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 Several models of parallel sorting are found in the literature. Among these 

models, the parallel disk models are proposed to alleviate the I/O bottleneck when 

handling large amounts of data. These models have the general theme of assuming  

multiple disks. For instance, the Parallel Disk Systems (PDS) model assumes D disks 

which are disposed on a single computer. It is also assumed that a block of data from 

each of the D disks can be fetched into the main memory in one parallel I/O operation. In 

this thesis we  present a new model for multiple disks and evaluate its performance. This 

model is called a Parallel Machine with Multiple Disks (PMD). A PMD model has 

multiple computers each of which is connected with one disk. A PMD model can be 

thought of as a realization of the PDS model. In this thesis, we also present a more 

practical model which is called Parallel Machines with multiple Files (PMF). A PMF 

model has  multiple computers  connected on a central file system. We investigate the 



 

ix 

sorting problem on this new model. Our analysis demonstrates the practicality of the 

PMF. We also present experimental confirmation of this assertion with data from our 

implementation.
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CHAPTER 1 
INTRODUCTION 

1.1  Scope and Objective 

 
Computing applications have advanced to a stage where voluminous data is the 

norm. The volume of data dictates the use of secondary storage devices such as disks. 

Even the use of just a single disk may not be sufficient to handle I/O operations 

efficiently. Thus researchers have introduced models with multiple disks.    

A model that has been studied extensively (which is a refinement of prior models) 

is the Parallel Disk Systems (PDS) model [17] . In this model there is a single computer 

and D disks. In one parallel I/O, a block of data from each of the D disks can be brought 

into the main memory. A block consists of B records. If M is the internal memory size, 

then one usually requires that M ≥ 2DB. Algorithm designers have proposed algorithms 

for numerous fundamental problems on the PDS model. In the analysis of these 

algorithms they counted only the I/O operations since the local computations can be 

assumed to be very fast. 

The practical realization of this model is an important research issue. Models such 

as Hierarchical Memory Models (HMMs) [8,9] have been proposed in the literature to 

address this issue. Realizations of HMMs using PRAMs and hypercube have been 

explored [9]. Sorting algorithms on these realizations have been investigated. 

  In this thesis we propose a straight forward model called  a Parallel Machine with 

Disks (PMD). A PMD can be thought of as a special case of the HMM. A PMD is 
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nothing but a parallel machine where each processor has an associated disk. The parallel 

machine can be structured or unstructured. If the parallel machine is structured, the 

underlying topology could be a mesh, a hypercube, a star graph, etc. Examples of 

unstructured parallel computers include SMP, a cluster of workstations (employing PVM 

or MPI), etc. In some sense, the PMD is nothing but a parallel machine where we study 

out of core algorithms. In the PMD model we not only count the I/O operations but also 

the communication steps. One can think of a PMD as a realization of the PDS model. 

Given the connection between HMMs and PDSs, we can state that prior works have 

considered variants of the PMD  where the underlying parallel machine is either a PRAM 

or a hypercube [9]. We begin the study of PMDs with the sorting problem. Sorting is an 

important problem of computing that finds applications in all walks of life. We analyze 

the performance of the LMM sort algorithm of Rajasekaran’s [14] PMD (where the 

underlying parallel machine is a mesh, a hypercube, and a cluster of workstations).  

In particular, we present a new model which is called Parallel Machine with 

Multiple Files (PMF). A PMF model has multiple computers which are managed by  a 

network file system. As in modern days, network file system has been a popular 

distributed file system, so this model can be more practical in real life. In this model, 

input data will be partitioned into several files which are stored in the file system. All 

computers can read and write data from these files. We show why this model has more 

appealing properties than other models. We compute the run times for sorting in this 

model. Also we compute the speed ups of using multiple computers in verse of using 

single computer. These analyses demonstrate the practicality of the PMF.  
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1.2  Thesis Outline 

This thesis consists of  5 chapters.  In addition  to this introduction,  the  rest of  

the thesis is organized as follows. 

In  Chapter 2, we  provide a  summary of  known algorithms  for  the  PDS  

model.  

In Chapter 3, we present details of the PMD model. To make our discussion 

concrete, we use the mesh as the topology of the underlying parallel machine. However, 

the discussion applies to any parallel machine. Also in this chapter, we state some routing 

and sorting algorithms which are applied on the PMD model. Especially, we give detail 

description of the LMM algorithm which played a vital role in both PMD and PMF 

models.  

In Chapter 4, we show a more practical model, PMF model. We stated its 

structure, and give detail description of its implementation. Also, we show our 

experimental results of the PMF model. 

Chapter 5 concludes the thesis.    
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CHAPTER 2 
SORTING ON THE PDS MODEL 

In this chapter, we present an overview sorting results on the PDS model which 

has the structure of multiple disks with a single computer. 

2.1  The PDS Model 

Sorting has been studied well on the PDS model (see Fig. 2.1). A known lower 

bound for the number of I/O read steps for parallel disk sorting is Ω( ])[ )/log(
)/log(

BM
BN

DB
N . Here N 

is the number of records to be sorted and M is the internal memory size. Also, B is the 

block size and D is the number of parallel disks used. There exist several asymptotically 

optimal algorithms that make  O( ][ )/log(
)/log(

BM
BN

DB
N ) I/O read steps (see e.g., references 10, 1, 

and 3).  

 

Figure 2.1. Architecture of a PDS Model 
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One of the early papers on disk sorting was by Aggarwal and Vitter [2]. In the 

model they considered, each I/O operation results in the transfer of D blocks each block 

having B records. A more realistic model was envisioned by Vitter and Shriver  [17]. 

Several asymptotically optimal algorithms have been given for sorting on   this model. 

