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The behavior of colloidal particles in solution is greatly affected by the interaction 

the particles have with their surroundings.  This may take the form of particle–particle 

interactions or the interaction of a single particle with a nearby solid wall.  These 

interactions are characterized by the forces that are generated as a function of the 

separation distance between two surfaces.  Fundamental phenomena such as particle 

deposition, solution rheology, and even microbial adhesion primarily depend on the 

magnitude and range of these fundamental forces as the particles move through the fluid. 

 Several experimental techniques can measure these small forces directly.  

However, there is no existing technique for measuring forces on particles having 

diameters on the order of 1 µm or less.  This size range is especially important for studies 

of bacterial or viral adhesion mechanisms where the nominal diameter can be much 

smaller than 1 µm. 



 

xii 

 This dissertation describes a novel technique for measuring the static and dynamic 

forces that arise between a single colloidal particle and a flat plate.  A single-beam 

gradient optical trap is used as a sensitive force transducer and evanescent wave light 

scattering is used to determine the particle position within the trap.  The static force is 

measured by observing the equilibrium position of the particle within the trap, while the 

dynamic force is measured from the relaxation time of the particle fluctuations near the 

equilibrium position.  Each force contribution is measured as a function of the particle–

surface separation distance by moving the particle toward the surface in nanometer-sized 

increments.  Absolute separation distances are determined by curve fitting the viscous 

force data to hydrodynamic theory in regions where the static force is negligible. 

 Measurements of static force agree well with classical Derjaguin–Landau–

Verwey–Overbeek theory over the entire range of separation distances.  Measured 

dynamic force agrees well with hydrodynamic theory until there is appreciable overlap of 

the electrical double layers at close separations.  This departure may be due to a coupling 

of hydrodynamic and electrical phenomena that greatly enhances the viscous drag. 
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CHAPTER 1 
INTRODUCTION 

1.1  Surface Forces and DLVO Theory 

Surface forcesthe interactions that arise between exposed material surfaces in 

solutiondirectly influence and control the behavior of colloidal particles (with a 

diameter of 1 µm or less) suspended in a liquid.  For example, stability of a particle 

dispersion, rheological behavior, and adhesion of particles from solution to other surfaces 

are all mediated by surface forces.  A better understanding of these and other phenomena 

clearly necessitates a quantitative characterization of surface forces on the colloidal scale.  

These interactions are classified as either conservative (in the case of static forces) or 

non-conservative (in the case of drag forces) depending on the origin of the interaction. 

In the last half-century, significant attention has been given to developing 

accurate predictive theories for conservative colloidal forces.  Typically, these theories 

have been adaptations of the seminal work of Derjaguin and Landau (Russia) [1], and 

Verwey and Overbeek (Holland) [2], known collectively as the DLVO theory.  Originally 

developed to predict the stability of colloidal suspensions, DLVO theory characterizes the 

equilibrium interaction energy between two bodies as the additive contributions of 

screened electrostatic and van der Waals interactions.  Using various system-specific 

parameters (e.g., surface charge, solution ionic strength, particle size), DLVO theory 

predicts a potential energy profile for two interacting surfaces where a key result is the 

effective maximum energy required for the surfaces to contact.  This maximum energy is
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often referred to as the energy barrier to attachment and is directly related to the 

probability that the two surfaces will contact each other within a certain time interval. 

DLVO theory has been used to describe the rheology of concentrated particle 

suspensions.  Whereas more primitive models consider particles to be simple hard 

spheres, the inclusion of surface forces accounts for particle “softness” where the particle 

has a larger effective radius due to the double layer ions collected near its charge surface.  

Within the last thirty years, DLVO theory has also been used extensively to describe the 

phenomenon of bacterial adhesion [3].  Though bacterial cells are far more complicated 

than colloidal particles with their irregular shape, polymeric appendages, and 

heterogeneous structure, DLVO theory can be a useful first approximation for estimating 

the forces that exist between a cell and a nearby surface. 

Though many predictive theories exist for colloidal forces, their success depends 

on the material system considered and the availability of certain parameter values which 

are often difficult to determine.  In extreme cases, as may be the situation with 

suspensions of bacteria, for example, the chosen theory may be inappropriate altogether 

due to the invalidation of one or more critical assumptions.  Often, it is desirable and 

more convenient, even for relatively simple systems, to measure these forces 

experimentally rather than rely solely on theory.  In addition to the aforementioned 

theoretical work, there has been a similar emphasis on developing accurate experimental 

methods for measuring surface forces directly. 

1.2  Surface Force Measurement Techniques 

Three relatively recent techniques have emerged which account for most of the 

experimental surface force measurements performed to date.  The most commonly used 
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of these is the surface forces apparatus (SFA) of Israelachvili and Adams [4].  The SFA 

has been used in numerous studies to measure the interaction forces between mica sheets 

arranged in a crossed-cylinder geometry.  The surfaces may also be coated, which greatly 

expands the versatility of the technique.  The interaction force is measured using a 

sensitive spring in combination with an interferometry technique to determine absolute 

separation distances down to the angstrom level.  Since the radii of the cylinders are on 

the order of centimeters, the measured forces are orders of magnitude greater than those 

seen in colloidal systems.  Therefore, other techniques are necessary for measuring 

surface forces where one of the materials has colloidal dimensions. 

One of these colloidal force measurement techniques, developed by Ducker and 

co-workers [5], uses atomic force microscopy (AFM) [6] to measure the interaction force 

of a colloidal probe particle, attached to the end of a solid cantilever, with a flat surface.  

