….. ..26

4.12 Stock. ..27

4.13 Stock table after one operation (insert)...27

5.1 Stock_inserted and Stock_deleted. ...39

5.2 SysEcaTrigger after the existing event (addStk) definition ..44

6.1 notify table ...52

6.2 notify table after a primitive event ..52

6.3 Stock_inserted_tmp and Stock_deleted_tmp ..57

6.4 EventContext...57

ix

6.5 SysContext ..57

6.6 SysContext after the same events occur ...58

6.7 Stock_inserted_tmp after join ..58

6.8 Stock_deleted_tmp after join ...58

x

LIST OF FIGURES

Figure Page

2.1 ACOOD Architecture and Interactions...10

2.2 The Gateway Architecture ...11

3.1 General ECA Agent System..13

3.2 The Architecture of ECA Agent System ..14

3.3 Global Event History ...17

4.1 Language and Functional Modules in ECA Parser ...28

4.2 The Architecture of Persistent Manager ...30

4.3 The Generated Java Files ...33

5.1 Oracle SQL Statement ...36

5.2 Primitive Event Definition using Oracle SQL Statement ..37

5.3 Parsing and Generating of Primitive Event...39

5.4 Notifiction Check ...42

5.5 Syntax of Defining a Trigger on Existing Event ...43

5.6 The Changed Event Definition on Existing Event ..43

5.7 Event Tree in the Java LED ..45

6.1 Syntax of Composite Event..46

6.2 Composite Event Definition...47

6.3 The Parsing and Generating of Composite Events..48

xi

6.4 Java LED Code Generation..49

6.5 Event and Rule Definitions for the Java LED in compositeevent.txt50

6.6 ECA Actions in Java LED ...51

6.7 Led.java File for Composite Event Detection...53

6.8 Method Call for Raising Primitive Events..53

6.9 The Java Dynamic Call by Java Reflection ..56

6.10 SQL Code Generation for Parameter Context ..59

6.11 The Flow of Event Notification and Composite Event Detection................................60

xii

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science

A GENERALIZED ACTIVE AGENT SYSTEM
FOR EXTENDING THE ACTIVE CAPABILITIES OF A RDBMS

By

YoungHun Kim

December 2000

Chairman: Dr. Sharma Chakravarthy
Major Department: Computer and Information Science and Engineering

Database management systems (DBMSs) have evolved remarkably to meet the

requirements of emerging applications. One of the requirements is to satisfy the needs of

many applications that require a timely response to situations. Active database systems

have been proposed as a data management paradigm to represent real-world situations as

part of the database, and monitor and react to them automatically without user or

application intervention. Event Condition Action (ECA) rules are used to make a

database system active. In Relational Database System (RDBMS), ECA rules can be

defined by triggers. Events can be modifications of tables. Conditions can be the

checking of constraints. Rule part is defined in use of triggers. Even if a number of

research prototypes of active database systems have been built, ECA rule capability in

RDBMS is very limited. This thesis addresses the problem of turning a traditional

database management system into a true active database system without changing the

semantics of the existing system and provides a more generalized event definition

xiii

mechanism and extends the active capabilities of RDBMS to a fully active DBMS. The

advantages of this approach are very obvious. First, transparency is guaranteed. That is,

we can add the active capability without changing the client programs. Second, every

underlying functionality of the RDBMS is maintained. Third, ECA rules can be made

persistent using the native database functionality. Our approach is a generalized one

because an ECA Agent can connect any RDBMS.

Active database semantics can be supported on an existing SQL Server (we use

Oracle SQL Server as the test SQL Server) by the ECA Agent inserted between the SQL

Server and its clients. ECA rules are completely supported through the ECA Agent

without changing applications in the SQL Server. Both primitive and composite events

can be detected in the ECA Agent and actions are invoked in SQL Server. All events are

persistent in RDBMS. The Java Local Event Detector (Java LED) is used to notify and

detect both primitive events and composite events. The ECA Agent uses Java Database

Connectivity (JDBC) to connect to the SQL server. The architecture of the ECA Agent

and its implementation are elaborated in this thesis.

1

 CHAPTER 1
INTRODUCTION

Traditional database management systems (DBMSs) are referred to as passive

since any situation to be monitored over the state of the database has to be done explicitly

by the user or application by executing queries or transactions. This traditional view

makes DBMS limited as an information repository of data. During the last decade, the

need for making a DBMS capable of reacting to specific situations without user or

application intervention has been proposed. As a result, DBMSs have evolved to meet the

diverging requirements of several classes of applications. Most new developments in

database technology represent real-world situations as a part of the database to monitor

and react to them automatically without user or application intervention. An Active

DBMS can continuously monitor situations to initiate appropriate actions in response to

database updates and the occurrence of particular states automatically.

A frequently mentioned example to distinguish the difference between a passive

DBMS and active one is a hospital environment. If an electrocardiogram is being

recorded in a database for an intensive care unit patient, a doctor or nurse is responsible

for checking the data values over a period to determine an emergency state of the patient

in the view of the passive database. However, in an active database, DBMS will alert the

doctor when it detects any state of emergency based on the set of rules triggered as a

result of the updates. The monitoring of situations can be done by defining ECA rules on

events of interest. ECA rules consist of three components: An event, a condition, and an

2

action. An event is an indicator of a happening which can be either simple or complex.

Most events are state changes produced by database operations (e.g., a method

invocation or a database update). The condition can be a simple or a complex query based

on the existing database states and set of data objects, transitions between states of

objects, or event trends and historical data. Actions specify the operations to be

performed when an event has occurred and the condition evaluates to true. After ECA

rules are specified declaratively, it is the responsibility of the DBMS to monitor the

situation and trigger the rules when the condition is satisfied. There have been a number

of prototypes of active database systems that have been developed, such as HiPAC

[CHA89], Sentinel [CHA93], Starburst [WID96], Postgres [STO91], etc. The prototype

prototypes listed are representative of a much larger number of active database systems

that have been designed using an integrated approach. That is, the production rule

components of active database systems have typically been integrated directly into the

kernel of the DBMSs. The implementation of an integrated approach requires access to

the internals of a DBMS into which the active capability is being integrated. This

requirement of access to internal code makes the cost high and integration time long as

well. This thesis starts with the fact that no commercial DBMS supports full active

capability although a lot of active database technologies are proposed and with the

question whether it is possible to turn a commercial DBMS into a true active DBMS

without making any changes to the underlying system [LEE 98]. This thesis considers

the possibility of adding the active capability to Oracle DBMS. This thesis introduces an

approach which adds an agent between the Oracle SQL Server and the client to provide

full ECA functionality to the user.

3

1.1 Advantage of Providing the Active Capability to the RDBMS

There are many reasons why the use of a generalized architecture is appropriate

for adding full active capability transparently:

• Maintenance of System functionality: None of the existing RDBMS’

functionality would be lost.

• Scalability: The architecture would be more scaleable.

• Portability: Once an ECA Agent has been developed, it may be ported to other

DBMSs.

• Transparency: The clients are unaware of the agent introduced between the

client and the server.

1.2 Reasons for Choosing Oracle as Test DBMS

Oracle has many features which facilitate the implementation of an active

component on top of an existing database. The features that have been exploited in our

approach are the following:

• Oracle DBMS provides relatively simple active rules using triggers although it is

generally limited compared with the active database prototypes such as Sentinel, Ode,

etc.

• Oracle DBMS offers Cursors. A cursor is a handle or name for a private SQL area –

an area in memory in which a parsed statement and other information for processing

the statement are kept. We use the feature of Oracle to issue recursive SQL

statements. Recursive calls are made for those recursive cursors. These recursive

cursors use a shared SQL area.

4

• Oracle is an open architecture and can be connected to any application using many

connection tools.

Another advantage of Oracle is that its Open Client database API is widely accepted in

industry, and many products and applications support the Oracle database library.

1.3 The Contributions

The contributions of this thesis are the following :

• This thesis presents a generalized approach that significantly extends the

Oracle ECA functionality:

1. A client can create multiple triggers on the same event.

2. A client can create composite events and triggers on them.

3. Previously defined events can be reused.

4. Triggers associated with primitive or composite events can be dropped.

5. Once events are created, they can be persisted into the database system.

6. All primitive events and composite events can be detected, and

actions are invoked in SQL server.

• This thesis discusses alternative approaches and shows why this generalized

approach is appropriate.

• This thesis presents the architecture of a generalized ECA Agent system and

how an ECA Agent is implemented.

Related work is discussed in chapter 2. The technology used to design ECA

Agent system is described in chapter 3. Chapter 4 presents how the ECA Agent

has been implemented. Chapter 5 and chapter 6 respectively explain the

5

implementation of primitive events and implementation of composite events.

Chapter 7 includes the conclusion of this thesis and future work.

6

CHAPTER 2
OVERVIEW OF RELATED WORK

2.1 Sentinel

Sentinel is an Object Oriented Active Database System. It integrates ECA rules

capability into the kernel of Open OODB. The goal of integration is the enhancement of

Open OODB from a passive OODB to an active OODB by incorporating primitive event

detection and support for nested transactions as part of its kernel. In addition, it supports

composite event detection, and rule management as separate modules. It uses the Open

OODB Toolkit (from Texas Instruments) as the underlying platform. Sentinel has support

for events [CHA94a][CHA94b][CHA94c]:

• Primitive and composite event detection: Any method of any object class can be a

primitive event. Before and after variants of method invocation are permitted as

events. Composite events are formed by applying a set of operators such as AND, OR,

SEQ, etc.

• Parameter contexts: The processing of a composite event entails not only its detection,

but also the computation of the parameters associated with the composite event.

Parameter contexts are motivated by a careful analysis of several classes of

applications.

• Online and batch detection of events: The composite event detector needs to support

detection of events as they happen (online) when it is coupled to an application (in

batch mode).

7

• Inter-application (global) events: A global event detector (or GED) provides support

for composite events whose constituent events come from different applications.