Nodine and Vitter’s optimal algorithm [8] involves solving certain matching problems. 

Aggarwal and Plaxton’s optimal algorithm [1] is based on the Sharesort algorithm of 

Cypher and Plaxton. Vitter and Shriver gave an optimal randomized algorithm for disk 

sorting [17]. All of these results are highly nontrivial and theoretically interesting. 

However, the underlying constants in their time bounds are high. 

2.2   Sorting on The PDS Model 

In practice, the simple disk-striped mergesort (DSM) is used [4], even though it is 

not asymptotically optimal. DSM has the advantages of simplicity and a small constant. 

Data accesses made by DSM is such that in any I/O operation, the same portions of the D 

disks are accessed. This has the effect of having a single disk which can transfer DB 

records in a single I/O operation. An DB
M -way mergesort is employed by this algorithm. 

To start with, initial runs are formed in one pass through the data. At the end the disk has 

N/M runs each of length M. Next, DB
M runs are merged at a time. Blocks of any run are 

uniformly striped across the disks so that in future they can be accessed in parallel 

utilizing the full bandwidth.  

Each phase of merging involves one pass through the data. There are )/log(
)/log(

DBM
MN  

phases and hence the total number of passes made by DSM is )/log(
)/log(

DBM
MN  . In other words, 

the total number of I/O read operations performed by the algorithm is )1( )/log(
)/log(

DBM
MN

DB
N + .  

The constant here is just 1.  
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If one assumes that N is a polynomial in M and that B is small (which are readily 

satisfied in practice), the lower bound simply yields Ω(1) passes. All the above 

mentioned optimal algorithms make only O(1) passes. So, the challenge in the design of 

parallel disk sorting algorithms is in reducing this constant. If M = 2DB, the number of 

passes made by DSM is 1 + log(N/M), which indeed can be very high. 

Recently, research  has been performed dealing with the practical aspects. Pai, 

Schaffer, and Varman [11] analyzed the average case performance of a  simple merging 

algorithm, employing an approximate model of average case inputs. Barve, Grove, and 

Vitter [4] have presented a simple randomized algorithm (SRM) and analyzed its 

performance. The analysis involves the solution of certain occupancy  problems. The 

expected number ReadSRM of I/O read operations made by their algorithm is such that 

ReadSRM ≤ kD
MN

DB
N

DB
N

log
)/log(+ )1(1( loglog

log1
loglog

logloglog
loglog

log OD
k

D
D

Dk
D +++ + ). (1) 

The algorithm merges R=kD runs at a time, for some integer k. When R =   

Ω(DlogD), the expected performance of their algorithm is optimal. However, in this case, 

the internal memory needed is Ω(BDlog D). They have also compared SRM with DSM 

through simulations and shown that SRM performs better than DSM. Recently, 

Rajasekaran [14] has presented an algorithm (called (l,m)-merge sort (LMM)) which is 

asymptotically optimal under the assumptions that N is a polynomial in M and B is small. 

The algorithm is as simple as DSM. LMM makes less number of passes through  the data 

than DSM when D is large.
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CHAPTER 2 
A PARALLEL MACHINE WITH DISKS (PMD) 

3.1  The PMD Model 

 
In this section we give more details of the PMD model. A PMD is nothing but a 

parallel machine where each processor has a disk. Each processor has a core memory of 

size M. In one I/O operation, a block of B records can be brought into the core memory 

of each processor from its own disk. Thus there are a total of  D=P disks in the PMD, 

where P is the number of processors. Records from one disk can be sent to another 

through the communication mechanism available for the parallel machine after bringing 

the records into the main memory of the origin processor. It is conceivable that the 

communication time is considerable on the PMD. Thus it is essential to not only account 

for the I/O operations but also for the communication steps, in analyzing any algorithm's 

run time on the PMD. 

PMD can be thought of as a special case of the HMM [9]. Realization of HMM 

using PRAMs and hypercubes have already been studied [9]. 

The sorting problem on the PMD can be defined as follows. There are a total of N 

records to begin with so that there are D
N  records in each disk. The problem is to 

rearrange the records such that they are in either ascending order or descending order 

with D
N  records ending up in each disk. It is assumed that the processors themselves have 

been ordered so that the smallest D
N  records will be output in the first processor's disk, the 
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next smallest D
N  records will be output in the second processor's disk, and so on. This 

indexing scheme is in line with the usual indexing scheme used in a parallel machine. 

However any other indexing scheme can also be used. 

To make our discussions concrete, we will use the mesh (see Fig. 3.1) as an 

example. Let the mesh be of size n × n. Then we have D = n2 disks. An indexing scheme 

is called for in sorting on a mesh (see e.g., Rajasekaran [13]). Some popular indexing 

schemes are column major, row major, snake-like row, blockwise row-major, etc. For the 

algorithm to be presented in this thesis, any of these schemes can be employed. 

 

Figure. 3.1.  A PMD Model of n × n Mesh 

The algorithm to be presented in this thesis employs as subroutines some 

randomized algorithms. We say a randomized algorithm uses Õ(f(n)) amount of any 

resource (such as time, space, etc.) if the amount of resource used is no more than cαf(n) 

with probability ≥ (1-n-α), where c is a constant and α is a constant ≥1. We can also 

define other asymptotic functions in a similar fashion. 
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3.2  Sorting Algorithms 

Parallel sorting algorithm have been widely studied due to its classical importance 

and fundamentals. A lot of sorting algorithms have been presented. In this section, we 

talk about the problem of packet routing which plays a vital role in the design of 

algorithm on any parallel machine. We present the algorithms of k-k routing and k-k 

sorting. Also we give detail explanation of (l,m)-merge sort (LMM) algorithm which is 

the central spirit of sorting on the PMD model and PMF model. 