Since the imaging principle of atomic force microscopy is inherently based on the 

existence of surface forces, quantitative measurements are readily made using the force 

mode of AFM.  Deflections of the cantilever are accurately measured using a laser that 

reflects off the back surface of the cantilever and strikes a position sensitive 

photodetector.  Though it is widely described as a colloidal force measurement technique, 

truly colloidal spheres (with a diameter of 1 µm or less) are rarely used because of the 

challenge in mounting the particle to the cantilever.  AFM also has a sensitivity limit of 

about 10-10 N which is relatively large for colloidal systems [7].  The advantage of AFM, 

however, is that the particle can be reversibly attached and removed from the surface due 

to the stiffness of the cantilever. 
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The other common experimental technique for colloidal measurements is total 

internal reflection microscopy (TIRM) developed by Prieve and co-workers [8].  Unique 

to any of the methods previously described, TIRM directly measures the potential energy 

of a particle near a wall rather than the force.  It does this by applying Boltzmann’s law, 

which is relates the probability of finding a particle at a given location to the potential 

energy at that location.  In contrast to other techniques, TIRM is considered to be “non-

invasive” because the particle is free to diffuse within the suspending liquid.  The 

particle–surface separation distance is instantaneously found by measuring the scattered 

light emitted from the particle in an evanescent wave; we therefore call this technique 

evanescent wave light scattering.  Later generations of TIRM included the use of a 

radiation pressure (two-dimensional) optical trap to confine the lateral movements of the 

particle [9].  This improved the measurements greatly by holding the scattering particle in 

the field of view for the duration of the experiment.  Since the technique does not impose 

external control of the particle in the axis normal to the flat surface, the maximum 

measurable energy is limited by the inherent thermal energy of the particle.  This means 

that TIRM can only effectively measure energy on the order of a few kT (where 1 kT = 

4.1×10-21 J at 298 K).  Although TIRM measures potential energy directly, the 

corresponding force profile is found by evaluating the negative slope of the measured 

energy profile.  It should be noted that the radiation pressure optical trap is able to exert a 

constant force on the particle in addition to constraining its lateral motion.  By adjusting 

the power of the beam, it is possible to shift the particle to regions of greater potential 

energy.  This is especially useful if the beam exerts a pressure on the particle toward the 
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flat surface since this is typically in opposition to the electrostatic repulsive force.  

However, this method is usually not attempted in TIRM experiments. 

1.3  Force Measurement Techniques for Micron-Sized Particles 

Although studies of surface forces have been greatly enhanced by the techniques 

previously described, there still remain many colloidal systems of various size and nature 

that elude accurate measurement.  In particular, force measurements using micron-sized 

particles are either difficult or impossible using existing techniques.  While it would be 

desirable to develop a technique capable of measuring interactions for any colloidal 

system, the interactions between a micron-sized particle and a flat surface are particularly 

relevant to the study of bacterial adhesion.  Many common bacteria species have nearly 

spherical shapes with diameters that are near (and often below) 1 µm in size.  For this 

reason, bacteria are often considered to be simple colloidal particles even though their 

internal and external physical structure is far more complicated.  The success of DLVO 

theory as a quantitative tool is usually quite poor for this reason.  Most theories for 

bacterial adhesion are based on the original DLVO framework, but are modified to 

account for additional interactions; for example, steric forces are often considered as 

well.  Of course this can lead to theories that become too complicated or 

phenomenological to be of much practical use, employing many more parameter values 

than can be readily determined or justified.  For these complicated systems, direct 

measurements are even more important. 

Until recently, TIRM has been the most suitable technique for measuring colloidal 

interactions.  (Note, however, that the current literature contains no studies of particles 

with a diameter below 1 µm.)  Since the measurements are non-invasive and rely only on 
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the ability of the particle to scatter light, particles of nearly any diameter may be used (in 

practical terms, this range is about 0.2 to 20 µm).  Since TIRM deduces the potential 

energy of interaction directly, there is no preset limitation on the measurable force aside 

from that imposed by the resolution of particle position.  However, there is a strict 

limitation on the maximum energy that is measurable, which is effectively set by 

Boltzmann’s law.  This inherent energy limit hinders the usefulness and practicality of 

TIRM measurements since the energy profile of a particle approaching a surface may far 

exceed these measurement limits.  In addition, as the diameter of a particle diminishes, 

the diffusive movements increase according to the Stokes–Einstein relation.  Thus, for 

relatively small particles (less than about 5 µm in diameter), it is difficult to record 

complete measurements because the particle will simply leave the active detection region 

before the experiment is finished. 

Addressing these issues, Brown and co-workers [9, 10] adapted the original 

TIRM technique by adding a radiation pressure optical trap to localize the lateral position 

of the particle and to push the particle axially toward the flat surface into regions of 

higher energy.  While this two-dimensional optical trap was effective at constraining 

transverse fluctuations, the axially directed radiation pressure force was less useful 

because it was a non-linear function of laser power.  In order to scan the entire potential 

energy profile, from far away to very near the surface, the laser power would have to be 

discretely varied in order to advance the particle toward the surface.  This is possible, but 

impractical because the resulting potential energy data would need to be corrected for the 

effect of the trap and the discrete sections pieced together to form the complete profile. 
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Ashkin [11] first reported development of the radiation pressure optical trap in the 

early 1970s at Bell Laboratories.  Since that time, various trapping schemes have been 

implemented for a variety of research endeavors including the study of surface forces.  

The utility of an optical trap for the study of colloidal forces is primarily two-fold:  it is 

essentially non-invasive to the sample and is able to impart small-scale forces to the 

trapped particle ranging from 10-12 N to 10-15 N.  Unfortunately, the two-dimensional 

radiation pressure optical trap is unable to confine the particle along the beam axis and 

provides a constant force in the direction of propagation.  However, in 1986, Ashkin and 

co-workers [12] introduced a single-beam gradient optical trap that was able to precisely 

control a particle in three-dimensions.  With its simple design, one can easily build a 

gradient optical trap into a laboratory microscope with only minor modifications.  This 

led to the commercialization of gradient optical trapping units, known commonly as 

“laser tweezers,” which easily insert into many popular models of microscopes. 

The most useful aspect of the gradient optical trap, in the context of force 

measurement, is the ability to readily quantify the three-dimensional forces acting on the 

particle, including those imparted in the axial direction.   The intensity profile created by 

a tightly focused beam imposes a three-dimensional harmonic potential energy profile on 

the particle (the theory of which is yet to be described).  That is, for any reasonably small 

deviation of the particle center from the region of highest intensity, there is an 

approximately linear restoring force that pushes the particle back to the equilibrium 

location.  The most useful analogy to consider is that of a mass attached to three 

orthogonal springs, each with a characteristic spring constant and equilibrium 

(unstressed) position.  By observing the motion of the trapped particle over time, the 
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equilibrium distribution of positions taken by the particle allows these effective spring 

constants (or alternatively, trap stiffness values) to be determined experimentally; this is 

known as calibrating the trap. 

