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Several models of parallel sorting are found in the literature. Among these
models, the parallel disk models are proposed to alleviate the I/O bottleneck when
handling large amounts of data. These models have the genera theme of assuming
multiple disks. For instance, the Parallel Disk Systems (PDS) model assumes D disks
which are disposed on asingle computer. It is also assumed that a block of datafrom
each of the D disks can be fetched into the main memory in one parallel 1/0 operation. In
thisthesiswe present anew model for multiple disks and evaluate its performance. This
model is called a Parallel Machine with Multiple Disks (PMD). A PMD model has
multiple computers each of which is connected with one disk. A PMD model can be
thought of as aredlization of the PDS model. In thisthess, we also present amore
practical model which is called Parallel Machines with multiple Files (PMF). A PMF

model has multiple computers connected on acentral file system. We investigate the

viii



sorting problem on this new model. Our analysis demonstrates the practicality of the
PMF. We also present experimental confirmation of this assertion with data from our

implementation.



CHAPTER 1
INTRODUCTION

1.1 Scope and Objective

Computing applications have advanced to a stage where voluminous data is the
norm. The volume of data dictates the use of secondary storage devices such as disks.
Even the use of just a single disk may not be sufficient to handle 1/0O operations
efficiently. Thus researchers have introduced models with multiple disks.

A model that has been studied extensively (which is a refinement of prior models)
is the Parallel Disk Systems (PDS) model [17] . In this model there is a single computer
and D disks. In one parallel 1/0, a block of data from each of the D disks can be brought
into the main memory. A block consists of B records. If M is the internal memory size,
then one usually requires that M 3 2DB. Algorithm designers have proposed algorithms
for numerous fundamental problems on the PDS mode. In the anaysis of these
algorithms they counted only the I/O operations since the local computations can be
assumed to be very fast.

The practical realization of this model is an important research issue. Models such
as Hierarchical Memory Models (HMMs) [8,9] have been proposed in the literature to
address this issue. Redlizations of HMMs using PRAMs and hypercube have been
explored [9]. Sorting agorithms on these realizations have been investigated.

In this thesis we propose a straight forward model called a Paralel Machine with

Disks (PMD). A PMD can be thought of as a specia case of the HMM. A PMD is



nothing but a parallel machine where each processor has an associated disk. The parallel
machine can be structured or unstructured. If the parallel machine is structured, the
underlying topology could be a mesh, a hypercube, a star graph, etc. Examples of
unstructured parallel computers include SMP, a cluster of workstations (employing PYM
or MP1), etc. In some sense, the PMD is nothing but a parallel machine where we study
out of core algorithms. In the PMD mode we not only count the 1/O operations but also
the communication steps. One can think of a PMD as a redlization of the PDS mode.
Given the connection between HMMs and PDSs, we can state that prior works have
considered variants of the PMD where the underlying parallel machine is either a PRAM
or a hypercube [9]. We begin the study of PMDs with the sorting problem. Sorting is an
important problem of computing that finds applications in al walks of life. We analyze
the performance of the LMM sort algorithm of Raasekaran’s [14] PMD (where the
underlying parallel machine is a mesh, a hypercube, and a cluster of workstations).

In particular, we present a new model which is called Parallel Machine with
Multiple Files (PMF). A PMF model has multiple computers which are managed by a
network file system. As in modern days, network file system has been a popular
distributed file system, so this model can be more practical in rea life. In this model,
input data will be partitioned into severa files which are stored in the file system. All
computers can read and write data from these files. We show why this model has more
appealing properties than other models. We compute the run times for sorting in this
model. Also we compute the speed ups of using multiple computers in verse of using

single computer. These analyses demonstrate the practicality of the PMF.



1.2 ThesisOutline

Thisthesisconsists of 5 chapters. In addition to thisintroduction, the rest of
the thesisis organized as follows.

In Chapter 2, we providea summary of known algorithms for the PDS
model.

In Chapter 3, we present details of the PMD model. To make our discussion
concrete, we use the mesh as the topology of the underlying parallel machine. However,
the discussion applies to any parallel machine. Also in this chapter, we state some routing
and sorting algorithms which are applied on the PMD model. Especialy, we give detail
description of the LMM agorithm which played a vita role in both PMD and PMF
models.

In Chapter 4, we show a more practical model, PMF model. We stated its
structure, and give detail description of its implementation. Also, we show our
experimental results of the PMF model.

Chapter 5 concludes the thesis.



CHAPTER 2
SORTING ON THE PDS MODEL

In this chapter, we present an overview sorting results on the PDS model which

has the structure of multiple disks with a single computer.

2.1 The PDS Model

Sorting has been studied well on the PDS model (see Fig. 2.1). A known lower

bound for the number of 1/0 read steps for parallel disk sorting is W( 25 [rir75]) - Here N

is the number of records to be sorted and M is the interna memory size. Also, B is the

block size and D is the number of parallel disks used. There exist several asymptotically

optimal agorithms that make O(2:[221) 1/0O read steps (see e.g., references 10, 1,

loo(M 1 B)

and 3).