3.2.1  Algorithm of  k-k Routing and k-k Sorting 

The packet routing problem can be defined as following. There is a packet of 

information to start with at each processor that is destined for some other processor. The 

problem is to send all the packets to their correct destinations as quickly as possible. In 

any interconnection network, one requires that at most one packet traverses through any 

edge at any time. The problem of  partial permutation routing refers to packet routing 

when at most one packet originates from any processor and at most one packet is destined 

for any processor. Packet routing problems have been explored thoroughly on 

interconnection networks (see e.g., Rajasekaran [13]). 

The problem of k-k routing is the problem of routing where at most k packets 

originate from any processor and at most k packets are destined for any processor. 

In the case of an n × n mesh, it is easy to prove a lower bound of 2
kn  on the 

routing time for this problem based on bisection considerations. There are algorithms 

whose run times match this bound closely as stated in the following Lemma. A proof of 

this Lemma can be found e.g., in Kaufmann, Rajasekaran, and Sibeyn [5]. 
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            [Lemma 3.2.1.1] 

            The k-k routing problem can be solved in +2
kn õ(kn) time on an n × n mesh. 

The problem of k-k sorting is defined as follows. There are k keys at each 

processor of a parallel machine. The problem is to rearrange the keys in either ascending 

or descending order according to some indexing scheme. 

In an n × n mesh, this problem also has a lower bound of 2
kn on the run time. The 

following Lemma promises a closely optimal algorithm (see e.g., Rajasekaran [13]) 

sorting. 

            [Lemma 3.2.1.2] 

            k-k sorting can be solved on an n × n mesh in +2
kn õ(kn) steps. 

The above two Lemmas will be employed by our sorting algorithm on the mesh. 

It should be noted here that there exist deterministic algorithms (see e.g., [6]) for k-k 

routing and k-k sorting whose run times match those stated in Lemmas 3.2.1.1 and 

3.2.1.2. However, we believe that the use of randomized algorithms will result in better 

performance in practice. 

3.2.2  The (l,m)-Merge Sort (LMM) 

Many of the sorting algorithms that have been proposed for the PDS are based on 

merging. These algorithms start by forming M
N  runs each of length M. A run is nothing 

but a sorted subsequence. Forming these initial runs takes only one pass through the data 

(or equivalently DB
N  parallel I/O operations). After this, the algorithms will merge R runs 

at a time. Let a  phase of merging refer to the task of scanning through the input once and 

performing R-way merging. Note that each phase of merging will reduce the number of 
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remaining runs by a factor of R. For example, the DSM algorithm employs R = DB
M . The 

various sorting algorithms differ in how each phase of mergings is done. 

The (l,m)-merge sort algorithm of Rajasekaran [14] is also based on merging. It 

employs R=l, for some appropriate l. The LMM is a generalization of the odd-even merge 

sort, the s2-way merge sort of Thompson and Kung [16], and the columnsort algorithm of 

Leighton [7]. 

            [3.2.2.1 Algorithm Odd-Even Mergesort]      

The odd-even mergesort algorithm employs R=2. It repeatedly merges two 

sequences at a time. To begin with there are n sorted runs each of length 1. 

From thereon the number of runs is decreased by a factor of 2 with each 

phase of mergings. Two runs are merged using the odd-even  merge 

algorithm that is described below. 

1. Let U = u1,u2,…,uq and V = v1,v2,…,vq be the two sorted sequences 

to be merged. Unshuffle U into two, i.e., partition U into two: Uodd = 

u1,u3,…,uq-1    and Ueven= u2,u4,…,uq. Similarly partition V into Vodd  

and Veven. 

2. Now recursively merge Uodd with Vodd. Let X = x1,x2,…,xq be the 

result. Also merge Ueven with Veven. Let Y = y1,y2,…,yq be the result. 

3. Shuffle X and Y, i.e., form the sequence: Z = x1, y1, x2, y2,…, xq,yq.  

4. Perform one step of  compare-exchange operation, i.e., sort 

successive subsequences of length two in Z. In other words, sort y1, 

x2; sort y2, x3; and so on. The resultant sequence is the merge of U and 

V. 
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The correctness of this algorithm can be established using the zero-one principle. 

The algorithm of Thompson and Kung [16] is a generalization of the above algorithm 

where R is taken to be s2 for some appropriate function s of n. At any given time s2 runs 

are merged using an algorithm similar to the above. 

[3.2.2.2 Algorithm (l,m)-Merge]      

LMM is a generalization of s2-way merge sort algorithm. It uses R = l. 

Each phase of mergings thus reduces the number of runs by a factor of l. 

At any time, l runs are merged using the (l,m)-merge algorithm. This 

merging algorithm is similar to the odd-even merge except that in Step 1, 

the runs are m-way unshuffled (instead of 2-way unshuffling). In Step 3, 

m sequences are shuffled and also in Step 4, the local sorting is done 

differently. A detailed description of the merging algorithm follows. 

1. Let the sequences to be merged be Ui = ui
1,ui

2, … ,ui
r, for 1 ≤ i ≤l. If r 

is small   use a base  case  algorithm.  Otherwise,  unshuffle  each  Ui  

into  m  parts.  In    particular, partition Ui into Ui
1,Ui

2,…,Ui
m, where 

Ui
1 = ui

1, ui
1+m,…;  Ui

2 = ui
2,   ui

2+m,…; and so on. 

2. Recursively  merge  U1
j,U2

j,…,Ul
j, for 1≤ j ≤  m. Let the merged 

sequences be   Xj = x j
1,xj

2, …,x j
lr/m, for 1≤ j ≤  m. 