If the trap stiffness and focus location are known, the optical trap can be used as a 

force transducer in a fashion analogous to AFM force measurements with a known 

cantilever stiffness.  In either method, the force is measured by performing a simple force 

balance, where the force of interaction between the particle and surface is equal and 

opposite to the force applied by the optical trap or cantilever at the new equilibrium 

position.  The balance is somewhat complicated by the Brownian fluctuations of the 

particle, but the net forces are zero at the peak, or mode, of the equilibrium distribution of 

particle positions (i.e., at the minimum of total combined potential energy of the trap and 

the surface).  The concept of using an optical trap as a force transducer is relatively 

simple, but it requires an accurate method of determining the particle position along the 

axis of interest.  It is possible to monitor small movements of a particle using microscope 

image analysis with a resolution better than 10 nm, but this is far less effective for 

movements made along the microscope objective axis (into and out of the viewing plane).  

Image analysis is also insufficient for monitoring rapid Brownian movements. 

1.4  A New Technique for Colloidal Force Measurement 

To accurately measure the forces between a single micron-sized particle and a flat 

surface, we have developed a new technique [13] that combines a single-beam gradient 

optical trap as a force transducer and evanescent wave light scattering for precise 

measurement of particle position.  In contrast to TIRM, the technique measures force 

directly (rather than potential energy) in a manner similar to AFM.  As the trapping beam 
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focus is stepped toward the surface, the most probable particle position is measured at 

each trap position to determine the force–distance profile. The trapping force can move 

the particle to high-energy regions that are inaccessible through purely diffusive 

movements.  Moreover, the time required to perform a complete force profile 

measurement is far less than with TIRM, even though the sampled spatial region can be 

much larger with the new technique.  This is because a diffusing particle held by an 

optical trap samples the accessible energy landscape more quickly than a freely diffusing 

particle. 

We have validated the technique by measuring conservative (static) forces 

between colloidal silica spheres (~1 µm in diameter) and a flat glass plate in aqueous 

solutions of varying ionic strength.  These forces usually include screened electrostatic 

(double layer) and van der Waals interactions, or those typically described by DLVO 

theory.  In addition, we have extended the technique to simultaneously measure the non-

conservative forces that arise as a particle nears a flat surface.  Non-conservative 

(dynamic) forces depend on the motion of the particle as well as its position from the 

surface.  Usually, this is simply the hydrodynamic drag force as the particle moves 

through the fluid.  We have compared our experimental force results with DLVO theory 

predictions (for static forces) and a modified version of Stokes’ law (for dynamic forces) 

in order to assess the accuracy of the data and validate the technique. 

1.5  Outline of the Dissertation 

Chapter 2 discusses necessary theoretical background required for the 

understanding of essential concepts of electrical double layer forces, van der Waals 

forces, colloidal hydrodynamics, evanescent wave light scattering, and optical trapping.  
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Chapter 3 describes our new technique with details of the experimental procedure and 

data analysis.  Chapter 4 gives experimental results of the initial static force 

measurements and a discussion of persistent interference effects that significantly altered 

the results.  Chapter 5 describes a modified methodology for measuring static and 

dynamic forces more accurately.  The results of these experiments were shown to validate 

the technique’s accuracy.  Chapter 6 describes methods for simulating and modeling the 

experiments in order to make predictions about the experimental data.  Finally, Chapter 7 

summarizes some key observations from our experiments and offers some suggestions 

for future work. 
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CHAPTER 2 
THEORY 

2.1  Electrical Double Layer 

Electrostatic forces arise between materials immersed in solution when there is a 

net charge on the surfaces.  The interceding medium between the exposed surfaces 

generally contains dissolved ions that serve to screen the purely coulombic interactions.  

Before we can predict the forces that arise between two surfaces in solution, we must first 

consider how the electrostatic potential varies with distance from the surface.  This 

requires an examination of the charges that exist on the surface and how ions in solution 

are distributed. 

Exposed surfaces in solution can acquire a net charge through a variety of 

mechanisms.  When a solid is brought into contact with a polar medium like water, 

charge may be acquired through ionization of surface groups, isomorphic substitution in 

the solid lattice structure, or adsorption of potential determining ions.  The resulting 

surface charge determines the distribution of ions in the polar medium attracting ions of 

opposite charge (counterions) toward the surface, and repelling ions of similar charge 

(co-ions) away from the surface.  The redistribution of ions near a surface creates an 

electrical double layer, a conceptual division of the charged region (including the surface 

and nearby ions) into distinct bulk phases that carry equal and opposite charge.  

Typically, though, the term “double layer” simply describes the diffuse ion atmosphere 

near the surface.  We will adopt this latter usage and use it throughout. 
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2.1.1  Poisson–Boltzmann Equation 

The variation of potential from a surface is a well-known problem in classical 

electrostatics.  It is described by the Poisson equation: 

 

 
ε
ρ

ψ
*2 −=∇ , (2.1) 

 

where 2∇  is the Laplacian operator, ψ  is the electrostatic potential, *ρ  is the charge 

density, and ε  is the dielectric constant of the liquid.  In order to solve equation (2.1) for 

potential, there must be an expression for the charge density as a function of the potential.  

Using the thermodynamic result known as Boltzmann’s relation to describe the 

probability of finding an ion at a particular distance from a flat surface where the 

potential is ψ , we arrive at 
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where iz  is the valance number of ion type i, e is the proton charge, ∞in is the number of 

ions far from the surface, k is Boltzmann’s constant, and T is the absolute temperature.  

The combined form of equations (2.1) and (2.2) is known as the Poisson–Boltzmann (PB) 

equation: 
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where x is the spatial dimension in the above one-dimensional form.  (Note that future 

sections will have z as the distance variable, but x is chosen here to avoid confusion with 

the valence number, iz .)  While the PB equation fully describes the variation of potential 

from the surface, it is usually difficult to solve since the Boltzmann factor introduces an 

exponential term rendering the equation non-linear; in fact, no generalized analytical 

solution exists.  There are, however, other solutions for the potential as a function of 

distance from the surface for certain limiting cases discussed below. 