Figure 2.1. Architecture of aPDS Model



One of the early papers on disk sorting was by Aggarwal and Vitter [2]. In the
model they considered, each 1/0 operation results in the transfer of D blocks each block
having B records. A more realistic model was envisioned by Vitter and Shriver [17].
Several asymptotically optimal algorithms have been given for sorting on  this model.
Nodine and Vitter's optimal algorithm [8] involves solving certain matching problems.
Aggarwal and Plaxton's optimal agorithm [1] is based on the Sharesort algorithm of
Cypher and Plaxton. Vitter and Shriver gave an optimal randomized algorithm for disk
sorting [17]. All of these results are highly nontrivial and theoretically interesting.

However, the underlying constants in their time bounds are high.

2.2 Sorting on The PDS Modd

In practice, the simple disk-striped mergesort (DSM) is used [4], even though it is
not asymptoticaly optimal. DSM has the advantages of smplicity and a small constant.
Data accesses made by DSM is such that in any 1/0 operation, the same portions of the D
disks are accessed. This las the effect of having a single disk which can transfer DB
records in a single I/O operation. An L -way mergesort is employed by this agorithm.
To start with, initial runs are formed in one pass through the data. At the end the disk has

N/M runs each of length M. Next, X runs are merged at a time. Blocks of any run are

uniformly striped across the disks so that in future they can be accessed in parallel

utilizing the full bandwidth.

Each phase of merging involves one pass through the data. There are o

phases and hence the total number of passes made by DSM is 755 - In other words,

the total number of 1/O read operations performed by the algorithm is 27 (1+ ur7om;) -

The constant hereisjust 1.



If one assumes that N is a polynomia in M and that B is small (which are readily
satisfied in practice), the lower bound smply yields W(1) passes. All the above
mentioned optimal agorithms make only O(1) passes. So, the challenge in the design of
paralel disk sorting agorithms is in reducing this constant. If M = 2DB, the number of
passes made by DSM is 1 + log(N/M), which indeed can be very high.

Recently, research has been performed dealing with the practical aspects. Pai,
Schaffer, and Varman [11] anayzed the average case performance of a simple merging
algorithm, employing an approximate model of average case inputs. Barve, Grove, and
Vitter [4] have presented a simple randomized algorithm (SRM) and anadyzed its
performance. The analysis involves the solution of certain occupancy problems. The

expected number Readsrv of 1/O read operations made by their algorithm is such that

N N log(N/M) logD logloglog D 1+logk
Readsrv £ o5 T DB logkD kloglogD(1+ loglogD + loglogD +O(1)) (1)

The agorithm merges R=kD runs a a time, for some integer k. When R =
W(DlogD), the expected performance of their algorithm is optimal. However, in this case,
the internal memory needed is (BDlog D). They have also compared SRM with DSM
through simulations and shown that SRM performs better than DSM. Recently,
Rajasekaran [14] has presented an algorithm (called (,m)-merge sort (LMM)) which is
asymptotically optimal under the assumptions that N is a polynomia in M and B is small.
The agorithmis as simple as DSM. LMM makes less number of passes through the data

than DSM when D islarge.



CHAPTER 2
A PARALLEL MACHINE WITH DISKS (PMD)

3.1 ThePMD Mode

In this section we give more details of the PMD model. A PMD is nothing but a
paralel machine where each processor has a disk. Each processor has a core memory of
size M. In one 1/O operation, a block of B records can be brought into the core memory
of each processor from its own disk. Thus there are a total of D=P disks in the PMD,
where P is the number of processors. Records from one disk can be sent to another
through the communication mechanism available for the paralel machine after bringing
the records into the main memory of the origin processor. It is conceivable that the
communication time is considerable on the PMD. Thus it is essentia to not only account
for the I/O operations but aso for the communication steps, in analyzing any agorithm's
run time on the PMD.

PMD can be thought of as a specia case of the HMM [9]. Redlization of HMM
using PRAMs and hypercubes have aready been studied [9].

The sorting problem on the PMD can be defined as follows. There are atotal of N

records to begin with so that there are & records in each disk. The problem is to

rearrange the records such that they are in either ascending order or descending order

with £ records ending up in each disk. It is assumed that the processors themselves have

been ordered so that the smallest % records will be output in the first processor's disk, the



next smallest & records will be output in the second processor's disk, and so on. This
indexing scheme is in line with the usua indexing scheme used in a parale machine.
However any other indexing scheme can also be used.

To make our discussions concrete, we will use the mesh (see Fig. 3.1) as an
example. Let the mesh be of sizen ~ n. Then we have D = rf disks. An indexing scheme
is caled for in sorting on a mesh (see e.g., Rgasekaran [13]). Some popular indexing
schemes are column major, row major, snake-like row, blockwise row-major, etc. For the
algorithm to be presented in thisthesis, any of these schemes can be employed.

El\-

A

H o 1]
Figure. 3.1. A PMD Mode of n” nMesh

The algorithm to be presented in this thesis employs as subroutines some
randomized algorithms. We say a randomized algorithm uses é(f(n)) amount of any
resource (such as time, space, etc.) if the amount of resource used is no more than caf(n)
with probability 3 (1-n?), where c is a constant and a is a constant 3 1. We can also

define other asymptoti ¢ functionsin asimilar fashion.



3.2 Sorting Algorithms

Parallel sorting algorithm have been widely studied due to its classical importance
and fundamentals. A lot of sorting agorithms have been presented. In this section, we
talk about the problem of packet routing which plays a vita role in the design of
algorithm on any parallel machine. We present the agorithms of k-k routing and k-k
sorting. Also we give detail explanation of (,m)-merge sort (LMM) agorithm which is

the central spirit of sorting on the PMD model and PMF mode.