 Sentinel has support for rules [CHA94a][CHA94b][CHA94c]:

• Multiple rules: An event can trigger several rules.

• Nested/cascading rules: Rule actions can raise events which trigger other rules.

• Coupling mode: Coupling modes refers to the execution point of condition/action

pair relative to the event.

• Rule scheduling: In the view of multiple rules and nested execution, the architecture

needs to support prioritized serial execution of rule, concurrent execution of all rules,

or a combination of the two.

2.2 Ode

Ode provides active behavior by incorporating rules in the form of constraints and

triggers. Both constraints and triggers consist of a condition and an action, and are

defined within a class definition. Events in Ode are implicit and are considered as the

disjunction of all non-constant public methods. Constraints are used to maintain the

notion of object consistency and hence are applicable to all instances of the class in

which they are declared [GEH91]. Triggers, on the other hand, are used for monitoring

database conditions other than those representing consistency violations and are

applicable only to those instances specified explicitly by the user at runtime. Triggers in

Ode are parameterized. The activation of all types of triggers occurs explicitly by the user.

Triggers are checked at the end of each method and are appended to a to-be-executed list,

8

if they evaluate to true. Trigger bodies are executed in separate transactions after the

commit (not necessarily immediately after) of the transaction firing them. More recently

Ode had proposed a language for specifying composite events. It specifies composite

events using a set of operators; events are declared with in a class definition. Basic

(primitive) events are defined and composite events are constructed by applying

operators to basic events. The basic events supported are object state events, method

execution events, timed events, and transaction events. The event operators supported are

relative, prior, sequence, choose, every, fa, and faAbs. Detection of events is

accomplished by using a finite automata.

2.3 ADAM

ADAM [DIA91] is an active OODB implemented in PROLOG. It focuses on

providing a uniform approach to the treatment of rules in an object-oriented environment.

Rules and events in ADAM cannot be specified as part of an object class specification.

Both events and rules are treated as first class objects which are created, deleted, and

modified in the same fashion as other objects. An object’s definition is enlarged to

indicate which rules to check when the object raises an event. Thus each class structure is

augmented with a class-rules attribute; this attribute has as its value the set of rules that

are to be checked when the class raises an event. A Rule-class is defined where each rule

is an instance of that class. The structure of the Rule-class consists of the attributes event,

active-class, is-it-enabled, disabled-for, condition, and action. The event attribute

indicates the event which triggers the rule, the active-class attribute indicates the class

name on which the rule is applicable, the is-it-enabled attribute specifies whether the rule

9

is enabled or not, the disabled-for attribute has as its value the set of instances for which

the rule is disabled while the condition and action attributes specify the rules condition

and action respectively. Rule operations are implemented as class methods. Only

primitive events are supported.

2.4 Starburst

The Starburst system is a prototype extensible relational DBMS developed at

IBM’s Almaden Prototype Center [WID96]. Starburst’s extensibility allows the database

system to be customized for advanced and non-traditional database applications. One of

Starburst’s extension is an integrated active database rule processing facility called the

Starburst Rule system.

The Starburst rule language differs from most of the other active database rule

languages in that it is based on permitting an execution semantics that is both cleanly

defined and flexible. The implementation of the Starburst Rule System was completed

rapidly and relies heavily on the extensibility features of Starburst. The Starburst rule

processor differs from most other active database rule systems in that it is completely

implemented, and it is fully integrated into all aspects of database processing, including

query and transaction processing, concurrency control, rollback recovery, error handling,

and authorization.

2.5 ACOOD

ACOOD is a prototype based on the ONTOSTM object-oriented DBMS which has

C++ as its base language. It was developed by Mikael Berndtsson and his prototype

10

group at the University of Skovde [BER91] and had been addressed in several reports

including [BER92] and [BER94].

ACOOD uses a layered approach to develop an active DBMS which means

ACOOD is put on the top of ONTOSTM and can use the functionality of this DBMS.

ACOOD provides the DBMS with active functionality. An application uses either the

ONTOSTM client interface for traditional database operations or the ACOOD interface to

provide active functionality. Figure 2.1 shows the architecture of ACOOD and its

interface.

ACOOD uses the concept of ECA rules. Events and rules are represented as first

class objects in ACOOD so that ACOOD supports runtime management of events and

rules.

Figure 2.1 ACOOD Architecture and Interactions

User Application

ACOOD

ONTOSTM

 Call Result
 Call

 Call

 Result

 Result
Method
Event

11

2.6 The GATEWAY Approach

 The Gateway approach is implemented in [VAN96]. The Gateway architecture is

a layered API approach. Figure 2.2 shows the Gateway architecture. The layer of the

Gateway approach is transparent to the client. Open Server (ECA Server in the figure) is

used for this approach. The ECA Server receives a requirement and connects the SQL

Server and sends all information to the SQL Server. The SQL Server authenticates the

client and creates the connection. After connection is made, the Gateway takes control of

the client process.

Figure 2.2 The Gateway Architecture

The ECA Server preprocesses the SQL language and procedure requests from the client.

The coupling mode of events is processed to determine the execution points of events in

the ECA Server. The advantage of this architecture is the following:

• According to the coupling mode, both immediate and deferred trigger semantics are

Client

Client

Client

SQL Server

ECA SERVER (Open Server)

12

 implemented.

• Parallel execution of ECA Server and SQL Server is possible.

• Events are generated in the correct order.

• Events are not lost.

• Performance will be enhanced.

13

CHAPTER 3
DESIGN ISSUES OF THE ECA AGENT

This chapter discusses the design issues of the ECA Agent. They include the

architecture of an ECA Agent, the Java LED, and the SNOOP preprocessor. This chapter

shows how they are related to each other and the design an ECA Agent.

3.1 The Architecture of the ECA Agent

An ECA Agent is a general method in the sense that it can be used with any kind

of relational DBMSs such as Oracle, DB2, Sybase, Informix, etc. In this section, we give

the general design of an ECA Agent as it is shown in Figure 3.1. An ECA Agent provides

the client interface. The ECA Agent (called the ECA Server) works between multiple

clients and the SQL server. The message from clients is sent to the ECA Agent and then

the ECA Agent sends it to SQL server. The Result from the SQL Server is returned to the

client via an ECA Agent.

The ECA Agent is a multithreaded program. It is placed between clients and the

SQL Server so that the SQL Server can provide active capabilities with full user

transparency.

Figure 3.1 General ECA Agent System

Client

Client

Client

ECA Agent

Oracle SQL
Server

DB2 SQL
Server

Sybase SQL
Server

14

From the point of the user, the ECA Agent works as a virtual active SQL Server. Not

only can it provide all the native functions of a relational DBMS, but also it provides all

the ECA active functions. Figure 3.2 shows the architecture of the ECA Agent system.

Figure 3.2 The Architecture of ECA Agent System

The following functional modules provide active capabilities:

• Language Filter: First, all client requests are sent to the Language Filter. The

Language Filter filters the request to determine if it is an ECA command

(extended SQL command) or a pure SQL command. If it is an ECA command,

it is sent to the ECA Parser. If it is an SQL command, it is sent to the SQL

Server through the Java database connection (JDBC).

ECA Agent (ECA Server)

JDBC

Client

SQL Server

Language Filter

ECA Parser

Java LED
Persistent Manager

Action Handling

SNOOP
Preprocessor

15

• ECA Parser: An ECA command from the Language Filter is scanned and

parsed. If there are no syntax errors, the parser generates the corresponding

events and rules which can be detected by the Java LED. The events and rules

are sent to the Persistent Manager by the Parser.

• Java Local Event Detector: In a relational DBMS, primitive events can only

be detected by triggers. We use the Java LED to detect and execute the rules

(condition/action pair) associated with composite events.

• Persistent Manager: All events and rules need to be stored into the relational

DBMS for subsequent use. The Persistent Manager stores all ECA

information into system tables in a relational DBMS. The Persistent Manager

restores the needed events and rules from these tables when the ECA Agent

starts or recovers.

The system tables include:

1) SysPrimitiveEvent: This table stores primitive events.

2) SysCompositeEvent: This table stores information about composite

events.

3) SysECATrigger: Every trigger in system is stored in this table.

• Java Database Connectivity (JDBC): JDBC is used to connect the ECA Agent

to the SQL Server. Clients can request not only relational SQL commands but

also user defined commands through JDBC, and JDBC gets values from the

SQL server which are sent back to clients.

16

• Action Handling: When events occur, the related action defined for the event

need to be executed. Actions can be the modification of a system table by

SQL operation such as insertion, deletion, or update.

3.2 Java Local Event Detector (Java LED)

The Java LED is used to detect composite events. The Java LED detects events in

Java applications (user APIs). An event can be a method call from applications.

Composite events are detected according to parameter contexts such as RECENT,

CHRONICLE, CONTINOUS, and CUMULATIVE. These parameter contexts are

motivated by a careful analysis of several classes of applications. The parameter contexts

are classified as [KRI94]:

• Recent: In this context, only the most recent occurrence of the initiator for any event

that has started the detection of that event is used.

• Chronicle: In this context, for an event occurrence, the initiator, terminator pair is

unique. The oldest initiator is paired with the oldest terminator for each event.

• Continuous: In this context, each initiator of an event starts the detection of that event.

A terminator event occurrence may detect one or more occurrences of the same event.

• Cumulative: In this context, all occurrences of an event type are accumulated as

instances of that event until the event is detected.

Figure 3.3 shows the global event history. In the Recent context, the most recent

occurrence of an event is used to detect a composite event. The composite event A will

include the event instances { 1
3

1
2

2
1 ,, eee } (A is detected when 1

3e occurs) and { 2
3

2
2

2
1 ,, eee }

(A is detected again when 2
3e occurs). In the Chronicle context, a parameter of event A

17

is computed by using the event instances { 1
1e , 1

2e , 1
3e }. In the Continuous context, the

first occurrence of A has the instances { 1
1e , 1

2e , 1
3e }. The second occurrence of A consists

of the event instances { 2
1e , 1

2e , 1
3e }. In the Cumulative context, all occurrences of an

event are accumulated as instances of the event A when the event is detected.