3. Shuffle X1, X2,…, Xm, i.e.,  form  the  sequence  Z = x1
1,x 2

1, … ,xm
1, 

x1
2 ,x2

2 ,  …, xm
2,…, x1

lr/m,x2
lr/m, … ,xm

lr/m. 

4. It  can  be  shown  that  at   this   point   the   length   of   the  “dirty 

sequence” (i.e., unsorted portion)  is  no  more  than lm.  But  we  

don't  know  where the dirty sequence is located.   We  can  cleanup  
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the  dirty  sequence  in  many different ways. One way is described 

below. 

Call the sequence of the first lm elements of  Z as Z1; the next lm 

elements as   Z2; and so on. In other words, Z is partitioned into Z1, 

Z2,…, Zr/m.  Sort  each  ne of the Zi’s. Followed by this merge Z1, Z2; 

merge Z3 and Z4; etc.  Finally merge Z2 and Z3; merge Z4 and Z5; and 

so on. 

The above algorithm is not specific to any architecture. (The same can be said 

about any algorithm). An implementation of LMM on PDS has been given in 

Rajasekaran [14]. The number of I/O operations needed in this implementation has been 

shown to be ]1[
})/,log(min{

)/log( +
BMM

MN
DB
N 2. When N is a polynomial in M and M is a polynomial 

in B this reduces to a constant number of passes through the data and hence LMM is 

optimal. In Rajasekaran [14] it has been demonstrated that LMM can be faster than the 

DSM when D is large. Recent implementation results of Pearson [12] indicate that LMM 

is competitive in practice. Thus a natural choice of sorting algorithm for PMD is LMM. 

In the next Section we implement LMM on a PMD and analyze the resultant I/O and 

communication steps. 

3.3  Sorting on the PMD Model 

We begin by considering the sorting problem on the mesh. The result can be 

generalized to any parallel machine. 
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3.3.1  Sorting on the Mesh 

Consider a PMD where the underlying machine is an n × n mesh. The number of 

disks is D=n2 . Each node in the mesh is a processor with a core memory of size M. In 

one I/O operation, a processor can bring a  block of B records into its main memory. 

Thus the PMD as a whole can bring in DB records in one I/O operation, i.e., we can 

relate a PMD with a PDS whose main memory capacity is DM and that has D disks. 

Let the number of  records to be sorted be N. To begin with, there are D
N  records 

at each disk of the PMD. The goal is to rearrange the records in either ascending order or 

descending order such that each disk gets D
N  records at the end. An indexing scheme has 

to be assumed. For the algorithm to be presented any of the following schemes will be 

acceptable: row-major, column-major, snake-like row-major, snake-like column-major, 

blockwise row-major, blockwise column-major, blockwise snake-like row-major, and 

blockwise snake-like column-major. We assume the blockwise snake-like row-major 

order for the following presentations. The block size is D
N , i.e., the first (in the snake-like 

row-major order) processor will store the smallest  D
N  records, the second processor will 

store the next smallest  D
N  records, and so on. 

As one can easily see, the entire LMM algorithm consists of shuffling, 

unshuffling and local sorting steps. We use the k-k routing and k-k sorting algorithms 

(Lemmas 3.2.1.1 and 3.2.1.2) to perform these steps. Typically, we bring records from 

the disks  until the local memories are filled. Processing on these records is done using k-

k routing and k-k sorting algorithms. The queue length of k-k sorting and k-k routing 

algorithms is k + Õ (k). So we do not fill M completely. We only half-fill the local 
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memories so as to run the randomized algorithms. Also in order to overlap I/O with local 

computations, only half of this memory can be used to store operational data. We refer to 

this portion of the core memory as M, i.e., M is one-fourth of the core memory size 

available for each processor. 

To begin with we form DM
N  sorted runs each of length DM. The number of  I/O 

operations performed is DB
N  since each processor need to have B

M I/O for each run. Also, 

the number of communication steps is Õ( )nD
N . This is so because, we perform DM

N  

number of  k-k sorting (with k = M) and each such sort takes kn + Õ(kn) steps.  

Since LMM is based on merging in phases, we have to specify how the runs in a 

phase are stored across the D disks. Let the disks as well as the runs be numbered from 

zero. We use the same scheme as the one given in Rajasekaran [14]. Each run will be 

striped across the disks. If R ≥ D, the starting disk for the ith run is i mod D, i.e., the 

zeroth block of the ith run will be in disk i mod D; its first block will be in disk (i+1) mod 

D; and so on. This will enable us to access, in one I/O read operation, one block each 

from D distinct runs and hence obtain perfect disk parallelism. If R < D, the starting disk 

for the ith run is R
Di . (Assume without loss of generality that D divides R.) Even now, we 

can obtain R
D  blocks from each of the runs in one I/O operation and hence achieve perfect 

disk parallelism. 

3.3.2  Base Cases  

LMM is a recursive algorithm whose base cases are handled efficiently. We now 

discuss two base cases. 
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Base Case 1. Consider the problem of merging DM runs each of length DM, when 

DMB
DM ≥ . This merging is done using (l,m)-merge with l = m = DM .  

Let U1, U2,…, U DM  be the sequences to be merged. In Step 1, each Ui 

gets unshuffled into DM parts so that each part is of length DM . This unshuffling can 

be done in one pass through the data. Thus the number of I/O operations is DB
N . The 

communication time is Õ( )nD
N . 

Note.  Throughout the algorithm, each pass through the data will involve DB
N I/O 

operations and nD
N  communication steps. Also, we use T(u,v) to denote the number of 

read passes needed to merge u sequences of length v each. 

In  Step 2,  we  have DM  merges to  do, each  merge  involving  DM  

sequences of length DM  each. Since there are only DM records in each merge, all the 

mergings can be done in one pass through the data. 