3.2.1 Algorithm of k-k Routing and k-k Sorting

The packet routing problem can be defined as following. There is a packet of
information to start with at each processor that is destined for some other processor. The
problemis to send all the packets to their correct destinations as quickly as possible. In
any interconnection network, one requires that a most one packet traverses through any
edge at any time. The problem of partial permutation routing refers to packet routing
when at most one packet originates from any processor and at most one packet is destined
for any processor. Packet routing problems have been explored thoroughly on
interconnection networks (see e.g., Rgjasekaran [13)).

The problem of k-k routing is the problem of routing where at most k packets

originate from any processor and at most k packets are destined for any processor.
In the case of an n” n mesh, it is easy to prove a lower bound of £ on the
routing time for this problem based on bisection considerations. There are algorithms

whose run times match this bound closely as stated in the following Lemma. A proof of

this Lemma can be found e.g., in Kaufmann, Rgasekaran, and Sibeyn [5].
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[Lemma3.2.1.1]

The k-k routing problem can be solved in £ + 6(kn) timeonann” n mesh.

The problem of k-k sorting is defined as follows. There are k keys at each
processor of a parallel machine. The problem is to rearrange the keys in either ascending
or descending order according to some indexing scheme.

Inann ~ n mesh, this problem also has a lower bound of % on the run time. The
following Lemma promises a closely optimal algorithm (see eg., Rgasekaran [13])
sorting.

[Lemma3.2.1.2]

k-k sorting can be solvedonann”~ nmeshin £ + 8(kn) steps.

The above two Lemmas will be employed by our sorting algorithm on the mesh.
It should be noted here that there exist deterministic algorithms (see e.g., [6]) for kk
routing and k-k sorting whose run times match those stated in Lemmas 3.2.1.1 and
3.2.1.2. However, we believe that the use of randomized algorithms will result in better

performance in practice.

3.2.2 The (I m)-Merge Sort (LMM)

Many of the sorting algorithms that have been proposed for the PDS are based on
merging. These algorithms start by forming -~ runs each of length M. A run is nothing
but a sorted subsequence. Forming these initial runs takes only one pass through the data
(or equivalently & parallel I/O operations). After this, the algorithms will merge R runs

a atime. Let a phase of merging refer to the task of scanning through the input once and

performing Rway merging. Note that each phase of merging will reduce the number of
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remaining runs by a factor of R. For example, the DSM agorithm employs R = 2% . The

various sorting algorithms differ in how each phase of mergingsis done.

The (I,m)-merge sort algorithm of Rgjasekaran [14] is also based on merging. It
employs R=l, for some appropriate |. The LMM is a generaization of the odd-even merge
sort, the s2-way merge sort of Thompson and Kung [16], and the columnsort agorithm of
Leighton [7].

[3.2.2.1 Algorithm Odd-Even Mergesort]

The odd-even mergesort algorithm employs R=2. It repeatedly merges two

sequences at atime. To begin with there are n sorted runs each of length 1.

From thereon the number of runs is decreased by a factor of 2 with each

phase of mergings. Two runs are merged using the odd-even merge

algorithm that is described below.

1. Let U = w,W,...,.usand V = vy,V,,...,Vq be the two sorted sequences

to be merged. Unshuffle U into two, i.e., partition U into two: Uygg =
Ulg,....Ug1  and Uyen= W,Us,...,Ug. Similarly partition V into Vyuq
and Veyen.

2. Now recursively merge Uyg With Vg, Let X = X,%,,...,Xq be the

result. Also merge Ueyen With Veyen. LELY = Y41,Y5,...,Yq be the result.

3. Shuffle X and Y, i.e., form the sequence: Z = x4, Y1, X2, ¥2,.-., Xq,Ya-

4, Perform one step of  compare-exchange operation, i.e., sort

successive subsequences of length two in Z. In other words, sort v
X2: SOt y» X3; and so on. The resultant sequence is the merge of U and

V.
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The correctness of this algorithm can be established using the zero-one principle.
The agorithm of Thompson and Kung [16] is a generdization of the above agorithm
where R is taken to be & for some appropriate function s of n. At any given time < runs
are merged using an algorithm similar to the above.
[3.2.2.2 Algorithm (/,m)-Merge]
LMM is a generalization of s>way merge sort agorithm. It uses R = /.
Each phase of mergings thus reduces the number of runs by a factor of /.
At any time, / runs are merged using the (/,m)-merge algorithm. This
merging agorithm is similar to the odd-even merge except that in Step 1,
the runs are mway unshuffled (instead of 2way unshuffling). In Step 3,
m sequences are shuffled and also in Step 4, the local sorting is done
differently. A detailed description of the merging algorithm follows.
1. Let the sequences to be merged be U = wu? ..U forl £i £LIfr
issmal useabase case agorithm. Otherwise, unshuffle each U
into m parts. In  particular, partition U into UYU?,...,U™ where
Ul=ul u™...; U?=u? u®™...;and soon.
2. Recursivdy merge U{,Uj,...,U/, for 1£ j £ m. Let the merged
sequencesbe  X;=x;'x? ..., x;""™ for 1£j £ m.
3. Shuffle Xy, Xy,..., Xm i€, form the sequence Z = x ‘X5, ... X
X2 X2 ey X2y XM M
4. It can be shown that a this point the length of the “dirty
sequence’ (i.e., unsorted portion) is no more than /m. But we

don't know where the dirty sequence is located. We can cleanup
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the dirty sequence in many different ways. One way is described

below.