2.1.2  Debye–Hückel Approximation 

It is possible to solve the non-linear Poisson–Boltzmann (NLPB) equation 

numerically, but this usually is not attempted since it is often cumbersome and would 

have to be solved each time the conditions are varied.  If we take a series expansion of 

equation (2.2) and keep only the first term, we can solve a linearized form of the PB 

equation known as the Debye–Hückel approximation: 
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where κ is a constant parameter, the inverse of which is known as the Debye length or the 

double layer thickness, 1−κ  [15].  Note that, at constant temperature, the Debye length is 

purely a function of the electrolyte content of the solution.  The solution to the linearized 

PB equation is simply 

 

 ( )xκψψ −= exp0 . (2.5) 
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The Debye–Hückel approximation is accurate for surface potentials below ekT  

(~25 mV at 298 K).  In practical terms, it remains reasonably accurate for potentials up to 

about 60 mV.  The solution given by equation (2.5) also assumes a fixed surface 

potential, 0ψ , at one boundary, and 0→ψ  as ∞→x at the other.  In this model, the 

relationship between surface charge density, *σ , and surface potential, 0ψ , is assumed 

linear, which is analogous to a parallel plate capacitor with a separation distance of 1−κ . 

2.1.3  Gouy–Chapman Theory 

The usefulness of the Debye–Hückel approximation is hampered by many 

simplifying assumptions, so we turn to a more generalized solution of the PB equation, 

known as Gouy–Chapman theory, to describe the potential profile for any value of the 

surface potential.  The derivation of the final Gouy–Chapman result is somewhat lengthy 

so it is not shown here, but the final expression is important to note.  Returning to 

equation (2.3), we allow the surface potential to take any value and integrate the equation 

assuming the solution electrolyte is symmetric (z : z) and such that the two boundary 

conditions of the equation are imposed at infinite distance from the surface where 

( )xψ  and ( )xψ ′  both approach zero.  The final result is 
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which can be simplified to 

 

 ( )xκ−ϒ=ϒ exp0 . (2.7) 
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Note that the Gouy–Chapman expression is an analytical solution, but it requires a 

symmetric electrolyte.  Similar to the Debye–Hückel result in equation (2.5), the above 

equation shows an exponential variation with distance, however it is now a 

transcendental function of the potential, ϒ , that is exponentially varying rather than the 

potential itself.  As we might expect, as the surface potential tends below 25 mV, 

equation (2.7) approaches equation (2.5) demonstrating that the Debye–Hückel 

approximation is a subset of the more general Gouy–Chapman theory. 

2.1.4  Stern Model 

To this point, we have only considered ions in solution that are “indifferent” to 

the surface.  In other words, the models have assumed that the ions are not able to attach 

to the surface.  In addition, we have not accounted for the size of the ions, which becomes 

important for larger potentials where ions will tend to adsorb and saturate binding sites on 

the surface.  In the model proposed by O. Stern [16], the double layer extending into 

solution is divided by an imaginary boundary known as the Stern surface.  The Stern 

surface, also called the inner Helmholtz plane (IHP), runs through the adsorbed ions at 

distance δ from the solid surface.  Just beyond the IHP is the outer Helmholtz plane 

(OHP) which defines the shear surface beyond which the ions are freely diffusing (as in 

the Gouy–Chapman model).  Figure 2-1 illustrates the Stern model of the electrical 

double layer. 
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Figure 2-1.  Schematic of the Stern model for the electrical double layer. 

 

Within the Stern layer, the potential is simply modeled as a parallel plate 

capacitor with a linear potential drop from the solid surface out to distance δ.  Beyond the 

Stern surface, the potential follows a model for the diffuse double layer like the Gouy–

Chapman result in equation (2.7).  In practice, the Stern model is almost never used 

because several parameters remain unknown.  However, the model does suggest that 

adsorption is important to the formation of the double layer, and that the actual value of 

the surface potential may be markedly different from values measured by experimental 

methods.  For this reason, it is customary practice for the surface potential to be 

characterized by the potential at the shear plane rather than at the solid surface.  The 

potential at the shear plane is called the zeta potential and may be found using common 

electrokinetic experimental techniques like electrophoresis and streaming potential 

measurements. 
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2.1.5  Calculating Force and Energy 

Now that we have developed expressions for the potential as a function of 

distance from the surface, we can find equations for the interaction force and energy 

between two charged surfaces in solution when their double layers overlap.  The total 

force on an infinitesimal volume element, dV, at some location between the surfaces is 

the addition of the osmotic pressure (along the x-direction) and the Maxwell pressure 

(electrical stress) contributions.  At equilibrium, the total force equals zero and we can 

integrate an expression to find the force per unit area between the surfaces as a function 

of the distance between the flat surfaces, h.  The result is 

 

 ( ) ( )h
kT

ze
kTnhFR κ
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≈ ∞ exp

4
tanh64 02 , (2.8) 

 

which is an approximate expression that assumes slightly overlapping double layers and 

identical surface potentials.  This assumption, called the superposition approximation, 

allows us to estimate the potential distribution between the surfaces using the Debye–

Hückel result for single surfaces rather than requiring us to resolve for the potential 

between two surfaces explicitly.  Since force and energy are related by φ−∇=F , we can 

integrate equation (2.8) to find the interaction energy per unit area: 
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≈ −

∞ exp
4

tanh64ˆ 021 . (2.9) 

 

Unfortunately, equations (2.8) and (2.9) are not particularly useful for colloidal 

interactions where at least one surface has a small radius of curvature.  In most cases, we 
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are interested in the interactions between two spheres in solution, or a sphere and a flat 

plate, where the surfaces may have differing surface potentials.  To account for this, the 

usual case is to solve some form of the PB equation (typically a power series expansion 

of the NLPB equation) in the space between the surfaces where the boundary conditions 

are 
10ψψ =  at 0=x  and 

20ψψ =  at hx = .  The energy per unit area is calculated 

directly and expressed in integral form by a charging process, described by Verwey and 

Overbeek [2], where each surface potential remains fixed.  To find the interaction energy 

between two spheres, we use Derjaguin’s approximation [17], which integrates the 

interaction energy produced by opposing infinitesimal rings, each of which are 

considered to be flat surfaces: 
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where a1 and a2 are the radii of the spheres, and Rφ̂  is the interaction energy per unit area.  

Note that we can consider a sphere interacting with a flat plate by allowing one radius to 

become infinite.  Derjaguin’s approximation assumes the radii to be much larger than 

both the double layer thickness, 1−κ , and the separation distance, h. 