Steps 3 and 4 perform shuffling and cleaning up, respectively. The length of the 

dirty sequence is )( DM 2 =DM. These two steps can be combined and finished in one 

pass through the data (see [14] for details). Thus we get: 

[Lemma 3.3.2.1]     

T ),( DMDM  = 3, if  DMB
DM ≥ . 

Base Case 2. This is the case of merging  B
DM  runs each of length DM, when B

DM     

< DM  . This problem can be solved using (l,m)-merge with l = m = B
DM . 

In this case we can obtain: 
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[Lemma 3.3.2.2]     

T( B
DM , DM) = 3, if B

DM  < DM . 

3.3.3  The Sorting Algorithm  

LMM  algorithm has been  presented  in two cases. In our implementation the two 

cases will be when  DMB
DM ≥  and when B

DM  < DM . In either case, initial runs are 

formed in one pass at the end of which DM
N  sorted sequences of length DM each remain 

to be merged.  

When DMB
DM ≥ ,  (l,m)-merge is employed with l = m = DM . Let K denote 

DM and let DM
N = K2c. In other words, c = )log(

)/log(
DM

DMN . 

T(,) can be expressed as follows.   

      T(K2c, DM) = T(K, DM) + T(K,KDM) + ⋅⋅⋅⋅ + T(K, K2c-1DM)      (2)  

The above relation basically means that there are K2c sequences of length DM 

each to begin with; we merge K at a time to end up with K2c-1 sequences of length KDM 

each; again merge K at a time to end up with K2c-2 sequences of length K2DM each; and 

so on. Finally there will be K sequences of length K2c-1 DM each which are merged. Each 

of these mergings is done using (l,m)-merge with l = m = DM . 

It can also be shown that 

T(K, KiDM) = 2i + T(K,DM) = 2i + 3.  

The fact that T(K, DM) = 3 (c.f. Lemma 3.3.2.1) has been used. 

Upon substituting this into Equation (2), we get 

T(K2c, DM) = ∑
−

=

=+
12

0

)32(
c

i

i 4c2 + 4c 
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where c = )log(
)/log(

DM
DMN .    Now, we have the following: 

[Theorem 3.3.3.1]     

The number of read passes needed to sort N records is 1+4( )log(
)/log(

DM
DMN )2 

+4 )log(
)/log(

DM
DMN , if DMB

DM ≥ . This number of passes is no more than 

[ 1
})/,log(min{

)/log( +
BDMDM

DMN ]2. This means that the number of I/O read operations 

is no more than  DB
N [1+4( )log(

)/log(
DM

DMN )2 + 4 )log(
)/log(

DM
DMN ]. 

The number of communication steps is no more than 

Õ( nD
N [1+4( )log(

)/log(
DM

DMN )2 + 4 )log(
)/log(

DM
DMN ]). 

The second case to be considered is when B
DM  < DM . Here (l,m)-merge will be 

used with l = m = B
DM . Let Q denote B

DM  and let DM
N = Qd. That is, d= )/log(

)/log(
BDM

DMN . Like in 

case 1 we can get, 

T(Qd,DM) = T(Q,DM) + T(Q,QDM) + ⋅⋅⋅ + T(Q,Qd-1DM).      (3) 

Also, we can get, 

T(Q,QiDM) = 2i + T(Q,DM) = 2i + 3. 

Here the fact T(Q,DM) = 3 (c.f. Lemma 3.3.2.2) has been used. 

Equation (3) now becomes 

T(Qd,DM) = ∑
−

=

+
1

0

)32(
d

i

i = d2 +2d 

where d = )/log(
)/log(

BDM
DMN . 
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[Theorem 3.3.3.2]  

The number of read passes needed to sort N records on the PMD is upper 

bounded by [ 1
})/,log(min{

)/log( +
BDMDM

DMN ]2, if  B
DM  < DM . 

Theorem 3.3.3.1 and theorem 3.3.3.2 readily yield: 

[Theorem 3.3.3.3]  

We can sort N records in ≤ [ 1
})/,log(min{

)/log( +
BDMDM

DMN ]2 read passes over the 

data. The total number of I/O read operations needed is ≤ 

DB
N [ 1

})/,log(min{

)/log( +
BDMDM

DMN ]2. Also, the total number of communication steps 

needed is Õ( nD
N [ 1

})/,log(min{

)/log( +
BDMDM

DMN ]2). 

3.3.4  Sorting on a general PMD 

In this section we consider a general PMD where the underlying parallel machine 

can either be structured (e.g., the mesh, the hypercube, etc.) or unstructured  (e.g., SMP, a 

cluster of workstations, etc.). 

We can apply LMM on a general PMD in which case the number of I/O 

operations will remain the same, i.e., DB
N [ 1

})/,log(min{

)/log( +
BDMDM

DMN ]2. As has become clear 

from our discussion on the mesh, we need mechanisms for k-k routing and k-k sorting. 

Let RM and SM denote the time needed for performing one M-M routing and one M-M 

sorting on the parallel machine, respectively. Then, in each pass through the data, the 

total communication time will be DB
N ( RM + SM), implying that the total communication 

time for the entire algorithm will be 

≤ DB
N (RM + SM)[ 1

})/,log(min{

)/log( +
BDMDM

DMN ]2. 
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Thus we get the following general Theorem: 

[Theorem 3.3.4.1]     

Sorting on a general PMD model can be performed in 

DB
N [ 1

})/,log(min{

)/log( +
BDMDM

DMN ]2 I/O operations.  The total communication time  

is  ≤ DB
N (RM + SM)[ 1

})/,log(min{

)/log( +
BDMDM

DMN ]2 .       
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CHAPTER 4 
PARALLEL MACHINE WITH MULTIPLE FILES (PMF) 

In this chapter, we present a more practical parallel computing model called PMF. 