Call the sequence of the first /m elements of Z as Z;; the next Im

elements as  2%; and so on. In other words, Z is partitioned into Z,

Zo,..., Zm Sort each ne d the Z's. Followed by this merge Z;, Z;

merge Zz and Z;; etc. Finally merge Z and Z; merge Z; and Z;; and

so on.

The above agorithm is not specific to any architecture. (The same can be said

about any algorithm). An implementation of LMM on PDS has been given in

Rajasekaran [14]. The number of 1/0O operations needed in this implementation has been

shown to be % +1]% When N is a polynomial in M and M is a polynomial

in B this reduces to a constant number of passes through the data and hence LMM is
optimal. In Rajasekaran [14] it has been demonstrated that LMM can be faster than the
DSM when D is large. Recent implementation results of Pearson [12] indicate that LMM
IS competitive in practice. Thus a natural choice of sorting algorithm for PMD is LMM.
In the next Section we implement LMM on a PMD and analyze the resultant 1/0 and

communication steps.

3.3 Sorting on the PMD Modd

We begin by considering the sorting problem on the mesh. The result can be

generalized to any parallel machine.
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3.3.1 Sorting on the Mesh

Consider a PMD where the underlying machine isan n ©~ n mesh. The number of
disks is D=r’ . Each node in the mesh is a processor with a core memory of size M. In
one /O operation, a processor can bring a block of B records into its main memory.
Thus the PMD as a whole can bring in DB records in one 1/O operation, i.e.,, we can
relate aPMD with a PDS whose main memory capacity is DM and that has D disks.

Let the number of records to be sorted be N. To begin with, there are & records

at each disk of the PMD. The god is to rearrange the records in either ascending order or

descending order such that each disk gets & records at the end. An indexing scheme has

to be assumed. For the algorithm to be presented any of the following schemes will be
acceptable: row-magor, column-mgor, snake-like row-magjor, snake-like column-major,
blockwise row-major, blockwise column-major, blockwise snake-like row-major, and
blockwise snake-like column-mgjor. We assume the blockwise snake-like row-major

order for the following presentations. The block sizeis £, i.e., the first (in the snake-like
row-major order) processor will store the smallest 2 records, the second processor will
store the next smallest % records, and so on.

As one can easly see, the entire LMM agorithm consists of shuffling,
unshuffling and local sorting steps. We use the k-k routing and k-k sorting algorithms
(Lemmas 3.2.1.1 and 3.2.1.2) to perform these steps. Typicaly, we bring records from
the disks until the local memories are filled. Processing on these records is done using k-
k routing and k-k sorting algorithms. The queue length of k-k sorting and k-k routing

algorithms is k + o) (k). So we do not fill M completely. We only half-fill the local
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memories so as to run the randomized algorithms. Also in order to overlap 1/0 with local
computations, only half of this memory can be used to store operational data. We refer to
this portion of the core memory as M, i.e.,, M is one-fourth of the core memory size

available for each processor.

To begin with we form £ sorted runs each of length DM. The number of 1/O

DM

operations performed is 2% since each processor need to have L 1/O for each run. Also,

the number of communication steps is O(4n). This is so because, we perform -

number of k-k sorting (with k = M) and each such sort takes kn + é(kn) steps.

Since LMM is based on merging in phases, we have to specify how the runsin a
phase are stored across the D disks. Let the disks as well as the runs be numbered from
zero. We use the same scheme as the one given in Ragjasekaran [14]. Each run will be
striped across the disks. If R 3 D, the starting disk for the i run isi mod D, i.e, the
zeroth block of the i™ run will bein disk i mod D; its first block will be in disk (i+1) mod
D; and so on. This will enable us to access, in one 1/0 read operation, one block each
from D distinct runs and hence obtain perfect disk paradlelism. If R < D, the starting disk

for the i runis i 2 . (Assume without loss of generality that D divides R.) Even now, we
can obtainZ blocks from each of the runs in one I/O operation and hence achieve perfect
disk paralelism.

3.3.2 Base Cases

LMM is a recursive agorithm whose base cases are handled efficiently. We now

discuss two base cases.
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Base Case 1. Consder the problem of merging«/m runs each of length DM, when
21 3 .[pM . This merging is done using (/,m)-mergewith / = m=~/DM .

LetU,, U,,..., UJvoir be the sequences to be merged. In Step 1, each U;
gets unshuffled into~/DM parts so that each part is of Iength«/m . This unshuffling can
be done in one pass through the data. Thus the number of 1/O operations is 2% . The
communication time is CN)(%n) :
Note. Throughout the algorithm, each pass through the data will involve/;1/0
operations and #-n communication steps. Also, we use T(u,v) to denote the number of
read passes needed to merge u sequences of length v each.

In Step 2, we have /DM mergesto do, each merge involving /DM

sequences of length /DM each. Since there are only DM records in each merge, all the
mergings can be done in one pass through the data.

Steps 3 and 4 perform shuffling and cleaning up, respectively. The length of the

dirty sequence is (v DM )?=DM. These two steps can be combined and finished in one

pass through the data (see [14] for details). Thus we get:

[Lemma 3.3.2.1]
T(WDM ,DM) =3,if 223 /DM .