Hogg, Healy, and Fuerstenau [18], and later Wiese and Healy [19], derived 

expressions for the interaction potential between two dissimilar spheres using the Debye–

Hückel approximation: 

 

 ( )
( )

( ) ( ) ( )











−±








−
+

++

+
= −

−

−
h

h

h

R e
e

e

aa

aa
h κ

κ

κ

ψψ

ψψψψε
φ 2

2
0

2
0

00

21

2
0

2
021 1ln

1

1
ln

2

4
21

2121 , (2.11) 



19 

 

 

where the “±” symbol becomes positive for constant surface potential or negative for 

constant surface charge.  Constant surface potential assumes that surface charge is 

acquired through the adsorption of potential-determining ions, whereas constant surface 

charge assumes that charge arises due to the ionization of surface groups.  For typical 

colloidal materials, a constant surface charge assumption is more suitable although many 

more sophisticated models for double layer forces are based on a constant potential 

assumption; the reason for this is not clear.  The two cases given in equation (2.11) are 

limiting cases of intermediate charge regulation models that may be more complicated. 

For most practical situations, equation (2.11) is sufficient to estimate the 

interaction energy between two surfaces.  There are, of course, many other equations for 

double layer interactions that are more recent and, unfortunately, far more complicated 

than those presented here.  Some interesting examples are given by Ohshima et al. [20], 

Grant and Saville [21], and Sader et al. [22].  Usually, these equations are valid over a 

broader range of conditions (e.g., surface potential, separation distance) and consider 

other complicating factors. 

2.2  van der Waals Forces 

The tendency of the electrons in molecules to have an uneven spatial charge 

distribution leads to the formation of dipoles.  The ability of these molecular dipoles to 

interact based on atomic polarizability and the generation of electric fields is a 

phenomenon classified as van der Waals interactions.  A defining characteristic of van 

der Waals forces is that they are ubiquitous; electrostatic forces, for example, require a 

net charge on each surface.  In addition, van der Waals forces are nearly always attractive 
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whereas electrostatic forces may be either attractive or repulsive depending on the surface 

chemistry. 

2.2.1  Molecular Dipole Interactions 

Molecular-level van der Waals forces determine interactions between 

macroscopic bodies.  One type of molecular interaction occurs between two permanent 

dipoles.  The dipoles are assumed to be isolated in a vacuum with sufficient thermal 

energy to ensure free rotation.  Using a Boltzmann average over all possible 

configurations and giving more weight to favorable energies, the free energy of 

interaction between two freely rotating dipoles is 
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where iµ  is the dipole moment of molecule i, r is the intermolecular distance, and KC  is 

a characteristic constant.  The above expression was first derived by W. H. Keesom [23] 

and is known as the Keesom equation. 

A second type of interaction occurs between an induced dipole and a permanent 

dipole.  P. Debye [24] derived the following result: 
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where iα  is the atomic polarizability of molecule i, and DC  is a characteristic constant.  

This expression is known as the Debye equation. 
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The last type of interaction occurs between two induced dipoles.  London first 

solved the quantum mechanical model of two dissimilar hydrogen-like atoms to yield 
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where h is Planck’s constant, iν  is the oscillatory frequency of molecule i, and LC  is a 

characteristic constant.  This expression is known as the London equation for dissimilar 

molecules.  This type of interaction is sometimes referred to as the dispersion interaction 

because its role in a phenomenon related to the scattering of light (not the dispersion of a 

colloidal solution). 

Upon inspection of the preceding three equations, we notice that they all share the 

same power law dependence, 6−r , and can be combined to form the overall van der 

Waals equation for intermolecular free energy: 
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Regardless of the material, there will always be a contribution from the London 

(dispersion) interaction since it does not depend on the existence of a permanent dipole 

(i.e., a non-zero value of µ).  In general, the London interactions dominate the other two.  

However, water molecules present a notable exception to this tendency where the 

Keesom interactions account for most of the overall van der Waals attraction. 
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2.2.2  Macroscopic Interactions 

With expressions for the molecular interactions between dipoles, we can integrate 

all pairwise interactions occurring between the molecules in two macroscopic bodies.  

This is the approach used by H. C. Hamaker [25] for solving the macroscopic interaction 

energy between objects of various geometries.  For the case of two interacting spheres, 

the van der Waals interaction energy is 
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where A is the Hamaker constant, h is the minimum separation distance, 1a  and 2a  are 

the radii of the spheres.  The Hamaker constant characterizes the magnitude of the 

attraction and varies by material.  As with the double layer energy equation for two 

spheres, a sphere–plate geometry is considered by allowing one radius to become infinite. 

The value of the Hamaker constant depends on the types of materials considered, 

including the interceding medium between the two bodies.  In general, the Hamaker 

constant ijkA  represents the interaction between materials i and k across medium j.  If we 

have Hamaker constant values for all three materials interacting with themselves in 

vacuum ( 11A , 22A , and 33A ), we can estimate the effective Hamaker constant for the 

overall system: 
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which is based on a chemical reaction analogy, the details of which are omitted. 
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Equation (2.16) is commonly used to describe the van der Waals attraction 

between macroscopic bodies, but it is not particularly accurate for separation distances 

above about 10 nm�this is due to a retardation of the London interactions [7].  The 

interaction between induced dipoles is significantly affected by the distance between the 

materials because of the finite propagation speed of the electric field and the temporal 

nature of the induced dipole.  Even though the propagation speed is equal to the speed of 

light, c, the induced dipoles themselves are rapidly fluctuating.  This introduces a lag 

effect that reduces the interaction of the temporary dipoles as the distance between them 

increases.  To account for this, a time-dependent quantum analysis is used for the London 

interactions, which yields a power law of 7−r  beyond a characteristic distance. 

The most rigorous method of calculating the van der Waals attraction between 

macroscopic bodies is known generally as Lifshitz theory [26].  Lifshitz theory uses bulk 

dielectric properties to evaluate van der Waals energy rather than the sum of all 

molecular pairwise interactions proposed by Hamaker.  This approach has built into it 

retardation effects and the effect of the interceding medium we mentioned earlier.  As a 

result, the calculated Hamaker constant is a misnomer:  it varies with increasing 

separation distance and specific dielectric properties. 