1
1e 2

1e 1
2e 1

3e 2
2e 1

4e 2
3e 2

4e

Figure 3.3 Global Event History

The concept of parameter contexts is also used to detect composite events in the ECA

Agent.

3.3 Rule Scheduler

The rule scheduler is the functional module of the Java LED which controls rule

execution. A rule includes a condition and action of an event. In other word, the rule

scheduler controls the order of actions. For multiple rule execution, a number of sub-

transactions are spawned as a part of the application process. The order of the rule

execution is controlled by assigning appropriate priorities to each thread. The rule thread

A

^

;

E1 E2

E3

time

18

with the highest priority is to be executed first and rules of lower priority are to be

executed after the completion of the higher priority rules. A rule is also associated with a

coupling mode. Rules are to be executed based on their coupling modes. Rule created

with a immediate coupling mode are to be executed at the time the event occurs whereas

rules created with a deferred coupling mode are executed at a later time [DAS99].

3.4 Snoop Preprocessor

Snoop is the Event Definition Language (EDL) which the Sentinel group has

developed. Snoop provides an easier way for the user to define events. The preprocessor

parses user-defined event and rule specifications expressed in Snoop, and inserts

appropriate Java code the application program. In other words, the Snoop preprocessor

converts Snoop expressions into Java APIs to be inserted into the user program. We

discuss how this is done in Section 4.4.

3.5 Java Database Connectivity (JDBC)

The JDBC is the tool to connect the Java applications to the relational DBMS. In

our prototype, we use JDBC to send SQL statements from the client’s interface to the

relational DBMSs. The first thing we need to do is to establish the connection with the

DBMS which we want to use. There are three steps to do this:

1) Loading the Drivers: Loading the driver or drivers we want to use is very

simple and involves one line of code. If, for example, we want to use the

Oralcle driver, the following code loads it:

Class.forName(“oracle.jdbc.driver.OracleDriver”);

19

When we have loaded a driver, it is available for making a connection with a

DBMS.

2) Making the Connection: The second step in establishing a connection is to

have the appropriate driver connect to the DBMS. The following line of code

illustrates the general idea:

Connection con=DriverManager.getConnection(url,”Login”,”Password”);.

If we want to use Oracle as a test DBMS, the url should be

“jdbc:oracle:thin:@ tokyo.dbcenter.cise.ufl.edu :1521:ORCL.”

3) Creating the JDBC Statements: A Statement object is what sends the SQL

statement to the DBMS. We simply create a Statement object and then

execute it, supplying the appropriate execute method with the SQL statement

we want to send. For a SELECT statement, the method to use is executeQuery.

For statements that create or modify tables, the method to use is

executeUpdate. The following line of code is used to create the Statement

object ”stmt”:

Statement stmt = con.createStatement();.

We need to supply this statement to the method we use to execute this

statement:

Stmt.executeQuery(“select * from portfolio”);.

We can get the result from the RDBMS using the following line of code:

ResultSet rs= stmt.executeQuery(“select * from portfolio”);.

20

3.6 Interaction between the ECA Agent Modules

In this section, we discuss how each ECA Agent module works and

interacts. If a user sends his request to the Language Filter. The Language Filter

filters the user request to determine if the user request is a SQL command (insert,

delete, update, select, etc) or it is ECA command (extended create trigger

statement which includes event definition). SQL commands are directly sent to

SQL Server through JDBC. ECA commands, on the other hand, are sent to the

ECA Parser. The ECA Parser scans ECA command and checks if the trigger name

and the event name of the event are duplicates. Then the ECA Parser generates a

Java source file. For example, if the primitive event name is addStk and the user

name is ykim, the Java file name is ykimaddStk.java. After the file, ykimaddStk is

generated, it is compiled (we use the method exec() of java.lang.Runtime class to

compile a Java source file. Refer to the CompileFile method of

ConstructClass.java) and then the method, call_addStk is invoked by dynamic

method call using ExecuteMethod() of CallDynamicMethod class (we use the

method invoke() of ClassLoader class). The reason why we generate and compile

the Java source file and invoke the method is because we have to initialize the

Java LED and obtain the event handler of the event so as to detect a composite

event related to the primitive event (refer to Figure 6.11). If we have another

primitive event, delStk, the processing steps on the primitive event, delStk in the

ECA Parser is the same as those of the primitive event, addStk. If we have the

composite event, addDel (this event needs both addStk and delStk to be detected

by the Java LED), the Java source file, ykimaddDel.java is generated by the

21

ECA Parser and compiled by the exec() method of java.lang.Runtime class. The

call_addDel() method in the ykimaddDel.java file is invoked to initialize the

JavaLED and obtain the event handler of the composite event, addDel in the Java

LED. The only difference of file generation between primitive events and

composite events is the generated file (ykimaddDel.java) for the composite event,

addDel has the rule definition which includes a condition function and an action.

The Persistent Manager works on system table modifications. It stores trigger

information of both primitive and composite events into the system table,

SysECATrigger, event information of primitive events into the system table,

SysPrimitiveEvent, and event information of composite events into the system

table, SysCompositeEvent (refer to chapter 4 on system tables).

22

 CHAPTER 4
 IMPLEMENTATION ISSUES OF THE ECA AGENT

This chapter discusses the implementation of the ECA Agent system. In this

chapter, we elaborate on the purpose of the system tables and how they are formatted. In

this prototype, the system tables store the persistent information on primitive events,

composite events, and ECA Actions. Each functional module is also examined in more

detail.

4.1 System Tables

4.1.1 “SysPrimitiveEvent”

The system table, SysPrimitiveEvent stores the information on primitive events.

The structure of SysPrimitiveEvent is shown in Table 4.1.

Table 4.1 SysPrimitiveEvent

dbname username eventname tablename Operation Beafoperation timestamp vno

The operation column includes the operation name on a relational table. In this prototype,

operation names should be one of Insert, Delete, and Update. The column, beafoperation

includes one of Before or After (Oracle has two kinds of operations such as a Before

operation and an After operation). The TimeStamp implies the time of the event

occurrence. Vno is the number of occurrences of the same event. When a primitive event

23

occurs, this table is populated with the corresponding items of the event. For example,

when the following trigger with a primitive event is defined:

[Create trigger t_addStk after insert on stock event addStk …….]

The system table, SysPrimitiveEvent contains the data shown in Table 4.2.

Table 4.2 SysPrimitiveEvent after the event, addStk

dbname username Eventname tablename Operation Beafoperation timestamp vno

ORCL ykim addStk stock Insert After 26-jun-00 0

4.1.2 “SysCompositeEvent”

The system table, SysCompositeEvent is used to store the information on

composite events. The structure of this table is shown in Table 4.3:

Table 4.3 SysCompositeEvent

dbname username eventname eventDescribe Timestamp Coupling context Priority

In Table 4.3, The coupling mode should be one of IMMEDIATE, DEFERED, and

DETACHED. The context can RECENT,CHRONICLE, CONTINUOUS, or

CUMULATIVE. The priority defines the priority of this composite event. The composite

event definion, addDel is shown below. EventDescribe shows which primitive events are

included to form this composite event and operator. A trigger with the composite event

definition is shown below:

[Create trigger t_addDel event addDel = addStk ^ delStk RECENT IMMEDIATE 1 ….]

24

After this trigger is defined, the system table, SysCompositeEvent contains the data

shown in Table 4.4.

Table 4.4 SysCompositeEvent after the event, addDel

dbname Username eventname eventDescirbe timestamp coupling context priority

 ORCL Ykim AddDel addStk^delStk 26-jun-00 Immediate Recent 1

4.1.3 “SysEcaTrigger”

This table is used to store the information on triggers created by the user. When

users define a trigger, a check for the trigger duplication should be made by searching

this table. The structure of the table, SysEcaTrigger is shown in Table 4.5.

Table 4.5 SysEcaTrigger

dbname Username Triggername TriggerProc timestamp eventname

The column, TriggerProc in Table 4.5 contains the name of the procedure defined on a

trigger. When the trigger fires, this procedure will be executed. Several different trigger

can be defined on the same event as is shown in Table 4.6 below. For example, when we

define the primitive event, addStk, the trigger named t_addStk is created automatically

inside the ECA Agent system for the insert operation, the delete operation as shown by

Table 4.6.

Table 4.6 SysEcaTrigger After the event, addStk

dbname Username Triggername TriggerProc timestamp eventname
ORCL Ykim t_addStk t_addStk_proc 26-jun-00 addStk

25

4.1.4 “SysContext”

The table, SysContext is used to store the occurrence number (Vno) of an event

associated with a context. This table is used for keeping track of event occurrences

associated with a composite event. The structure of this table is shown in Table 4.7.

Table 4.7 SysContext

EventName Context Vno

Suppose the event, addDel associated with the context, RECENT has occurred three

times. The following Table 4.8 shows the tuples inserted into SysContext table.

Table 4.8 SysContext after addDel related to RECENT context.

eventName Context Vno
addDel Recent 1
addDel Recent 2
addDel Recent 3

4.1.5 “EventContext”

Table EventContext is used to store information on primitive events and contexts

where a composite event occurs. The structure of the EventContext table is illustrated in

Table 4.9.

Table 4.9 EventContext

EventName Context
DelStk Recent

26

When the composite event, addDel occurs as the following:

[Create trigger t_addDel event addDel = addStk ^ delDtk RECENT …………….....]

the table, EventContext is shown in Table 4.10.

Table 4.10 EventContext table after the composite event, addDel

EventName Context
DelStk Recent
AddStk Recent

4.1.6 “Version”

This table is used to store the occurrence number of a primitive event. Initially,

this version number is zero. When a primitive event occurs, the version number of the

primitive event is increased by 1. The version number is also stored into the SysPrimitive

Event table. The structure of the table Version is shown in Table 4.11.