Base Case 2. This is the case of merging £ runs each of length DM, when 2£

<+/DM . Thisproblem can be solved using (/,m)-mergewith / = m= 2L

In this case we can obtain:
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[Lemma 3.3.2.2]
T(ZL, DM) =3, if 2L <4/ DM .

3.3.3 The Sorting Algorithm

LMM agorithm has been presented in two cases. In our implementation the two
cases will be when 23 /DM and when 24 </DM . In either case, initial runs are
formed in one pass at the end of which - sorted sequences of length DM each remain
to be merged.

When 243 /DM , (/,m)-merge is employed with / =m= +/DM . Let K denote

N — _ log(N/DM)
vDM andlet 77z =K®. In other words, ¢ = =7+

T(,) can be expressed as follows.
T(K*, DM) = T(K, DM) + T(K,KDM) + s+ T(K, K*'DM) (2)

The above relation basically means that there are K* sequences of length DM
each to begin with; we merge K at a time to end up with K** sequences of length KDM
each; again merge K at a time to end up with K*?2 sequences of length K?DM each; and
so on. Finally there will be K sequences of length K*** DM each which are merged. Each
of these mergings is done using (/,m)-mergewith / =m =DM .

It can also be shown that

T(K, KDM) = 2i + T(K,DM) = 2i + 3.
Thefact that T(K, DM) = 3 (c.f. Lemma 3.3.2.1) has been used.

Upon substituting this into Equation (2), we get

21

T(K®,DM) = § (2i +3)=4c? + 4c

i=0
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_ log(N/DM) o
wherec = “25052 . Now, we have the following:
[Theorem 3.3.3.1]

The number of read passes needed to sort N records is 1+4(<& 752 )

+4 LU0 | if 23 /DM . This number of passes is no more than

log( N / DM ) 2 . .
[ oamint /DI DT TE) +1]°. This means that the number of 1/O read operations

. N log( N/ DM \2 log(N'/ DM)
isnomorethan 2z [1+4(—C 7 ) " + 4=y |-

The number of communication steps is no more than

O n (1440 + 45 D).

The second case to be considered iswhen 2% <+/DM . Here (/,m)-merge will be

used with / = m= 2 | et Q denote 22 and let 2= Q. That is, d= X221 | jkein

log(DM 1 B)

case 1 we can get,

T(Q",DM) = T(Q,DM) + T(QQDM) + <+ T(QQ™'DM).  (3)
Also, we can get,

T(Q,QDM) = 2i + T(Q,DM) = 2i + 3.

Herethe fact T(Q,DM) = 3 (c.f. Lemma 3.3.2.2) has been used.

whered =

Equation (3) now becomes

d-1
T(Q,DM) = q (2i +3)= P +2d

i=0

log( N/ DM)
log(DMB) *
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[Theorem 3.3.3.2]

The number of read passes needed to sort N records on the PMD is upper

log( N/ DM) 2 .
bounded by[log(mir?{g\/W,DM/B})-'-l] ,if L </DM .

Theorem 3.3.3.1 and theorem 3.3.3.2 readily yield:

[Theorem 3.3.3.3]

log( N/ DM)

2
oSN DT DMTE]) +1]° read passes over the

We can sort N records in £ [

data. The total number of 1/O read operations needed is £

N log( N/ DM)

55 L iogmn (5T DT +1]2 Also, the total number of communication steps

</ N log( N/ DM)
needed is O( 45 [ 12l +1]3).

3.3.4 Sorting on ageneral PMD

In this section we consider a general PMD where the underlying parallel machine
can either be structured (e.g., the mesh, the hypercube, etc.) or unstructured (e.g., SMP, a
cluster of workstations, etc.).

We can apply LMM on a general PMD in which case the number of /O

log( N/ DM)
log(min{~/DM ,DM | B})

operations will remain the same, i.e, 2% +1]% As has become clear

from our discussion on the mesh, we need mechanisms for kk routing and kk sorting.
Let Ry and Sy denote the time needed for performing one MM routing and one MM
sorting on the parallel machine, respectively. Then, in each pass through the data, the

total communication time will be 2% ( Ry + Su), implying that the total communication

time for the entire algorithm will be

log( N/ DM) 2
£ % (RM + SV‘)[ log(mir{ /DM ,DM | B}) +1] )
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Thus we get the following general Theorem:
[Theorem 3.3.4.1]

Sorting on a genegral PMD mode can be performed in

A log(mif{g(dﬁ_;fﬁjl 5 +1]? 1/O operations. The total communication time

. log(N / DM) 2
Is £ % (RM + SV‘)[ log(mir{ /DM ,DM | B}) +1] ’




CHAPTER 4
PARALLEL MACHINE WITH MULTIPLE FILES (PMF)

In this chapter, we present a more practical parallel computing model called PMF.
We show why this model has some advantages and report our experimental evaluation of

the PMF.

4.1 Introduction of the PMF Modd

A PMF modd is nothing but multiple computers managed in a network file
system. The underlying parallel machine is a network of workstations. In this model,
input data will be partitioned into several files which are stored as source data (see Fig.

4.1). Computers can read and write data from these files.

| cnmp| | cumpl -+ - | comp

Source Data

| comp | | [:ump|. . . comp

Figure. 4.1. Logica PMF Model.