We show why this model has some advantages and report our experimental evaluation of 

the PMF. 

4.1  Introduction of the PMF Model 

A PMF model is nothing but multiple computers managed in a network file 

system. The underlying parallel machine is a network of workstations. In this model, 

input data will be partitioned into several files which are stored as source data (see Fig. 

4.1). Computers can read and write data from these files.  

 

Figure. 4.1. Logical PMF Model. 

The sorting problem on the PMF can be defined as follows. There are a total of N 

records to be sorted, and there are P number of processors. The problem is to sort the N 

records into descending or ascending order. We partition input data into P parts, and 
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stored them in P files each with size of N/P. We also index each file and processor as 

F1,F2,…,Fp and P1,P2,…,Pp respectively. After sorting, the smallest P
N  records will be 

output in F1, the next smallest P
N  records will be output in F2, and so on.  

The LMM sort played a vital role in PMF Model. LMM algorithm consists of 

shuffling, unshuffling and local sorting steps. In each step, the data are partitioned into 

many parts, and each processor can pick any part from the partition and do the sorting, 

unshuffling, shuffling and cleaning. This property is essential in PMF model because 

processors do not need to communicate to get data from each other.      

Since there is no communication between processors, the I/O time become 

critical. But in PMF model, if we increase the number of processors, the I/O time will be 

reduced. Using 2n processors will reduce the I/O time by half comparing with using n 

processors. 

All of the advantages of this parallel computing model is that it sorts data in 

perfect parallel without any communications between each processor. 

4.2  Sorting on the PMF Model 

In this section, we show in detail about how to implement LMM sort on the PMF 

model, and how to partition data so that processors can read and write data in parallel 

without any communications between processors. LMM sort is a recursive algorithm. 

Here, we do not do the merge recursively, but proceed it just one level. Meanwhile, we 

use Quick sort or Heap sort for our local sorting. The detailed description of sorting 

follows. 

The input data size is N, and there are q processors. We  create q number of files 

each of size N/q. Also suppose the memory size is M and it is much less than N/q. The 
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chosen value of m can be random. We have varied the value of m to see its influence on 

the run time, but it seems to be nearly the same. Here, for easy implementation, we 

choose m to be a divisor of N/q, and also m can be divided by q. Without losing any 

generality, we suppose M is a divisor of N/q and (N/q)/M=r. 

Step 1    We mark the files as F1, F2, …, Fq. Also we mark processors as P1, 

P2,…, Pq. At first, processor Pi will input the first M data from Fi, sort it, unshuffle it  

into m parts with each part of size a=M/m, and then put it back to its original place (row 

1) in Fi, for 1 ≤ i ≤ q. Then Pi input the second M data from Fi, sort it, unshuffle it into m 

part, and the put it back to its original place (row 2) in Fi. This procedure will continue 

until r times. We have each file Fi with r unshuffled sequences (see Fig. 4.2), for 1 ≤ i ≤ 

q.  So after step 1, there will be total r*q unshuffled sequences.  

 
|ß ----------------- unshuffle M into m parts  each with size of a -------------------à|  
|ß   a   à| 
Row 1: 
part1 

 
part 2 

 
part 3 

 
part 4 

                …  
part m 

Row 2: 
part1 

 
part 2 

 
part 3 

 
part 4 

                …  
part m 

Row 3: 
part1 

 
part 2 

 
part 3 

 
part 4 

                …  
part m 

                                          

      xx  

 

            

      xx  

 

       

      xx  

 

       

      xx  

 

                   

     xx  

 

           

      xx  

 
Row r: 
part1 

 
part2 

 
part 3 

 
part 4 

                 ...  
part m 

 
Figure. 4.2.  Unshuffle Result 
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As we notice, the sorting and unshuffling are done in parallel. There is no 

communication between each processor since each processor only deal with its 

corresponding files. Meanwhile, if we increase the number of processors, we also 

increase the number of files respectively which cause less data in each file. So if the data 

size is fixed, increasing processors will reduce the number of I/O .  

Step 2    In this step,  we want to merge part 1 from all q files, part2 from all q files,…, 

and part m from all q files (see Fig. 4.2). This can also be done in parallel. But we need to 

create another q number of files to contain the merged results in order to read   data and 

output data in perfect parallel. Let's call these additional q files as   D1, D2, …, Dq. As 

we mentioned above, our choice of m can be divided by q. Suppose k=m/q. The scheme 

is as following:  

First step:  Processor j read part j from file F(j mod q). 

Processor j reads part j from file F((j+1) mod q). 

Processor j reads part j from file F((j+2) mod q). 

xx  

Processor j reads part j from file F((j+q-1) mod q). 

Notice that from each file, processor j will read in r number of part j, so there are 

total r*q number of part j to merge. After processor j merged these r*q sequences, it 

outputs the merged result to the first place (row 1) of Dj (see Figure. 4.1.3). We also 

notice that the read data, merge data, and output data are all done in parallel: when 

processor j is reading data from file F(j mod q), processor (j+1) is reading data from file 

F((j+1) mod q); when processor j is reading data from F((j+1) mod q), processor (j+1) is 
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read data from file F((j+2) mod q). Meanwhile, different processor output merged data 

into different files.    

Second step:  Processor j reads part (q+j) from file F(j mod q). 

Processor j reads part (q+j) from file F((j+1) mod q). 

xx  

Processor j reads part (q+j) from file F((j+q-1) mod q). 

After reading in the r*q sequences, processor j merges them and put the merged 

result to the second place of Dj (see Fig. 4.1.3). 

xx  

xx  

kth step: Processor j reads part ((k-1)*q+j) from file F(j mod q). 