Table 4.11 Version

VNO
1

The Version number is given in the following way:

update SysPrimitiveEvent set VNO = VNO + 1 where EVENTNAME = ’addStk’;

delete from Version;

insert into Version select VNO from SysPrimitiveEvent where EventName = ’addStk’;

Event context and Version tables are joined into SysContext table for use with parameter

context. The join is executed by the trigger action on basic database operations such as

insert and delete in the Persistent Manager.

27

4.1.7 “Stock”

This table is used as a test table on which operations (primitive events) such as

insert, delete, and update are executed. The structure of the table is shown in Table 4.12.

Table 4.12 Stock

Symbol co_name price timestamp

When one event (one operation) occurs on this table, One tuple is inserted into this table.

An operation might look like the following:

insert into Stock values(‘KIM’,’IBM’,2132,sysdate); (in Oracle, sysdate command stores

current time stamp into system table).

Table 4.13 shows the Stock table after one operation, insert.

Table 4.13 Stock table after one operation (insert)

Symbol co_name price timestamp
KIM IBM 2132 26-jun-00

4.2 The Language Filter and ECA Parser

All client commands go through the Language Filter. The ECA Commands are

separated and sent to the ECA Parser. On the other hand, other SQL commands are sent

to the SQL Server via the JDBC. It is the responsibility of the Language Filter to

distinguish the types of ECA commands such as primitive event command, composite

event command, repeated event command, etc. The Language filter filters each event

command and then sends it to the corresponding functional modules in the ECA Parser.

28

In our implementation, functional modules are named CreatePrimitive(),

Createcomposite() and RepeatPrimitive() in the class ECAparser.

In the ECA Parser, the ECA commands are filtered into the ECA Parser from the

Language Filter. The ECA Parser tokenizes and parses the commands. The syntax

should be checked first. If there are no syntax errors, the ECA Parser will create

corresponding events and rules which depend on the Java Local Event Detector

(JavaLED). Figure 4.1 illustrates the Language Filter and the functional modules of the

ECA Parser.

Figure 4.1 Language and Functional Modules in ECA Parser

There are five functional modules:

1) Primitive Event Parser: This module parses a primitive event.

2) Composite Event Parser: This module parses a composite event.

YES

Language Filter

ECA

Command?
?

Primitive Event Parser

Composite Event Parser

Existing Primitive Event Parser

Existing Composite Event

Drop Trigger Function

NO

JDBC

SQL
Server

Client ECA Parser function modules

29

3) Repeated Primitive Event Parser: This module parses the repeated primitive

event. A repeated primitive event implies that a trigger has already been

created on the existing primitive event.

4) Repeated Composite Event Parser: This module parses the repeated composite

event. If a trigger has already been created on the existing composite event,

this functional module parses the event.

5) Drop trigger: If a client requests a SQL command such as “drop trigger

triggerName”, this module parses the SQL command.

4.3 Persistent Manager

When we run an application program, we often need to store data into memory

because we want to use them in the future. However, when the application program

terminates, the memory used for that application is recovered by the operating system.

Non-DBMS environments use the file system to store data across application runs. In a

Relational DBMS, we can use system tables to do this. The Persistent Manager does this

as part of the ECA agent. In the ECA Agent System, the only data that we keep in

relational DBMS are the ECA rules. The Persistent Manager is in charge of the

management of the ECA rules. The list below shows the functions of the Persistent

Manager:

• Maintain system triggers: These triggers define the actions which should be

executed when either primitive events or composite events occurs.

• Maintain system tables: All related system tables are managed by the

Persistent Manager, based on system triggers.

30

• Persist ECA rules: The information of all the ECA rules is stored into the

Relational DBMS.

• Restoration of the ECA rules: When system restarts, all ECA rules can be

restored.

Figure 4.2 illustrates the Architecture of Persistent Manager.

Figure 4.2 The Architecture of Persistent Manager

When a user connects the ECA Agent system, a thread serving one client is created. The

persistent Manager runs inside the thread. It generates ECA rules for the triggers stored in

the system tables of the RDBMS.

The generated ECA rules for triggers is sent to the RDBMS through JDBC and is used as

trigger action parts when a related event occurs .

Client ECA Agent

Generate all ECA rules
RDBMS
(System
Tables)

Persistent Manager

JDBC

31

4.4 Snoop Preprocessor

Snoop, the Event Definition Language has been developed to provide users with

an easier syntax for event type definition. There are several event operators such as AND,

OR, SEQ, NOT, etc We need to preprocess Snoop expressions to java APIs.

SPP has been developed using the Java Compiler Compiler (JavaCC) by the

Sentinel research group at the University of Florida. It converts Snoop, the Event

Definition Language, into Java APIs so that users can include Snoop expressions in their

APIs and compile them. Snoop expressions are the following:

1) Primitive event expression: event begin (sellStockBegin : Vktest (class name) :

IBM (instance name)) void sellStock(float price);

2) Composite event expression: event addDel = delStk ^ addStk ;

3) Rule expression: rule r1[e_plus, condition, action, 2, IMMEDIATE,

 RECENT];

The following Java APIs are created by the Snoop preprocessor for both a primitive event

and a composite event.

1) The API of primitive event: EventHandle sellStockBegin =

myAgent.createPrimitiveEvent("sellBegin", "VkTest",EventModifier.BEGIN,

"void sellStock(int)", DetectionMode.SYNCHRONOUS);

2) The API of composite event: EventHandle seqEvent =

myAgent.createCompositeEvent (EventType.SEQ,"e8", sellSell , buyandGet);

3) The API of rule: myAgent.createRule("R1", seqEvent,"VkTest.True",

"VkTest.displayPrice", 1 , CouplingMode.DEFAULT, Context.RECENT);

32

In ECA Parser, “username+eventname.java” (for example, ykimaddStk.java or

ykimdelStk.java) files are generated to create primitive events and to get event handlers

in the Java LED. Primitive events are created in the method, CreatePrimitive(). Those

Java files include one of the Java LED methods, createPrimitiveEvent(), to get the

EventHandler for the primitive event. “username+eventname.java” (in this case,

ykimaddDel.java) is also used to detect a composite event using the method,

Createcomposite(). Snoop expressions in a composite event definition are parsed into

input_composite.txt and converted into Java APIs by Snoop Preprocessor(See the file,

Snoop.java). Those Java APIs are stored into “compositeevent.txt” and includes the

definition of a composite event and the definition of a rule. The contents of the file,

compositeevent.txt are inserted into “ykimaddDel.java”. Whenever each Java file (in

this case, ykimaddStk.java, ykimdelStk.java, ykimaddDel.java) is generated, it need to

be compiled to get its class file. We use Java Dynamic method call to invoke the method,

call_addStk() in ykimaddStk.java, the method, call_delStk() in ykimdelStk.java and

the method, call_addDel() in ykimaddDel.java. The Java LED methods,

createPrimtiveEvent() and createCompositeEvent() are executed to get event handlers

inside call_eventname methods. Whenever primitive events such as insert and delete

occur, those primitive events are raised (registered into event tree) to the Java LED by

using “raiseBeginEvent()” in the file, Led.java. Figure 4.3 shows the generated files

which are described in the section.

33

Figure 4.3 The Generated Java Files

 import Sentinel.*;
 import java.util.Vector; //ykimaddStk.java
 import java.util.Hashtable; import java.util.Enumeration;
 public class ykimaddStk{ public static EventHandle addStk =null; public static void call_addStk() { ECAAgent myAgent
= ECAAgent.initializeECAAgent();
 addStk = myAgent.createPrimitiveEvent("addStk","Led", EventModifier.BEGIN, "void addStk()",
DetectionMode.SYNCHRONOUS); } }

 import Sentinel.*;
 import java.util.Vector; //ykimaddDel.java
 import java.util.Hashtable;
 import java.util.Enumeration; public class ykimaddDel{
 static String rdbms = ""; static String url = ""; static String username = ""; static String password = "";
 public static EventHandle ykimaddDel =null;
 public static void call_addDel(String Prdbms, String Purl, String Pusername, String Ppassword) {
 rdbms = Prdbms;
 url = Purl; username = Pusername; password = Ppassword;
 ECAAgent myAgent = ECAAgent.initializeECAAgent();
 ykimaddDel =
myAgent.createCompositeEvent(EventType.AND ,"event_ykimaddDel" ,(EventHandle)ykimdelStk.delStk ,(EventHandle)ykim
addStk.addStk);
 myAgent.createRule("Rule_addDel",ykimaddDel,
"ykimaddDel.True" ,"ykimaddDel.addDelykim" ,1 ,CouplingMode.IMMEDIATE ,Context.RECENT);
}
 public static boolean True(ListOfParameterLists parameterLists)
 System.out.println("***** From Condition ***** ");
 return true;}
 public static void addDelykim(ListOfParameterLists paramLists)
 String paraspc = "delete from parameterContext";
 Jdbc storedPara = new Jdbc(rdbms,url,username,password, paraspc);
 storedPara.ExecuteSqlUpdate("delete from parameterContext ");
 String spc0 = "delete from stock_deleted_tmp";
 Jdbc storedProCom0 = new Jdbc(rdbms,url,username,password, spc0);
 storedProCom0.ExecuteSqlUpdate("delete from stock_deleted_tmp");
 spc0 = "insert into stock_deleted_tmp select * from stock_deleted, sysContext where sysContext.context='RECENT' and
sysContext.EVENTNAME='delStk' and stock_deleted.vNo=sysContext.vNo";
 storedProCom0 = new Jdbc(rdbms,url,username,password, spc0);
 storedProCom0.ExecuteSqlUpdate("insert into stock_deleted_tmp");
 String Para_spc0= "insert into parameterContext select * from sysContext where vno in (select max(vno) from sysContext
where eventname='delStk') and eventname='delStk'";
 Jdbc storedPara0= new Jdbc(rdbms,url,username,password, Para_spc0);
 storedPara0.ExecuteSqlUpdate("insert into parameterContext ");
 String spc1 = "delete from stock_inserted_tmp";
 Jdbc storedProCom1 = new Jdbc(rdbms,url,username,password, spc1);
 storedProCom1.ExecuteSqlUpdate("delete from stock_inserted_tmp");
 spc1 = "insert into stock_inserted_tmp select * from stock_inserted, sysContext where sysContext.context='RECENT' and
sysContext.EVENTNAME='addStk' and stock_inserted.vNo=sysContext.vNo";
 storedProCom1 = new Jdbc(rdbms,url,username,password, spc1);
 storedProCom1.ExecuteSqlUpdate("insert into stock_inserted_tmp");
 String Para_spc1= "insert into parameterContext select * from sysContext where vno in (select max(vno) from sysContext
where eventname='addStk') and eventname='addStk'";
 Jdbc storedPara1= new Jdbc(rdbms,url,username,password, Para_spc1);
 storedPara1.ExecuteSqlUpdate("insert into parameterContext ");}}

import Sentinel.*;
 import java.util.Vector; //ykimdelStk.java
 import java.util.Hashtable;
 import java.util.Enumeration; public class ykimdelStk{
 public static EventHandle delStk =null;
 public static void call_delStk(){
 ECAAgent myAgent = ECAAgent.initializeECAAgent();
 delStk = myAgent.createPrimitiveEvent("delStk","Led", EventModifier.BEGIN, "void delStk()",
DetectionMode.SYNCHRONOUS); } }