While it is by far the most accurate means of calculating van der Waals 

interactions, Lifshitz theory is usually very difficult to implement.  The calculations are 

tedious and rely on dielectric data that is often unavailable.  This has led to the 

development of approximate expressions that reasonably accurate for most practical 

applications.  Gregory [27] presents several of these approximate expressions with a 

discussion of their applicability. 
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2.3  DLVO Theory 

In the 1940s, two groups of scientists independently developed quantitative 

theories for the kinetic stability of colloids.  They included Russian physicists B. V. 

Derjaguin and L. D. Landau [1], and Dutch chemists E. J. W. Verwey and J. Th. G. 

Overbeek [2].  Hence, theories that describe the interaction energy that arises between 

surfaces are collectively known as DLVO theory.  DLVO theory assumes that there are 

two primary contributions to the interaction energy, the electrostatic (double layer) and 

van der Waals interactions, and that these contributions are additive: 

 

 vdWRDLVO φφφ += , (2.18) 

 

where Rφ  and vdWφ  are appropriate expressions of energy for the geometry and materials 

of interest.  A typical plot of the DLVO interaction energy is shown in Figure 2-2. 
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Figure 2-2.  DLVO interaction energy between a sphere and a flat plate. 
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The precise shape of the potential energy curve depends on the parameter values 

chosen.  The plot in Figure 2-2 considers a silica sphere interacting with a flat silica 

surface in water where the following values are used:  1−κ = 7 nm, 
10ψ = 

20ψ = –10 mV, 

131A  = 8.3 × 10-21 J (silica–water–silica), and a = 0.5 µm.   

The parameter values should represent actual experimental conditions, so it is 

useful to understand how these values can vary.  The most readily adjustable parameter is 

the Debye length, which was noted previously to be a function of ionic strength: 
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=κ  (2.19) 

 

where 1−κ  is in meters, M is the molarity of the solution in moles/dm3, and z is the 

valence number of a symmetric electrolyte [14].  By simply changing the concentration 

of salt in the bulk solution, we can greatly alter the interaction energy between suspended 

materials.  Consequently, this is a convenient way of controlling the behavior of a 

colloidal suspension. 

 The surface potential can be adjusted by adding potential determining ions, 

specifically adsorbing ions, or by changing the pH of the solution.  If the charge on the 

surface is due to ionization, the latter method is a useful means of controlling the double 

layer interactions.  A change in pH can easily render a stable suspension unstable (or vice 

versa) by adjusting the surface potentials.  An especially difficult parameter to adjust is 

the Hamaker constant since it depends on the dielectric properties of the materials rather 

than the solution conditions.  While the addition of salt to the solution does little to affect 
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the Hamaker constant, it does affect the screening of van der Waals forces whereby the 

salt ions tend to reduce the attractive interactions.  The final parameter to mention is the 

radius.  Expressions for double layer and van der Waals interactions show that the overall 

magnitude of the DLVO energy is proportional to the radius of curvature. 

It is useful to point out several key features of the DLVO curve shown in Figure 

2-2.  At large separations, there is no interaction between the surfaces and the energy 

tends to zero.  As the negatively charged surfaces approach each other, however, there is 

typically an appreciable energy barrier (maximum) to overcome in order for attachment 

to occur.  The steep descent of the energy very near the surface forms the primary energy 

minimum.  Higher values for the surface potential and Debye length tend to increase the 

repulsive energy and the net energy barrier; this acts to stabilize a colloidal system, 

encouraging particles to remain dispersed in solution.  A large value of the Hamaker 

constant will lower the repulsive energy and net energy barrier, but its value is usually 

fixed for a given system, unlike the other parameters mentioned. 

For a specialized combination of parameter values, the potential energy curve can 

show a secondary energy minimum.  Unlike the primary minimum which is essentially 

infinitely deep, the secondary minimum usually has a shallow depth on the order of the 

thermal energy.  This means that the surfaces may loosely aggregate around the location 

of the minimum, but the lack of depth of the minimum will allow them to be easily 

separated again.  In the case of a sphere–plate interaction, a colloidal particle may diffuse 

into the secondary minimum, spend some time there, and then naturally diffuse away.  

The probability that a particle can escape an energy well with a particular depth in a finite 

amount of time is determined by the height of the energy barrier over which the particle 

must move to escape.  For energy barriers on the order of a few kT, the probability is 
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reasonably high for escape.  However, even if the barrier a modest value of 10 kT, the 

escape probability for the particle is extremely small. 

2.4  Hydrodynamics of a Diffusing Sphere 

 Colloidal particles are small enough such that the persistent collisions from the 

surrounding fluid molecules will induce a net random movement known as Brownian 

motion.  The magnitude of motion can be modeled as a series of independent random 

walks, where each step in the walk is described by classical mechanics.  If a particle 

acquires an initial velocity, 0v , at the start of a random walk, the subsequent motion is 

described by 
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xd
m δ−=
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 (2.20) 

 

where m is the mass of the particle, x is the position of the particle from the origin, and δ  

is the drag coefficient.  This equation shows a balance between the inertial force and the 

viscous drag force.  From equation (2.20) we see that the velocity of the particle decays 

exponentially with time: 

 

 ( ) ( )mtvtv τ−= exp0  (2.21) 

 

where mτ  is the characteristic relaxation time of the particle’s momentum ( δτ mm ≡ ).  

Although the movement is purely random, the average movement away from the initial 

position is zero, and the mean-square displacement of the particle in any one direction is 

simply 
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 Dtx 22
=  (2.22) 

 

where D is the diffusion coefficient of the particle.  The diffusion coefficient and drag 

coefficient are related by the Stokes–Einstein relation: 

 

 
δ

kT
D = . (2.23) 

 

 Many colloidal particles can be treated as perfect spheres, which allows for 

relatively straightforward hydrodynamic modeling.  Stokes’ law gives the drag force on a 

rigid sphere moving in a quiescent fluid at low Reynolds numbers (Re < 1): 

 

 vFdrag δ−= , (2.24) 

 

and the drag coefficient is defined as 

 

 aπηδ 6=  (2.25) 

 

where η  is the fluid viscosity and a is the radius of the sphere.  Stokes’ law is only 

rigorously valid for an uncharged particle moving within an unbounded medium.  In 

terms of experimental force measurements, however, the particle will be diffusing very 

near a solid wall.  This situation requires a correction to Stokes’ law: 
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 vaFdrag λπη6=  (2.26) 

 

where λ  is a dimensionless correction factor whose expression depends on the direction 

of the movement and the type of boundary.  For our purposes, we are concerned with the 

sphere’s motion with respect to a solid flat surface.  There are two expressions to 

consider in this geometry:  corrections for the normal and parallel translations of the 

sphere near the flat wall.  Because force profiles are measured as a function of normal 

separation distance, z, we restrict our attention to the normal correction factor: 
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where 
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The correction factor is highly sensitive to separation distance as shown by Figure 2-3. 
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Figure 2-3.  Drag force correction factor for a sphere moving normal to a solid surface. 