The sorting problem on the PMF can be defined as follows. There are atotal of N
records to be sorted, and there are P number of processors. The problem is to sort the N

records into descending or ascending order. We partition input data into P parts, and

21
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stored them in P files each with size of N/P. We also index each file and processor as

FuFo,...,Fp and Py,P,,...,P, respectively. After sorting, the smallest & records will be
output in Fy, the next smallest £ records will be output in F,, and so on.

The LMM sort played a vital role in PMF Model. LMM algorithm consists of
shuffling, unshuffling and local sorting steps. In each step, the data are partitioned into
many parts, and each processor can pick any part from the partition and do the sorting,
unshuffling, shuffling and cleaning. This property is essential in PMF model because
processors do not need to communicate to get data from each other.

Since there is no communication between processors, the 1/0O time become
critical. But in PMF model, if we increase the number of processors, the 1/0 time will be
reduced. Using 2n processors will reduce the I/O time by haf comparing with using n
Processors.

All of the advantages of this paralel computing model is that it sorts data in

perfect parallel without any communications between each processor.

4.2 Sorting on the PMF Moddl

In this section, we show in detail about how to implement LMM sort on the PMF
model, and how to partition data so that processors can read and write datain parallel
without any communications between processors. LMM sort is arecursive agorithm.
Here, we do not do the merge recursively, but proceed it just one level. Meanwhile, we
use Quick sort or Heap sort for our local sorting. The detailed description of sorting
follows.

Theinput datasizeis N, and there are q processors. We create g number of files

each of size N/g. Also suppose the memory sizeisM and it is much less than N/g. The
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chosen value of m can be random. We have varied the value of m to seeitsinfluence on
the run time, but it seemsto be nearly the same. Here, for easy implementation, we
choose m to be adivisor of N/q, and also m can be divided by g. Without losing any
generality, we suppose M is adivisor of N/qg and (N/q)/M=r.

Stepl Wemark thefilesasF1, F2, ..., Fg. Also we mark processors as P1,
P2,..., Pg. At first, processor Pi will input the first M data from Fi, sort it, unshuffle it
into m parts with each part of size a=M/m, and then put it back to its original place (row
1) inFi,for 1£i £ g. Then Pi input the second M data from Fi, sort it, unshuffle it into m
part, and the put it back to its original place (row 2) in Fi. This procedure will continue
until r times. We have each file Fi with r unshuffled sequences (see Fig. 4.2), for L£i £

g. So after step 1, there will be total r* g unshuffled sequences.

& --------mmmmmee- unshuffle M into m parts each with size of a------------------- 2|
[« a 2|
Row 1:
partl part 2 part 3 part 4 part m
Row 2:
partl part 2 part 3 part 4 part m
Row 3:
partl part 2 part 3 part 4 part m
x x x x x x
Row r:
partl part2 part 3 part 4 part m

Figure. 4.2. Unshuffle Result
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As we notice, the sorting and unshuffling are done in paralel. There is no
communication between each processor since each processor only deal with its
corresponding files. Meanwhile, if we increase the number of processors, we also
increase the number of files respectively which cause less datain each file. So if the data
sizeisfixed, increasing processors will reduce the number of 1/0 .

Step 2 Inthis step, we want to merge part 1 from al g files, part2 from al q files,...,
and part m from all q files (see Fig. 4.2). This can also be done in parallel. But we need to
create another g number of files to contain the merged results in order to read data and
output data in perfect paralel. Let's call these additional q filesas D1, D2, ..., Dg. As
we mentioned above, our choice of m can be divided by g. Suppose k=m/g. The scheme
isasfollowing:
First step: Processor j read part j from file F(j mod ).

Processor j reads part j from file F((j+1) mod q).

Processor j reads part j from file F((j+2) mod q).

x

Processor | reads part j from file F((j+g-1) mod q).

Notice that from each file, processor | will read in r number of part j, so there are
total r*q number of part j to merge. After processor | merged these r*g sequences, it
outputs the merged result to the first place (row 1) of Dj (see Figure. 4.1.3). We aso
notice that the read data, merge data, and output data are al done in parallel: when
processor | is reading data from file F(j mod q), processor (j+1) is reading data from file

F((j+1) mod q); when processor j is reading data from F((j+1) mod q), processor (j+1) is
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read data from file F((j+2) mod ). Meanwhile, different processor output merged data
into different files.
Second step:  Processor j reads part (g+j) from file F(j mod q).
Processor j reads part (g+j) from file F((j+1) mod q).
x
Processor j reads part (g+j) from file F((j+g-1) mod ).
After reading in the r*q sequences, processor j merges them and put the merged

result to the second place of Dj (see Fig. 4.1.3).

>
>
K" step: Processor j reads part ((k-1)*g+j) from file F(j mod g).

Processor j reads part ((k-1)*g+j) from file F((j+1) mod q).
x
Processor j reads part ((k-1)*g+j) from file F((j+g-1) mod q).
After reading in the r*q sequences, processor j merges them and put the merged
result to the K" place of Dj (see Fig. 4.3).
After as many as k merging steps, processor j will generate k merged sequences
which are outputted in file Dj. The size of each merged sequence can be easily computed
as mergeSize=r*a*g=N/m, and we must make sure that mergeSize £ M (our choice of m

must meet this requirement).
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File Dj

[€---mmmmmmmm e MergeSize  -------------mmm-mmmmmooeo 2|
Row 1. merge result of part j by processor j
Row 2: merge result of part (g+j) by processor |

X

Row k: merge result of part ((k-1)*qg+j) by processor |

Figure. 4.3. Merging Result

From the analysis above, we see each merging step in Step 2 is done in parallél.
We can also compute the /O time for each processor. The logical 1/0 ime will be as
following.
I/O time = k*(input datatime for each step + output datatime for each step)
=k*(r*q+1)
= m*(r+1/q).
If data size is fixed, and if we double the number of processors, it is obvious that

the I/O time will be reduced by %2 from the above equation.