34

 Figure 4.3 -- continued

4.5 Action Handling by the Java LED

The Actions executed by the Java LED can be the execution of SQL commands

in the Oracle Server, the update of system tables, and the invocation of stored procedures

by action method executed when a composite event is detected. Every ECA rule has its

event definition as well as rule (only action in case of a trigger) definition. Every event

action is processed according to its rule definition. We will discuss the Java LED actions

in the section 6.2 and Figure 6.6.

import Sentinel.*;
import java.util.Vector; //Led.java
import java.util.Hashtable;
import java.util.Enumeration;
public class Led {

 //PrimitiveEventMethod
 public void PrimEvent(String eventname,String tablename, int vno) {

 EventHandle[] eventHandler = ECAAgent.getEventHandles(eventname);
 ECAAgent.insert(eventHandler,"eventname",eventname);
 ECAAgent.insert(eventHandler,"tablename",tablename);
 ECAAgent.insert(eventHandler,"vno",vno);
 ECAAgent.raiseBeginEvent(eventHandler, this);
 System.out.println("***** raiseBeginEvent ***** " + eventname);
 }
 //ECA_Condition
 public static boolean True(ListOfParameterLists parameterLists) {
 System.out.println("***** From Condition ***** ");
 return true;
 }
}

35

CHAPTER 5
IMPLEMENTATION OF PRIMITIVE EVENTS

This chapter discusses the implementation details of primitive event detection.

Although relational DBMS (RDBMS) provides a trigger mechanism, it is very limited in

defining events, conditions, and actions. The need of a full-fledged active capability is

required by many applications. The ECA Agent System uses the trigger mechanism of

RDBMS to support active capability and extends it significantly to turn the RDBMS into

a fully active DBMS.

5.1 Trigger Mechanism for Events by the ECA Agent System

Triggers supported by the RDBMS have a number of limitations:

• A trigger cannot be applied to more than one table. (Sybase and DB2 5.0 has

this limitation, but Oracle and DB2 6.0 do not have this limitation any more).

• Composite event is not allowed.

• New event on a table for the same operation(insert, delete or update)

overwrites the previous one without warning message.

• Only atomic values (not tables) can be passed as parameters to stored

procedures.

The ECA Agent overcomes those limitations by providing a complete active

database capability. The functionality extended by the ECA Agent is the following:

• We can specify any number of triggers on the same event. Suppose that we

have already defined one primitive event as follows:

36

 Create trigger t_addStk on Stock after insert event addStk… … …

Once one trigger is defined, we can define another trigger on the same event

as follows:

Create trigger t_addStk1 on Stock after insert event addStk… … …

We can add different trigger actions on the same event to the original trigger

actions.

• Composite events: A composite event is constructed by using primitive events,

event operators and previously defined composite events.

• Drop trigger: Triggers on either primitive events or composite events can be

dropped (we discuss the details of dropping triggers in the Section 5.5)

5.2 The Syntax of Primitive Events

In this section, we describe how we define a primitive event using SQL statement.

In defining a primitive event, the only difference between Oracle SQL statement and this

ECA Agent statement for primitive event is the event declaration using the keyword,

event. That is, we extend the trigger definition to provide ECA active capability. Figure

5.1 shows Oracle SQL statement. Figure 5.2 shows syntax of primitive event definition of

the ECA Agent using Oracle SQL grammar.

Figure 5.1 Oracle SQL Statement

create trigger t_addStk after insert on stock
for each row
begin
dbms_output.put_line('trigger t_addStk occurs on primitive event, addStk');
end;

37

create trigger t_addStk after insert on stock event addStk
for each row
begin
dbms_output.put_line('trigger t_addStk occurs on primitive event, addStk');
end;

Figure 5.2 Primitive Event Definition using Oracle SQL Statement

A primitive event is defined on the table Stock, for the operation insert, in the above

example. The trigger definition for the primitive event is written by SQL statement

between begin and end and executed in the SQL server.

5.3 Processing of a Primitive Event

The processing of a primitive event involves parsing and generation of the

primitive event node in the event graph. Figure 5.3 shows the processing steps of the

primitive event. The processing of the primitive event includes the following steps:

1) Syntax check: The command is checked. If a syntax error is found, an error

message is returned to the client.

2) Duplication check on trigger: The duplication of trigger name is not allowed

in the RDBMS. Trigger name of an event is checked. If trigger name is

duplicated, an error message is returned to client.

3) Persistent code generation: SQL code is generated and persisted. The code

includes the following:

• Insert into SysEcaTrigger values (‘ykim’,’t_addStk’,’t_addStk_proc’,

sysdate, ’addStk’);

38

• Insert into SysPrimitiveEvent values

(‘ykim’ , ’addStk’, ’Stock’, ’insert’, ’after’, sysdate, 0);

4) Java LED code generation: If there is no error in defining a primitive event,

The ECA code is generated to create a primitive event node in the Java LED.

We create the primitive event, addStk using the Java LED as follows:

ECAAgent myAgent = ECAAgent.initializeECAAgent();

EventHandle addStk = myAgent.createPrimitiveEvent(“addStk”, “Led”,

EventModifier.BEGIN, “void addStk()”, DetectionMode.SYNCHRONOUS);

(This contents will be inserted into the file, ykimaddStk.java in our

implementation).

5) File generation: We create the new file to get an event handler for the

primitive event. (For example, in our implementation, ykimaddStk.java is

created. This file is compiled automatically and implicitly using Java Runtime

class). We use dynamic method call using Java Reflection (In our

implementation, the called method is call_addStk inside the file,

ykimaddStk.java).

6) Create related tables: The tables, Stock_inserted and Stock_deleted are created.

The Stock_inserted table is used to store the inserted tuples of a table. It is

very similar to table Stock except that it has VNO column. VNO is used to

store the occurrence number of the insert operation. For example, the event,

addStk is detected whenever a tuple is inserted into Stock table. VNO is

increased by 1 for each insertion. (The value of VNO is used to collect

39

parameter for composite event). Table 5.1 shows Stock_inserted and

Stock_deleted tables.

Table 5.1 Stock_inserted and Stock_deleted

symbol co_name Price timestamp Vno

ykim IBM 2132 26-jun-00 1

Figure 5.3 Parsing and Generating of Primitive Event

 NO

NO

Syntax check

Naming check

Error?

Error?

LED code
generation

Persistent Code
Generation

Java LED

SQL Server

Persistent
Manager

ClientLanguage Filter

 PPrriimmiittiivvee EEvveenntt PPaarrsseerr

JDBC

YES

YES

40

7) Trigger creation for primitive event: After an operation (insert or delete) is

executed on ‘Stock’, the trigger will be fired for the operation. The trigger for

the operation includes the following steps:

• Set and get event occurrence number:

Update SysPrimitiveEvent set VNO=VNO+1 where eventName

= ’addStk’;

Delete from Version;

Insert into Version select VNO from SysPrimitiveEvent where

eventName = ‘addStk’;

• Insert tuples into table, SysContext (to be used for composite event).

Delete from SysContext where eventName=’addStk’;

Insert into SysContext select * from eventContext, version where

eventContext.eventName =’addStk’;

Table, eventContext is made when we define a composite event.

• Insert an inserted tuple into table, Stock_inserted(in the table,

Stock_deleted, new is replaced with old).

Declare cursor c1 is select VNO from version;

begin

for VNO_rec in c1 loop

Insert into stock_inserted values

(:new.symbol ,:new.co_name, :new.price, :new.time, VNO_rec.VNO);

end loop;

end;

41

• Primitive Event Notification:

insert into notify select EVENTNAME, TABLENAME, VERSION.VNO

from SYSPRIMITIVEEVENT, VERSION where EVENTNAME

= ’addStk’;

When a primitive event occurs (in this case, insert operation), event

name and table name and version number are inserted into notify table.

Then, all the contents of notify table on the primitive event are inserted

to the Java LED using primEvent method of Led.java when a primitive

event occurs. The raiseBeginEvent method inside primEvent raise the

primitive event (refer to LED.java file). For example, when insert

operation (primitive event: “insert into stock values(……..)”) occurs,

the SQL statement goes to the Language Filter as follows:

//in serveOneClient.java

String qs1 = "delete from notify";

 Jdbc createTableSql = new Jdbc(rdbms,url, username,password, qs1);

 createTableSql.ExecuteSqlUpdate("initialize table notify ");

// before client send SQL statement to Language Filter, ECA Agent delete all contents of

notify table. ………………………….