 

At large separations, the correction factor is unity and Stokes’ law holds (dotted line).  

However, as the separation distance diminishes to zero (particle–surface contact), the 

correction factor approaches infinity.  Even for separations on the order of several 

particle diameters ( az  ~ 20), the correction factor is significant and the effect of the 

solid wall cannot be neglected [33]. 

 The double layer also affects the drag force on a diffusing colloidal particle.  The 

ions contained within the shear plane move with the particle, effectively increasing its 

radius.  Additionally, the diffuse ions beyond the shear plane have a deformed 

distribution with movement of the particle, thereby creating a dipole.  Several authors 

have derived correction factors to account for the effect of the double layer on the drag 

force.  Ohshima et al. gave a recent expression for this correction: 
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 ( )afb s κλ 21 Φ+=  (2.29) 

 

where b  is a value related to the average ion size, sΦ  is the reduced zeta potential 

( kTzeς= ), and f is a function of aκ .  The function f is a maximum at 1=aκ  and tends 

to zero as aκ  approaches either zero or infinity.  Typical colloidal systems used during 

force measurements have a large value of aκ  (>10) such that this correction can be safely 

neglected.  However, if the sphere approaches a flat surface such that the opposing 

double layers begin to overlap, there may be a significant effect of this interaction on the 

drag force.  Presently, little is known about this effect from either a theoretical or 

experimental perspective. 

2.5  Evanescent Wave Light Scattering 

Experimental techniques that measure force–distance profiles generally require a 

means for measuring position accurately.  In AFM, a laser beam is reflected off the back 

of the cantilever to monitor minute fluctuations of the cantilever over time.  Using a 

sensitive quadrapole (position sensitive) photodiode, fluctuations on the order of 1 nm 

can be measured.  SFA uses an even more accurate position detector based on 

interferometry with resolution on the order of 1 Å.  The task of measuring the trajectory a 

freely diffusing micron-sized sphere in solution is a bit more complicated, howevera 

useful solution to this problem, as we will see, is one of the novel aspects of TIRM. 

Total internal reflection of light at the interface between two transparent media of 

differing refractive index leads to the formation of an evanescent wave in the optically 

rarer medium [28].  (Note that experiments often use a flat glass plate in contact with 
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water, so we will consider this special case henceforth.)  The intensity of the resulting 

evanescent wave decays exponentially with distance from the interface.  Solving the 

generalized Mie scattering problem, Chew et al. [29] showed that a spherical particle 

with a refractive index dissimilar to that of the suspending medium scatters light with an 

intensity that diminishes exponentially with increasing separation: 

 

 ( ) ( )zIzI β−= exp0 , (2.30) 

 

where z is the particle–surface separation distance, and 0I  is the scattered intensity at 

zero separation (particle–surface contact).  The characteristic decay constant is 
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where 0λ  is the wavelength of reflected light a in vacuum, 1n  and n2  are the refractive 

indices of the flat surface and the surrounding medium, respectively, and iθ  is the 

incident angle.  Notice that adjusting the incident angle of the light (typically a laser 

beam) directly affects the value of β .  For physical significance, we commonly refer to 

the inverse of the decay constant, 1−β , as the penetration depth. 

Rearranging equation (2.30) to find separation distance yields 

 

 0
11 lnln IIz −− +−= ββ . (2.32) 
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This result shows that we can directly relate the measured intensity to the separation 

distance of the particle from the surface.  In general, the value of 0I  is difficult to 

determine experimentally since the particle must overcome the energy barrier and contact 

the surface irreversibly.  However, in the absence of an intensity measurement at contact, 

equation (2.32) can be used to find relative separation distances from an arbitrary 

reference position.  (Later, we will describe methods for determining absolute separation 

distances.) 

The above method of calculating position from scattered intensity measurements 

is called evanescent wave light scattering (EWLS).  Depending on the measurement 

equipment used (i.e., photodetector, data acquisition system), the technique is able to 

resolve distances on the order of 1 nm.  The first practical use of EWLS for position 

measurement was seen with the development of TIRM.  TIRM uses Boltzmann’s law 

where the potential energy profile between a sphere and a plate is directly determined by 

measuring the equilibrium distribution of particle positions from the surface: 

 

 ( ) ( )( ) CzpkTz +−=  lnφ  (2.33) 

 

where ( )zp  is the probability density of locating the particle between z and dzz +  from 

the surface, and C is a constant required to normalize the distribution.  EWLS is used to 

experimentally determine the equilibrium probability density ( )zp  by measuring the 

movement of a particle for a time period much larger than the relaxation time of particle 

fluctuations.  By converting time-series intensity data to distances using equation (2.32), 

and generating a histogram of measured positions, we can find ( )zp .  Given the 

equilibrium distribution, the interaction energy is easily calculated using equation (2.33). 
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2.6  Optical Trapping 

The ability of light to impart forces on macroscopic bodies is well-known.  

Centuries ago, Johannes Kepler first postulated that the sun exerted a radiation pressure 

on orbiting comets, leading to the formation of their distinctive dust tails.  Classical 

physics can help our understanding of this behavior.  Since photons possess momentum 

as they propagate, Newton’s second law suggests that a change in the momentum of a 

photon requires a force.  The phenomena of refraction, absorption, and reflection of 

electromagnetic radiation therefore all confer a force to the material with which they are 

interacting. 