Processor j reads part ((k-1)*q+j)  from file F((j+1) mod q). 

xx  

Processor j reads part ((k-1)*q+j) from file F((j+q-1) mod q). 

After reading in the r*q sequences, processor j merges them and put the merged 

result to the kth place of Dj (see Fig. 4.3). 

After as many as k merging steps, processor j will generate k merged sequences 

which are outputted in file Dj. The size of each merged sequence can be easily computed 

as mergeSize=r*a*q=N/m, and we must make sure that mergeSize ≤ M (our choice of m 

must meet this requirement). 
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File Dj 

 
      |ß-----------------------    mergeSize    ----------------------------à| 

Row 1:  merge result of part j by processor j 
Row 2:  merge result of part (q+j) by processor j 

xx  

Row k:  merge result of part ((k-1)*q+j) by processor j 
    

Figure. 4.3. Merging Result 

  
 

From the analysis above, we see each merging step in Step 2 is done in parallel. 

We can also compute the I/O time for each processor. The logical I/O time will be as 

following. 

I/O time =  k*(input data time for each step + output data time for each step) 

              = k*( r*q + 1) 

     = m*(r+1/q). 

If data size is fixed, and if we double the number of processors, it is obvious that 

the I/O time will be reduced by ½ from the above equation. 

Step 3     In this step, we try to shuffle the m merged sequences. We want to read data, 

shuffle data, and output data in parallel. The scheme is as following: 

We partition file Dj (0 ≤ j ≤ q) into q part (see Fig. 4.4). 
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File Dj 

   |ß   part 1   à|ß  part 2    à|ß  part 3    à|                …            |ß  part q    à| 

Row 1   …  

Row 2   …  

         

         xx  

         

       xx  

  

        

      xx  

 

… 

 

Row k   …  

 

Figure. 4.4. Partition File into q Parts 

Each processor will be responsible for its own part. So processor j will shuffle  

only part j. By partition the data in this way, processors can read data, shuffle data, and 

output data in parallel.  

First step: Processor j reads part j from file D(j mod q).  

Second step: Processor j reads part j from file D((j+1) mod q). 

xx  

qth step: Processor j reads part j from file D((j+q-1) mod q). 

We notice that each processor reads data in parallel: when processor j is reading 

part j from file D(j mod q), processor (j+1) is reading part (j+1) from file D((j+1) mod q); 

when processor j is reading part j from file D((j+1) mod q), processor (j+1) is read part 

(j+1) from file D((j+2) mod q). After each processor Dj read its data, it will perform 

shuffling, and then output the result to file Fj.  
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The above analysis is just for easy understanding of how to shuffle data in 

parallel. In actual practice, we also need to partition each of the q parts into r cells with 

each cell having data of size a, where r = (N/q)/M and a = M/m which we already 

mentioned  in Step 1. This partition is necessary because if each processor Dj input part j 

from all q files, the size of the input data is definitely larger than memory size.  

Now, we show the detail implementation of Step 3. We need to partition each  of 

the q parts into r cells (see Fig. 4.5). 

 

File Dj (ci represent cell i) 
 

|ß ---- part 1 --- à|ß ---- part 2 --- à| . … . . . . |ß --- part q ---- à| 
c1 c2 … cr c1 c2 … cr . . . c1 c2 … cr 
c1 c2 … cr c1 c2 … cr . . . c1 c2 … cr 
: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

c1 c2 … cr c1 c2 … cr …. c1 c2 … cr 
 

Figure. 4.5. Partition Parts into r Cells 

First step: Processor j reads c1 from part j of file D(j mod q). 

Processor j reads c1 from part j of file D((j+1) mod q). 

Processor j reads c1 from part j of file D((j+2) mod q). 

xx  

Processor j reads c1 from part j of file D((j+q-1) mod q). 

After processor j reads in the data, it will shuffle them, and then output result to 

the first place of file Fj. 

Second step: Processor j reads c2 from part j of file D(j mod q). 

Processor j reads c2 from part j of file D((j+1) mod q). 
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Processor j reads c2 from part j of file D((j+2) mod q). 

xx  

Processor j reads c2 from part j of file D((j+q-1) mod q). 

After processor j reads in the data, it will shuffle them, and then output result to 

the second place of file Fj. 

xx  

xx  

rth step: Processor j reads cr from part j of file D(j mod q). 

Processor j reads cr from part j of file D((j+1) mod q). 

Processor j reads cr from part j of file D((j+2) mod q). 

xx  

Processor j reads cr from part j of file D((j+q-1) mod q). 

After processor j reads in the data, it will shuffle them, and then output result to 

the rth  place of file Fj.  

After as many as r steps, we finished shuffling the data. From the analysis above, 

Each processor read data, shuffle data, and output data in parallel. 

Logical I/O time =  r*(input data time for one step + output data time for one step)  

=  r*(k*q+1)  

=  r*((m/q)*q+1) 

=  r*(m+1). 

If we double the number of processors, r will be reduced by ½. So doubling the 

number of processors will also reduce the I/O time by ½. 
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Step 4     In this step, we will try to clean the dirty sequences. We know the size of the 

dirty sequence is no more than  l*m = (N/M)*m. The cleaning can be very simple. Each 

processor j clean the dirty sequence of file Fj. Since each processor clean different file, 

parallel can easily proceed. 

Logical  I/O time =  2*(N/q)/(l*m) 

=  (2*M)/(q*m). 

If we double the number of processors, the I/O time will be reduced by ½.  

After Step 4, we finish the sorting. As we can see from the above analysis, there 

is no communication between each processor. All the sorting procedures are done in 

parallel. Meanwhile, If we double the number of processors, the I/O time will be reduced 

by ½.  