LanguageFilter lf=new LanguageFilter();

result=lf.filter(sqlhost,rdbms,database,url,username,password,sqlstate

ment); //at this point, ECA Agent knows client sent the server his request. Before the result

is returned back from Language Filter, The server will make the contents of notify table if the

SQL statement is primitive event operation. (notify table content is changed only by the

trigger action on a primtive event (insert or delete)). Here, at this point, we check if notify

table contains a tuple on the event(this one must be guaranteed because notify table content is

42

created only when insert or delete opreation occurs and its trigger is activated). Notity

table check is shown in Figure 5.4.

Figure 5.4 Notification Check

// Now, the Event can be notified to the Java LED.

……………….

out.println(result); //the result returns back to client.

5.4 Syntax for an Existing Primitive Event

Once an event is defined, the user can define additional trigger on the event.

Figure 5.5 illustrates the syntax of defining trigger an a previously defined event.

 String qs2 = "select eventname from notify";
 Jdbc selectSql = new Jdbc(rdbms,url,username,password,qs2);
 qs2 = selectSql.GetFromNotify().trim ();
 String en = selectSql.GetFromNotify().trim ();

 if (!en.equals("F") && !en.equals("Empty")) // if trigger has been fired
 { qs2 = "select TABLENAME from notify";
 selectSql = new Jdbc(rdbms,url,username,password,qs2);
 String tn = selectSql.GetFromNotify().trim ();

 qs2 = "select VNO from notify";
 selectSql = new Jdbc(rdbms,url,username,password,qs2);
 String vnos = selectSql.GetFromNotify().trim ();
 Integer vnoi = new Integer(vnos);
 int vno = vnoi.intValue();

 if(test1 == null) test1 = new Led(); // new Led class instance because we
declare

 // Led test1 = null; above
 test1.PrimEvent(en,tn,vno); //to raise primitive event. This one raise
an event in
 // the Java LED
 }

43

Create trigger t1_addStk
for each row
begin
dbms_output.put_line('trigger t1_addStk occurs on existing event, addStk');
end;

after insert on Stock

Figure 5.5 Syntax of Defining a Trigger on Existing Event

In this example, we do not have to declare after [operation] and on [table-name]. In our

implementation, if user creates another trigger on an existing event, Repeated Primitive

Event Parser (the method, RepeatPrimitive(………) in ECAparser class) is called. Then,

syntax is changed to original Oracle SQL syntax shown in Figure 5.6. This functionality

is used to add an additional trigger action to an existing event.

Figure 5.6 The Changed Event Definition on Existing Event

After this trigger definition, only SysEcaTrigger table is updated adding the tuple (as

shown in shadow in Table 5.2):

Create trigger t1_addStk event addStk
for each row
begin
dbms_output.put_line('trigger t1_addStk occurs on existing event, addStk');
end;

44

Table 5.2 SysEcaTrigger after the existing event (addStk) definition

Dbname Username Triggername Triggerproc timestamp eventname

ORCL Ykim t_addStk t_addStk_proc 26-jun-00 addStk
OORRCCLL YYkkiimm TT11__aaddddSSttkk tt11__aaddddSSttkk__pprroocc 2266--jjuunn--0000 aaddddSSttkk

5.5 Syntax of Dropping a Trigger

The Syntax of dropping a trigger is the following in the Oracle DBMS:

Drop trigger trigger_name;

Our implementation also uses the same syntax for user transparency. This drop command

is requested by user, our implementation checks if this trigger is defined on a primitive

event or a composite event. If it is defined on a primitive event, it invokes the “Drop

Trigger on Primitive” method. If the trigger is defined on a composite event, “Drop

Trigger on Composite” method is invoked. If the trigger did not be defined on a primitive

event or a composite event, the trigger is considered as original RDBMS trigger.

When the client sends a drop trigger request to the ECA Agent, the ECA Agent

takes the following steps:

1) Delete the tuple related to the trigger from the table, SysEcaTrigger.

2) Drop the trigger in the Oracle RDBMS.

3) Before a primitive event is removed from SysPrimitiveEvent table, we first

need to check if another trigger has been created for the event. If there are no

other triggers defined on the primitive event, remove that event tuple from

the table, SysPrimitiveEvent. If there is a trigger defined on the primitive

event, the event cannot be removed from SysPrimitiveEvent.

45

We do not need to remove the primitive event from the Java LED because we can use

the primitive events in the next use for another composite event (remember that

predefined primitive events can be used to define new composite event in the Java LED

as shown in Figure 5.7). The next time the user logs in, the event tree created is only for

the events that exist in the table. At that time, the node will not be created.

Figure 5.7 Event Tree in the Java LED

E1 E2

 E3

 ^
 | >>

 E4 E5Composite event:

Event operators:

Primitive
events:

46

CHAPTER 6
IMPLEMENTATION OF COMPOSITE EVENTS

In this prototype, not only primitive events are supported but also composite

events are supported while Relational database systems (RDBMSs) do not support

composite events. In this chapter, we discuss the implementation of composite events. It

includes the syntax of composite events, the parsing and generation of composite events,

event notification, ECA action and parameter context.

6.1 The Syntax of Composite Events

To provide a composite event capability, we need to extend a trigger definition.

Figure 6.1 shows the syntax of a composite event definition.

Figure 6.1 Syntax of Composite Events

create trigger trigger_name
event event_name [= Snoop_expression] [coupling_ mode] [parameter_context] [priority]
begin SQL_statements end;
coupling_mode := RECENT | CHRONICLE | CONTINUOUS

 | CUMULATIVE
parameter_context := IMMEDIATE | DEFERED | DETACHED
priority := positive integer

Snoop_expression ::= E1
E1 ::= E1 OR E2 | E2
E2 ::= E2 AND E3 | E3
E3 ::= E3 SEQ E4 | E4
E4 ::= NOT (E1, E1, E1) | A (E1, E1, E1) | A* (E1, E1, E1)

 | P (E1, [time string], E1) | P* (E1, [time string], E1)
 | [time string] | E1 PLUS [time string] | (E1) | event_name

47

create trigger t_addDel
for each row
begin
dbms_output.put_line('trigger t_addDel occurs on composite event, addDel');
end;

We use the keyword, event to indicate composite events. The Coupling mode is used to

define event execution time (The default mode is IMMEDIATE). Parameter Context is

also used to collect event instances in the Java LED (The default context is RECENT).

We use Snoop, event definition Language to declare a type of composite event in SQL

trigger statement. The BNF of Snoop is also shown in Figure 6.1. Figure 6.2 shows the

composite event definition.

 Figure 6.2 Composite Event Definition

6.2 The Processing of Composite Events

When clients define SQL trigger command as composite event, the command

from clients goes through the Language Filter and then it is sent to the Composite Event

Parser. The Composite Event Parser will parse it and generate appropriate code for

activating the Java LED and persistent manager. Figure 6.3 shows the workflow of the

Composite Event Parser.

There are several steps to process composite events:

1) Syntax check : The command is checked. If a syntax error is found, an error

 message is returned to clients.

event addDel = addStk ^ delStk IMMEDIATE RECENT 1

48

2) Duplication check on trigger name: The duplication of trigger name is not

allowed in the RDBMS. Trigger name of an event is checked. If trigger name

is duplicated, an error massage is returned to clients.

Figure 6.3 The Parsing and Generating of Composite Events

NO

YES

NO

 NO

Syntax check

Naming check

Error?

Error?

Java LED

SQL Server

ClientLanguage Filter

 CCoommppoossiittee EEvveenntt PPaarrsseerr

JDBC

YES

YES

Snoop
Preprocessor

Error?

LED Code

Persistent
Code

Generation

Action Code Generation

49

Otherwise, event definition string (for example, event addDel = addStk ^ delStk) is sent

to Snoop preprocessor. The code generation for Java LED action is done by the ECA

parser. Figure 6.4 shows the code for Java LED.

Figure 6.4 Java LED Code Generation

 We can see the whole picture of ykimaddDel.java in Figure 4.3. The ECA

parser generates this file, compiles this file and calls the method call_addDel()

using Java Dynamic Method inside the method Createcomposite(). The

parameters of calll_addDel are abtained using Java Reflection Call inside the

method Createcomposite() of ECAParser.java.

 import Sentinel.*; //ykimaddDel.java
 import java.util.Vector;
 import java.util.Hashtable;
 import java.util.Enumeration;
 public class ykimaddDel{
 static String rdbms = "";
 static String url = "";
 static String username = "";
 static String password = "";
 public static EventHandle addDel =null;

 public static void call_addDel(String Prdbms, String Purl, String Pusername,
 String Ppassword) {

 rdbms = Prdbms;
 url = Purl;
 username = Pusername;
 password = Ppassword;
 ECAAgent myAgent = ECAAgent.initializeECAAgent();
 ………………
 }

50

3) Snoop Preprocessor: The Snoop preprocessor parses the event definition

string. If there is no error when the string is checked, the Snoop Preprocessor

creates the composite event in the Java LED. Event definition and Rule

definition are generated by the Snoop Preprocessor. Figure 6.5 shows the

composite event definition and rule definition after Snoop preprocessing.

“ykimdelStk.delStk” and “ykimaddStk” are the event handlers obtained by

compiling ykimdelStk.java and ykimaddStk.java generated in the ECA Parser.

We create a class with one variable(event handler) for each event. We see

these event handlers in Figure 4.3. This code is inserted into the Java LED

code of Figure 6.4. The Snoop Preprocessor creates two files. One is

eventlist.txt (this file includes the events need to define the composite event, is

generated by getEventlist method in Snoop.java and is used to make

eventContext table). The other is compositeevent.txt (this file includes the

event definition and rule definition converted from event definition string).