Step 3 Inthis step, we try to shuffle the m merged sequences. We want to read data,

shuffle data, and output datain parallel. The schemeis as following:

We partition file Dj (O £ j £ q) into g part (see Fig. 4.4).
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File Dj
< patl 2>|<¢ pat2 —2>|¢ pat3 -2 |< partg -2
Row 1
Row 2
x x x
Row k

Figure. 4.4. Partition File into q Parts

Each processor will be responsible for its own part. So processor j will shuffle
only part j. By partition the datain this way, processors can read data, shuffle data, and
output datain parallel.

First step: Processor | reads part j from file D(j mod Q).

Second step:  Processor | reads part j from file D((j+1) mod q).

x

qth step: Processor j reads part j from file D((j+g-1) mod q).

We notice that each processor reads data in paralel: when processor j is reading
part j from file D(j mod q), processor (j+1) is reading part (j+1) from file D((j+1) mod q);
when processor | is reading part j from file D((j+1) mod q), processor (j+1) is read part
(j+1) from file D((j+2) mod q). After each processor Dj read its data, it will perform

shuffling, and then output the result to file F.
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The above anaysis is just for easy understanding of how to shuffle data in
paralel. In actua practice, we also need to partition each of the q parts into r cells with
each cell having data of size a, where r = (N/g)/M and a = M/m which we aready
mentioned in Step 1. This partition is necessary because if each processor Dj input part |
from al g files, the size of the input data is definitely larger than memory size.

Now, we show the detail implementation of Step 3. We need to partition each of

the g partsinto r cells (see Fig. 4.5).

File Dj (ci represent cell i)

& —-patl--—- 2 -——-pat2----2|........|€ --- patq---- 2|
cl|{c2| .. |cr|cl|c2| ... |cr cl|c2| .. cr
cl|{c2| .. |cr|cl|c2| ... |cr cl|c2| ... |cr
cl|{c2| ... |lcr|cl|c2| ... |cr cl|c2| ... |cr

Figure. 4.5. Partition Partsinto r Cells

First step: Processor | reads c1 from part j of file D(j mod q).

Processor | reads c1 from part j of file D((j+1) mod q).

Processor j reads c1 from part j of file D((j+2) mod q).

x
Processor j reads c1 from part j of file D((j+g-1) mod q).
After processor j reads in the data, it will shuffle them, and then output result to

thefirst place of file Fj.
Second step:  Processor j reads c2 from part j of file D(j mod q).

Processor | reads c2 from part j of file D((j+1) mod q).



29

Processor | reads c2 from part j of file D((j+2) mod q).
x
Processor j reads c2 from part j of file D((j+g-1) mod q).
After processor j reads in the data, it will shuffle them, and then output result to

the second place of file Fj.

x
x
rth step: Processor | reads cr from part j of file D(j mod q).

Processor | reads cr from part j of file D((j+1) mod q).
Processor | reads cr from part j of file D((j+2) mod q).
x
Processor j reads cr from part j of file D((j+g-1) mod q).
After processor j reads in the data, it will shuffle them, and then output result to
ther™ place of file Fj.
After as many as r steps, we finished shuffling the data. From the analysis above,
Each processor read data, shuffle data, and output datain parallel.
Logica 1/0 time = r*(input data time for one step + output data time for one step)

= r(k*q+)

r*((m/g)*g+1)

r*(m+1).
If we double the number of processors, r will be reduced by %.. So doubling the

number of processors will also reduce the I/O time by Y.
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Step 4 In this step, we will try to clean the dirty sequences. We know the size of the
dirty sequence is no more than 1*m = (N/M)*m. The cleaning can be very simple. Each
processor j clean the dirty sequence of file Fj. Since each processor clean different file,
parallel can easily proceed.

Logica 1/Otime

2% (NIQ)/(1*m)

(2*M)/(g*m).
If we double the number of processors, the I/O time will be reduced by V2.

After Step 4, we finish the sorting. As we can see from the above anaysis, there
is no communication between each processor. All the sorting procedures are done in
paralel. Meanwhile, If we double the number of processors, the I/O time will be reduced

by V2.

4.3 Computing the Speed Up

In this section, we report our experimental evaluation of the PMF. We employ 2,
4, and 8 processors to sort different size of data and compute the real time speed up by
comparing the result of using only 1 processor. In this simulate application, we fix the
memory size to be 138240 byte. The value of m is 120. The data we generate are random
floating numbers. We use two different sorting algorithms Quick sort and Heap sort, to

sort the local data.

4.3.1 Using Quick Sort

Here, we use quick sort for our local sorting. The testing results are shown in the

following tables. Also, we show a chart of the data to illustrate the appealing speed up.