4.3  Computing the Speed Up 

 
In this section, we report our experimental evaluation of the PMF. We employ 2, 

4, and 8 processors to sort different size of data and compute the real time speed up by 

comparing the result of using only 1 processor. In this simulate application, we fix the 

memory size to be 138240 byte. The value of m is 120. The data we generate are random 

floating numbers. We use two different sorting algorithms Quick sort and Heap sort, to 

sort the local data.   

4.3.1  Using Quick Sort     

Here, we use quick sort for our local sorting. The testing results are shown in the 

following tables. Also, we show a chart of the data to illustrate the appealing speed up. 
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Table 4.1. Quick Sort Results Of Using 2 Processors 
 

Input Data Size 1 Processor 2 Processor Speed Up 

3317760   bytes 41.2   seconds 22.1 seconds 1.86 

6635520   bytes 66.4   seconds 34.1 seconds 1.94 

9953280   bytes 87.2   seconds 44.5 seconds 1.97 

13271040 bytes 104.8 seconds 53.2 seconds 1.97 
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Figure. 4.6. Quick Sort Speed Up Chart Using 2 Processors 
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Table 4.2. Quick Sort Results Of Using 4 Processors 
 

Input Data Size 1 Processor 4 Processor Speed Up 

3317760   bytes 41.2   seconds 13.4 seconds 3.07 

6635520   bytes 66.4   seconds 21.6 seconds 3.07 

9953280   bytes 87.2   seconds 27.2 seconds 3.20 

13271040 bytes 104.8 seconds 33.1 seconds 3.16 
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Figure. 4.7. Quick Sort Speed Up Chart Using 4 Processors 
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Table 4.3. Quick Sort Results Of Using 8 Processors 
 

Input Data Size 1 Processor 8 Processor Speed Up 

3317760   bytes 41.2   seconds 9.70 seconds 4.24 

6635520   bytes 66.4   seconds 14.2 seconds 4.67 

9953280   bytes 87.2   seconds 18.4 seconds 4.74 

13271040 bytes 104.8 seconds 23.1 seconds 4.53 
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Figure. 4.8. Quick Sort Speed Up Chart Using 8 Processors 
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4.3.2  Using Heap Sort  

Here, we use heap sort for our local sorting. The testing results are shown in the 

following tables. Also, we show the charts to illustrate the appealing speed up. 

Table 4.4. Heap Sort Results Of Using 2 Processors 
 

Input Data Size 1 Processor 2 Processor Speed Up 

3317760   bytes 44.6   seconds 23.2 seconds 1.92 

6635520   bytes 68.1   seconds 35.8 seconds 1.90 

9953280   bytes 90.2  seconds 46.8 seconds 1.92 

13271040 bytes 113.1 seconds 57.9 seconds 1.95 
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Figure. 4.9. Heap Sort Speed Up Chart Using 2 Processors 
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Table 4.5. Heap Sort Results Of Using 4 Processors 
 

Input Data Size 1 Processor 4 Processor Speed Up 

3317760   bytes 44.6   seconds 14.2 seconds 3.14 

6635520   bytes 68.1   seconds 21.8 seconds 3.11 

9953280   bytes 90.2   seconds 28.1 seconds 3.21 

13271040 bytes 113.1 seconds 34.8 seconds 3.25 
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Figure. 4.10. Heap Sort Speed Up Chart Using 4 Processors 
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Table 4.6. Heap Sort Results Of Using 8 Processors 
 

Input Data Size 1 Processor 8 Processor Speed Up 

3317760   bytes 44.6  seconds 9.79  seconds 4.56 

6635520   bytes 68.1   seconds 14.2 seconds 4.79 

9953280   bytes 90.2   seconds 18.9 seconds 4.76 

13271040 bytes 113.1 seconds 23..5 seconds 4.81 
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Figure. 4.11. Heap Sort Speed Up Chart Using 8 Processors 
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CHAPTER 5 
CONCLUSION 

5.1  Major Results 

Parallel  sorting  algorithm have  been  widely studied  due  to  its classical 

importance and fundamentals. Many sequential sorting algorithms have been presented. 

Even though there are many sorting algorithms, many of them are less practical due to the 

large constants in their run time. 

 In this thesis, we have investigated a straight forward model of computing with 

multiple disks (which can be thought of as a special case of the HMM). This model, 

PMD, can be thought of as a realization of prior models such as the PDS. We have also 

presented a sorting algorithm for the PMD. Here, we use LMM sort algorithm on the 

PMD. But for local sorting, we have to use k-k routing and k-k sorting algorithm due to 

the communication concern. The I/O time and communication time are evaluated on the 

PMD. From the analysis of the result, the communication time is still significant. 

On our research, reducing communication time and I/O time are the major 

concerns. Here, we presented the PMF model. The underlying parallel machine is a 

network of workstations. The data are partitioned and stored in several files which are 

managed by a network file system. The LMM sort algorithm plays a vital role on the 

PMF model. The LMM sort consists of sorting, shuffling and unshuffling. These require 

to partition data into many parts. This property make it possible to let different processors 

read and write different parts of data from different files in parallel. Because of this, there 
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is no communications between processors, and hence, we overcome the communication 

overhead. Meanwhile, if we increase the number of processors, I/O time will also be 

improved. Our experimental results for sorting indicate that we can get decent speedups 

in practice using the PMF model. 

5.2  Future Work 

From our testing results, we can see that when we use two processors, the speed 

up is almost 2. But as we use four processors, the speed up is close to 3. Especially, when 

we use 8 processors, the speed up is only close to 5. The results are not as optimal as we 

analyzed. In our research, we believe this problem is because of initial start up 

communication delay. The more processors we use will cause more delays. Meanwhile, 

different processors’ speed can be different, and this will also bad effects on the speed up.  

Our future research will be concerning with these problems.   
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