 Figure 6.5 Event and Rule Definitions for the Java LED in compositeevent.txt

4) ECA Action Generation: ECA Action for the composite event is executed by

calling the method “addDelykim(………) ”. The action method, addDelykim(………)

addDel = myAgent.createCompositeEvent(EventType.AND,
"addDel" ,(EventHandle)ykimdelStk.delStk,
(EventHandle)ykimaddStk.addStk);
 myAgent.createRule("Rule addDel",addDel,"Led.True",
"ykimaddDel.ykim" , 1,CouplingMode.DEFAULT,Context.RECENT);

51

includes the following SQL actions shown in Figure 6.6. The method addDelykim() is

generated in GetEcaAction() of AnalysisCompositeEvent.java when a user defines a

composite event. GetEcaAction() is called in Createcomposite() of ECAParser.java.

The action method addDelykim() is executed when the composite event, addDel is

detected by the Java LED.

Figure 6.6 ECA Actions in Java LED

5) Persistent Code Generation: The following SQL codes are persisted:

Insert into SysEcaTrigger values

(‘ORCL’, ’ykim’, ’t_addDel’, ’t_addDel_proc’, sysdate, ’addDel’);

Insert into SysCompositeEvent(‘ORCL’,’ykim’,’addDel’,’addStk ^ delStk’,

sysdate, IMMEDIATE, RECENT, 1);

delete from stock_deleted_tmp;

insert into stock_deleted_tmp select * from stock_deleted, sysContext
where sysContext.context='RECENT'
and sysContext.TABLENAME='stock'
and stock_deleted.vNo=sysContext.vNo;

delete from stock_inserted_tmp;

insert into stock_inserted_tmp select * from stock_inserted, sysContext
where sysContext.context='RECENT'
and sysContext.TABLENAME='stock'
and stock_inserted.vNo=sysContext.vNo;

52

6.3 Event Notification and Composite Event Detection

When primitive events occur, the SQL server executes a trigger action. This trigger

action will be in the SQL server. The Java LED should recognize those primitive events

to detect a composite event. In our implementation, we have created the table, notify to

put the information of the primitive events when a primitive occurs. Table 6.1 shows the

structure of notify table.

Table 6.1 notify table

Eventname Tablename Vno

After the primitive event (addStk) occurs, this table is changed as the following Table

6.2:

Table 6.2 notify table after a primitive event

Eventname Tablename Vno
addStk stock 1

This information on the primitive event in SQL server needs to be notified to

ECA Agent to detect a composite event. The Java LED is used to detect composite events.

The Java file, Led.java shown in Figure 6.7 is used to detect composite events:

53

Figure 6.7 Led.java File for Composite Event Detection

The method, PrimEvent(……….) is used to raise the specified primitive event by event

name. Event name, table name and version number are notified from SQL Server. When

a primitive event occurs, Led.java will get the event notification from SQL Server and

call the method, PrimEvent to raise the primitive event as shown in Figure 6.8.

Figure 6.8 Method Call for Raising Primitive Events

Suppose that the composite event (event addDel = addStk ^ delStk) is need to be detected.

When both addStk and delStk primitive events are notifed and raised, the composite

event addDel is detected. Figure 6.11 shows how the primitive events are notified from

import Sentinel.*;
import java.util.Vector;
import java.util.Hashtable;
import java.util.Enumeration;
public class Led {
public void PrimEvent(String eventname,String tablename, int vno) {

 EventHandle[] eventname = ECAAgent.getEventHandles(eventname);

 ECAAgent.insert(eventname,"eventname",eventname);
 ECAAgent.insert(eventname,"tablename",tablename);
 ECAAgent.insert(eventname,"vno",vno);

 ECAAgent.raiseBeginEvent(eventname,this);
 System.out.println("raiseBeginEvent :" + eventname);
 }
}

If (test1=null) test1 = new Led(); // Led class is initiated only one time.
test1.PrimEvent(eventname, tablename,vno); //raise primitive event.

54

SQL server to the Java LED and how the composite event is detected by the Java LED.

When a primitive event is defined using trigger definition, the ECA Agent generate the

Java files such as ykimaddStk.java and ykimdelStk.java to get the event handlers for the

primitive events and compiles those Java files The Java LED method,

createPrimitiveEvent() is called using Java Dynamic Method Call. When a composite

event is defined, the Java file such as ykimaddDel.java is generated by ECA Agent. The

trigger on the primtive events puts the event information such as event name, table name

and version number into notify table. We use the contents of notify table to raise

primitive event in the Java LED. LED.java file is used to call raiseBeginEvent method in

the Java LED.

In the Java LED, composite event can be detected if we use raiseBeginEvent

(EventHandler, …) of the primitive events after we get the event handlers of all the

events by createPrimitiveEvent() and createCompositeEvent(). We use the same way to

notify primitive events to the Java LED and detect a composite event from the Java LED.

The codes below shows how to pass the notify table informaiton as parameters for

nofifying primitive events to the Java LED in serveOneclient.java. Notice that the notify

table has no contents before insert and delete operation.

 //check if there is primitive event raised.

 String qs2 = "select eventname from notify";

 Jdbc selectSql = new Jdbc(rdbms,url,username,password,qs2);

 String en = selectSql.GetFromNotify().trim ();

if (!en.equals("F") && !en.equals("Empty")) // if a primitive event have

//occurred.

55

 { qs2 = "select TABLENAME from notify";

 selectSql = new Jdbc(rdbms,url,username,password,qs2);

 String tn = selectSql.GetFromNotify().trim ();

 qs2 = "select VNO from notify";

 selectSql = new Jdbc(rdbms,url,username,password,qs2);

 String vnos = selectSql.GetFromNotify().trim ();

 Integer vnoi = new Integer(vnos);

 int vno = vnoi.intValue();

 if(test1 == null) test1 = new Led();

 test1.PrimEvent(en,tn,vno); //raise primitive event inside PrimEvent()

 }

6.4 ECA Action

The rule action part of a composite event is associated with primitive events. In

our implementation, we create the file, ykimaddDel to store rule action of composite

event. It is compiled implicitly and automatically by the Java Runtime class in the ECA

Parser. Using Java Dynamic Method Call by the Java Reflection, we can call the method,

call_addDel(), and activate the rule action (call_addDel() includes the event definition

and the rule definition for the composite event. The rule definition calls the action

method ykimaddDel()). Figure 6.9 shows the Java Dynamic Call by Java Reflection.

Figure 6.10 shows the contents of rule action method addDelykim() by SQL commands.

56

Figure 6.9 The Java Dynamic Call by Java Reflection

6.5 Parameter Context.

A composite event has a parameter context to collect event instances to be

participated in detection of composite event. We defines the basic operations of the

RDBMS as primitive events. If we create trigger for insert operation using event name,

addStk, the event, addStk can occur many times. We can persist this event several times

considering the repeated event as the event on an existing event. Whenever the same

event occurs repeatedly, we can know how many times the event have occurred by

version number. When a primitive event is detected, the tables termed

From ECAparser class:
Class[] paramTypes = new Class[4];
 paramTypes[0] = (new String()).getClass();
 paramTypes[1] = (new String()).getClass();
 paramTypes[2] = (new String()).getClass();
 paramTypes[3] = (new String()).getClass();
 Object[] params = new Object[4];
 params[0] = rdbms;
 params[1] = url;
 params[2] = username;
 params[3] = password;

ConstructClass.WriteToFile(className + ".java", contents);
ConstructClass.CompileFile(className);
CallDynamicMethod.ExecuteMethod(className, “call_addDel”, paramTypes,
 params);

In CallDynamicMethod class:
Public … ExecuteMethod(String className, String methodName, Class[] paramTypes, Object[] params){
… … … … … … …
java.lang.reflect.Method meth = null;
meth = cla.getMethod(method_name, paramTypes); // find the particular method
Object obj = null;
meth.invoke(obj, params); // execute the particular method.
 }

57

Stock_inserted_tmp and Stock_deleted_tmp are created. The structure of those tables is

shown in Table 6.3.

Table 6.3 Stock_inserted_tmp and Stock_deleted_tmp

Symbol Co_name Price Time Vno EventName Context VNo1

When user defines a composite event, all primitive evens for the composite event and

the contexts of the composite event are put into the table EventContext. Table 6.4 shows

the contents of EventContext when a composite is defined.

Table 6.4 EventContext

EventName Context
‘addStk’ ‘RECENT’
‘delStk’ ‘RECENT’

When a primitive event occurs, two tables, Stock_inserted and EventContext are joined.

The result is inserted into the table SysContext. Table 6.5 shows SysContext when the

primitive event, addStk occurs.

Table 6.5 SysContext

EventName Context Vno
‘addStk’ ‘RECENT’ 1

Table 6.6 shows the content of SysContext when the same primitive events occur several

times.

58

Table 6.6 SysContext after the same events occurs

EventName Context Vno
‘addStk’ ‘RECENT’ 1
‘addStk’ ‘RECENT’ 2
‘addStk’ ‘RECENT’ 3
‘delStk’ ‘RECENT’ 1
‘delStk’ ‘RECENT’ 2

When a composite event occurs, two tables, Stock_inserted and SysContext are joined and

the results are inserted into the table, Stock_inserted_tmp. Two tables, Stock_deleted and

SysContext are also joined and the results are inserted into the table, Stock_deleted_tmp.

If the parameter context is RECENT, the contents of Stock_inserted_tmp and

Stock_deleted_tmp is shown in Table 6.7 and 6.8 respectively.

Table 6.7 Stock_inserted_tmp after join

Symbol Co_name Price Time VNo EventName Context VNo1
ykim IBM 3456 Jun-01-04 1 AddStk RECENT 1
ykim Sybase 3456 Jun-01-05 2 AddStk RECENT 2
ykim Oracle 3456 Jun-01-06 3 AddStk RECENT 3

Table 6.8 Stock_deleted_tmp after join

Symbol Co_name Price Time VNo EventName Context VNo1
ykim IBM 3456 Jun-01-04 1 delStk RECENT 1
ykim Sybase 3456 Jun-01-05 2 delStk RECENT 2

VNO1 represents the version number of SysContext table. For example, the version

 number of SysContext will be VNO1 of Stock_inserted_tmp table after two tables are

joined.