Table 4.1. Quick Sort Results Of Using 2 Processors
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Input Data Size 1 Processor 2 Processor Speed Up
3317760 bytes 41.2 seconds 22.1 seconds 1.86
6635520 bytes 66.4 seconds 34.1 seconds 1.94
9953280 bytes 87.2 seconds 44.5 seconds 1.97
13271040 bytes 104.8 seconds 53.2 seconds 1.97

120

100

@1 processor
[l 2 processors

Figure. 4.6. Quick Sort Speed Up Chart Using 2 Processors
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Table 4.2. Quick Sort Results Of Using 4 Processors

Input Data Size 1 Processor 4 Processor Speed Up
3317760 bytes 41.2 seconds 13.4 seconds 3.07
6635520 bytes 66.4 seconds 21.6 seconds 3.07
9953280 bytes 87.2 seconds 27.2 seconds 3.20
13271040 bytes 104.8 seconds 33.1 seconds 3.16
120
100
80 (]
__ @1 processor
60
40 W4 processors
20
il i ml ml &
& o > S
,gb"/’\ b@'go qééb \:gi\\’

Figure. 4.7. Quick Sort Speed Up Chart Using 4 Processors




Table 4.3. Quick Sort Results Of Using 8 Processors
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Input Data Size 1 Processor 8 Processor Speed Up
3317760 bytes 41.2 seconds 9.70 seconds 4.24
6635520 bytes 66.4 seconds 14.2 seconds 4.67
9953280 bytes 87.2 seconds 18.4 seconds 474
13271040 bytes 104.8 seconds 23.1 seconds 4,53
120
100 ]
80 (]
__ @1 processor
60
40 M8 processors
20
oll mm | [N 1 : .:
& &» S F
,gb"/’\ b@'go qééb \:gi\\’

Figure. 4.8. Quick Sort Speed Up Chart Using 8 Processors




4.3.2 Using Heap Sort

Here, we use heap sort for our local sorting. The testing results are shown in the

following tables. Also, we show the charts to illustrate the appealing speed up.

Table 4.4. Heap Sort Results Of Using 2 Processors

Input Data Size 1 Processor 2 Processor Speed Up
3317760 bytes 44.6 seconds 23.2 seconds 1.92
6635520 bytes 68.1 seconds 35.8 seconds 1.90
9953280 bytes 90.2 seconds 46.8 seconds 1.92
13271040 bytes 113.1 seconds 57.9 seconds 1.95

120
100
80
60

fIS1 81 8

3317760 6635520 9953280 1.3E+07

] @1 processor

[l 2 processors

Figure. 4.9. Heap Sort Speed Up Chart Using 2 Processors



Table 4.5. Heap Sort Results Of Using 4 Processors
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Input Data Size 1 Processor 4 Processor Speed Up
3317760 bytes 44.6 seconds 14.2 seconds 3.14
6635520 bytes 68.1 seconds 21.8 seconds 311
9953280 bytes 90.2 seconds 28.1 seconds 3.21
13271040 bytes 113.1 seconds 34.8 seconds 3.25

120

100

@1 processor

[l 4 processors

Figure. 4.10. Heap Sort Speed Up Chart Using 4 Processors
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Table 4.6. Heap Sort Results Of Using 8 Processors

Input Data Size 1 Processor 8 Processor Speed Up

3317760 bytes 44.6 seconds 9.79 seconds 4.56

6635520 bytes 68.1 seconds 14.2 seconds 4.79

9953280 bytes 90.2 seconds 18.9 seconds 4.76

13271040 bytes 113.1 seconds 23..5 seconds 4.81

120
100

— @1 processor

[l 8 processors

Figure. 4.11. Heap Sort Speed Up Chart Using 8 Processors




CHAPTER 5
CONCLUSION

5.1 Major Results

Parallel sorting agorithm have been widely studied due to its classica
importance and fundamentals. Many sequential sorting algorithms have been presented.
Even though there are many sorting agorithms, many of them are less practical due to the
large constants in their run time.

In this thes's, we have investigated a straight forward model of computing with
multiple disks (which can be thought of as a specia case of the HMM). This model,
PMD, can be thought of as a redlization of prior models such as the PDS. We have also
presented a sorting algorithm for the PMD. Here, we use LMM sort agorithm on the
PMD. But for local sorting, we have to use k-k routing and kk sorting agorithm due to
the communication concern. The I/O time and communication time are evaluated on the
PMD. From the analysis of the result, the communication timeis still significant.

On our research, reducing communication time and /O time are the maor
concerns. Here, we presented the PMF moddl. The underlying paralel machine is a
network of workstations. The data are partitioned and stored in several files which are
managed by a network file system. The LMM sort algorithm plays a vita role on the
PMF model. The LMM sort consists of sorting, shuffling and unshuffling. These require
to partition data into many parts. This property make it possible to let different processors

read and write different parts of data from different filesin parallel. Because of this, there
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IS no communications between processors, and hence, we overcome the communication
overhead. Meanwhile, if we increase the number of processors, 1/0O time will aso be
improved. Our experimental results for sorting indicate that we can get decent speedups

in practice using the PMF model.

5.2 Future Work

From our testing results, we can see that when we use two processors, the speed
up isamost 2. But as we use four processors, the speed up is close to 3. Especially, when
we use 8 processors, the speed up is only close to 5. The results are not as optimal as we
anayzed. In our research, we believe this problem is because of initial start up
communication delay. The more processors we use will cause more delays. Meanwhile,
different processors speed can be different, and this will aso bad effects on the speed up.

Our future research will be concerning with these problems.
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