59

Figure 6.10 SQL Code Generation for Parameter Context.

Figure 6.11 shows the flow of parameter context processing as well as event

notification. When addStk is defined, the ykimaddStk is created and compiled. This file

create composite event using method, createPrimitiveEvent() (Creating primitive event

means the event node is prepared for the event in the Java LED). In terms of event

notification, when addStk occurs, the event name is persisted in notify table. Led.java file

will raise addStk. (Raising primitive event means the event is registered in the event node

in the JavaLED). At this moment, Event name is inserted into parameter list for

parameter context processing. In case of delStk, the process of the event is exactly the

same as that of addStk. When both addStk and delStk are raised by the Java LED, the file,

ykimaddDel.java can detect the composite event, addDel using event definition and rule

definition. Rule action is executed by addDelykim(). The Java LED is responsible for

Parameter context processing. Since addStk and delStk are inserted into parameter list of

the Java LED, the Java LED can execute composite event rule action according to

event ‘addStk’:
Delete stock_inserted_tmp;
Insert into stock_inserted_tmp
Select * from stock_inserted, SysContext Where SysContext.context=’RECENT’ and
SysContext.eventname = ‘addStk’ and
Stock_inserted.vNo = SysContext.vNo

event ‘delStk’:
Delete stock_deleted_tmp;
Insert into stock_deleted_tmp
Select * from stock_deleted, SysContext Where SysContext.context=’RECENT’ and
SysContext.eventname = ‘delStk’ and
Stock_deleted.vNo = SysContext.vNo

60

parameter context. Note that the ECA Agent should be statically initialized whenever all

the files are compiled.

Composite
event
detection

notification

notification

Led.java

Led.java

 ‘Notify’ table

 ‘Notify’ table
EventHandle[] addStk
=
ECAAgent.getEvent
Handles (addStk);

 ECAAgent.insert
(addStk,"eventname",
addStk);
ECAAgent.raiseBegi
nEvent(addStk,this);

}

EventHandle[] delStk
=
ECAAgent.getEvent
Handles
(delStk);

ECAAgent.insert(del
Stk,"eventname",delS
tk);
ECAAgent.raiseBegi
nEvent(addStk,this);

public static void call_addStk(){
ECAAgent myAgent =
ECAAgent.initializeECAAgent();
addStk =

myAgent.createPrimitiveEvent("add
Stk","Led", EventModifier.BEGIN,
"void addStk()",
DetectionMode.SYNCHRONOUS);

}

 public static void call_delStk(){
 ECAAgent myAgent =
 ECAAgent.initializeECAAgent();
 delStk =
 myAgent.createPrimitiveEvent("delS
tk",
 "Led", EventModifier.BEGIN, "void
 delStk()",
DetectionMode.SYNCHRONOUS);

}

ECAAgent myAgent =
ECAAgent.initializeECAAgent();
 addDel = myAgent.createCompositeEvent
(EventType.AND,"event
addDel" ,(EventHandle)ykimdelStk.delStk,
(EventHandle)ykimaddStk.addStk);
 myAgent.createRule("Rule addDel",
addDel,
"Led.True","ykimaddDel.addDelykim", 1,
CouplingMode.DEFAULT,
Context.RECENT);
public static boolean
True(ListOfParameterLists parameterLists)
{ return true;}
public static void addDelykim
(ListOfParameterLists paramLists)
{ This is action part.}

Eventname :addStk

If (test1=
null) test1 =
new Led();
test1.PrimE
vent
(en,tn,vno);

Insert into Stock values (………); : primitive event,

delete from Stock where ………; : primitive event, Eventname :delStk

If (test1=null)
test1 = new
Led();
test1.PrimEven
t (en,tn,vno);

ykimaddDel.java

ykimaddStk.java

 Figure 6.11 The Flow of Event Notification and Composite Event Detection

ykimdelStk.java

61

CHAPTER 7
CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this thesis, we presented the details of design, architecture, and implementation

of the ECA Agent system. There are some sub-functional modules in the ECA Agent

system:

• Language Filter

• ECA Parser

• Primitive Event Parser

• Composite Event Parser

• Repeated Primitive Event Parser

• Repeated Composite Event Parser

• Drop trigger Parser

• Drop trigger defined on Primitive Event

• Drop trigger defined on Composite Event

• Persistent Manager

• Java LED

At the same time that we implement these sub-modules, we meet the following

goals:

• The ECA Agent is supported by ECA rules.

62

• Both primitive events and composite events (currently only AND) can be

detected.

• Active behaviors (events, rules, actions) are persistent in DBMS.

• Multiple parameter contexts and coupling modes are supported in the ECA

Agent system.

The ECA Agent works as a mediator between the SQL server and the clients,

and we use JDBC to connect to any SQL server. The design is a generalized method for

any RDBMS to extend its active capability.

7.2 Contributions

The contributions of this thesis are as follows:

• The ECA Agent system significantly extends the active capability of any

RDBMS. This approach has some advantages:

• It does not change the SQL Server/Client.

• It has transparency to the clients.

• It has extensibility.

• A Full-fledged active capability is supported.

• We use the JDBC to connect the SQL Server. By using the JDBC, you can

connect any SQL Server.

7.3 Future Work

In our implementation, we use Oracle as the test database and we extended the

active capability of Oracle Universal Database.

63

We can use the same approach for developing agents for other DBMSs. The ECA Agent

system is a module that provides active capabilities to a RDBMS without changing the

RDBMS itself. Nowadays, most of the commercial RDBMSs provide users with

programming language virtual machine. For example, the Oracle 8.i has the Java Virtual

Machine. This will allow us to put all the components into the RDBMS. The Java LED,

the Snoop Preprocessor, and the ECA Agent system can run in the same address space as

that of an RDBMS. Obviously, This will enhance the performance of the entire.

64

LIST OF REFERENCES

BER91 Berndtsson, M., “ACOOD: an Approach to an Active Object Oriented
DBMS,” Master’s thesis, University of Skovde, September 1991.

BER92 Berndtsson, M. and Lings, B., “On Developing Reactive Object_Oriented
Databases,” in IEEE Quarterly Bulletin on Data Science, Special Issue on Active
Databases, 15(1-4):31 —34, 1992.

BER94 Berndtsson, M., “Reactive Object-Oriented Databases and CIM,” in
Proceedings of the 5th International Conference on Database and Expert Systems
Applications, volume 856 of Lecture Notes in Computer Science, pages 769--778.
Springer, 1994.

CHA89 Chakravarthy, S., “Rule Management and Evalution: An Active DBMS
Perspective,” in Special issue of ACM Sigmod Record on rule processing in
databases, 18(3):20-28, 1989.

CHA93 Chakravarthy, S., Krishnaprasad, V., Anwar, E., and Kim, S.K., “Anatomy of
a Composite Event Detector,” in Technical Report UF-CIS-TR-93-039, University
of Florida, E470-CSE, Gainesville, FL, December 1993.

CHA94a Chakravarthy, S., Krishnaprasad, V., Anwar, E., and Kim, S.K., “Composite
Events for Active Databases: Semantics, Contexts and Detection,” in Proceedings
International Conference on Very Large Databases, Santiago, Chile, 1994, pp. 606-
617.

CHA94b Chakravarthy, S., Anwar, E., Maugis, L., and Mishra, D., “Design of Sentinel:
An Object-Oriented DBMS with Event-Based Rules,” in Information and Software
Technology, Vol. 36, pp. 559-568, 1994.

CHA94c Chakravarthy, S. and Mishra, D., “Snoop: An Expressive Event Specification
Language for Active Databases,” in Data and knowledge Engineering, 13(3),
Octorber 1994.

CHA98 Chamberlin, D., “A Complete Guide To DB2 Unviersal Database,” IBM
Almaden Prototype Center, 1998.

DAS99 Dasari, R., “Events and Rules for Java: Design and Implementation of a
Seamless Approach,” Master’s thesis, University of Florida, 1999.

65

DIA91 Diaz, O., “Rule Management in Object-Oriented Databases: A Unified
Approach,” in Proceedings 17th Interntionl Conference on Very Large Data Bases,
Barcelona (Catalonia, Spain), Sept. 1991.

GEH91 Gehani, N. and Jagadish, H. V., “Ode as an active database: Constraints and
triggers,” in Proceedings of the Seventeenth International Conference on Very
Large Databases, pages 327-336, Barcelona, Spain, September 1991.

KRI94 Krishnaprasad, V., “Event Detection for Supporting Active Capability in an
OODBMS: Semantics, Architecture, and Implementation,” in Master’s thesis,
Database Systems R&D Center, CIS Department, University of Florida, Gainesville,
1994.

LEE98 Lee, L., “An Agent-Based Approach to Extending the Native Active
Capability of Relational Database Systems,” Master’s thesis, University of Florida,
Gainesville, 1998.

STO91 Stonebreaker, M. and Kemnitz, G., “The POSTGRES Next-Generation
Database Management System,” in Communications of the ACM 34(10):78-92,
1991.

VAN96 Vance, D., “Supporting Active Database Semantics in Sybase,” Master’s
thesis, University of Florida, Gainesville, 1996.

WID96 Widom, J., “The Starburst Active Database Rule System,” in IEEE
Transactions on Knowlede and data engineering, Vol.8, No. 4: August 1996, pp.
583-595.

66

BIOGRAPHICAL SKETCH

YoungHun Kim was born on January 3, 1971, in Andong, Korea. He received his

Bachelor of Science degree in computer science and engineering from SungKyunKwan

University, Seoul, Korea, in March 1995. After his graduation, he worked in Distributed

Systems Laboratory at SungKyunKwan Graduate School, Seoul, Korea. He joined the

Department of Computer and Information Science and Engineering at the University of

Florida in January, 1999. He worked as a research assistant in the Database Systems

Research and Development Center of the department. He will receive his Master of

Science degree in December 2000. His research interests include RDBMS, Active

databases and multi-tier and Web-based database applications.