In 1970, Ashkin [11] found that a laser beam of modest power could be used to 

manipulate particles of colloidal dimensions, especially if the particles were neutrally 

buoyant (or nearly so) in a suspending solution.  His early work produced a radiation 

pressure optical trap that could confine a particle laterally in the axis of the beam and 

simultaneously accelerate the particle along the direction of beam propagation.  This trap 

is considered to be two-dimensional because it can only hold the particle in the radial 

direction along the beam axis.  If desired, a particle could be stabilized by using gravity 

to oppose a constant upward radiation pressure, or by using two counter-propagating 

traps to create a stable trapping location between them. 

By 1986, Ashkin and co-workers [12] had developed a single-beam gradient trap 

that could confine a particle in three-dimensions.  In this version of the optical trap, a 

high numerical aperture lens is used to focus the beam down to a diffraction-limited spot.  

The gradient force exceeds the scattering force along the beam axis to confine the particle 

to a position near the focal point.  Since its introduction, the single-beam gradient trap 
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has been used extensively (more so that its radiation pressure counterpart) in a variety of 

applications including force measurement. 

2.6.1  Optical Trapping Models 

The scattering of photons causes a radiation pressure force that tends to push a 

particle in one direction.  In a single-beam gradient trap, a significant gradient force is 

generated to overcome tendency to destabilize and accelerate the particle along the beam 

axis.  The scattering and gradient force components are often defined as 
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where Q is an efficiency term for the momentum transfer, 2n  is the refractive index of 

the surrounding medium, P is the laser power, and c is the speed of light in a vacuum 

[30]. 

 The gradient force arises from the interaction of dipoles within a dielectric 

medium with a strong electric field.  A tightly focused beam of light produces strong 

electric field gradients in three-dimensions near the focal point.  The gradient force is 

proportional to the intensity gradient acting in the direction of the gradient: 
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where a is the sphere radius, m is the ratio of the sphere’s refractive index to that of the 

surrounding medium ( 21 nn= ), and I is the intensity distribution in cylindrical 

coordinates.  The gradient force tends confine a particle near the region of maximum 

intensity (in the usual case where 1>m ) while the scattering force tends to disrupt stable 

trapping.  This competition between forces usually results in an equilibrium trapping 

location a small distance away from the focal point along the beam axis. 

Most theoretical treatments of optical traps consider two limiting size regimes.  

The large particle limit, known as the ray optics (RO) or Mie regime, assumes the particle 

to be much larger than the wavelength of light ( λ>>a ).  In this model, the focused 

beam is composed of individual light rays that are focused to a point, ignoring diffraction 

effects.  The rays refract and reflect at the surface of the particle where the change in 

momentum of the ray, as it interacts with the particle, determines the applied force.  The 

overall force on the particle is simply a vector sum of the forces applied by all the rays 

present in the convergent beam.  If we have values for the Fresnel reflection coefficient 

(the fraction of the ray reflected at the interface), and the refractive indices of both media, 

we can determine the trapping efficiency parameter Q by simply applying Snell’s law at 

the boundaries.  We can determine the trapping force, which is independent of particle 

size, as a function of particle position within the trap by solving the RO model for various 

locations of the particle. 

In many cases the RO model is unsatisfactory, especially if and the beam is 

tightly focused.  In this case we cannot ignore diffraction effects, and usually we must 

also account for the complex electromagnetic (EM) fields that are created near the focal 

point.  This leads us to the other limiting case, known as the Rayleigh regime, which 

assumes that the particle radius is much smaller than the wavelength of light ( λ<<a ).  
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Using an EM model, we attempt to approximate the electric and magnetic fields formed 

by the focused laser beam and solve for the interaction force by integrating the Maxwell 

stress tensor over the surface of the particle.  In fact, regardless of the particle size, the 

rigorous method of solving for the force is to use the generalized Lorentz-Mie scattering 

theory (GLMT) based on an EM perspective.  The Rayleigh limit is particularly useful 

because the particle is considered to be a simple dipole, which simplifies the calculations 

dramatically and yields accurate theoretical forces.  In this limit, the force scales with 3a , 

or the volume of the particle.  Difficulties appear in the intermediate size regime where 

λ~a .  Here, interference effects become important, and even higher-order 

approximations of the fields do not give satisfactory results.  Unfortunately, many 

experiments are performed in this intermediate regime where neither RO nor EM theory 

works particularly well. 

Recently, Tlusty et al. [31] developed a model that extended the dipole 

approximation to a particle of any size.  In this model, the interactions between the 

particle and focused beam are considered to occur in a localized region equal to the spot 

size, 02ω , of the focused beam, where 0ω  is the beam waist radius.  Within this localized 

region, the phase of the fields does not vary appreciably, and thus the contributions to the 

interactions are far less than those due to variations in amplitude.  Their result has been 

used widely as a means of predicting trapping forces for any size of particle. 

2.6.2  Trap Calibration 

The properties of the laser spot at the focal point determine how the particle will 

behave in the trap.  For a tightly focused beam, the light converges to a theoretical point 

(RO description), but the width of the beam at the focal point is actually finite due to 

diffraction effects.  Equation (2.36) tells us that the force on the particle is proportional to 
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the intensity gradient, so the three-dimensional contour of the intensity profile is what 

ultimately determines the trapping force.  Most lasers used in optical traps have a radial 

(or transverse) Gaussian profile (TEM00 mode).  This profile is usually maintained even 

as the beam is focused to a spot on the order of microns.  In many cases, the axial 

intensity distribution is also modeled as having a Gaussian profile with a half-width some 

multiple ε larger than the transverse direction, where ε is the eccentricity.  In most cases, 

ε is a value of about three or more [31].  Since the distribution is narrower in the 

transverse direction ( 1>ε ), the transverse trapping force is usually stronger than in the 

axial direction. 

The approximately Gaussian intensity distribution leads to a linear force–distance 

relationship for the trapped particle for reasonably small displacements of the particle 

from the trap center.  This suggests a Hookean spring model for the trapping force in all 

three dimensions, although we are typically only interested in the axial (z-direction) force 

component: 

 

 ( ) ( )0zzzF ztrap −−= γ , (2.37) 

 

where zγ  is the axial trap stiffness, and 0z  is the axial location of the trap center.  The 

Hookean analogy simplifies the description of the trap by using just two parameters (in 

any one dimension) to quantify the trapping force.  This relationship generally holds for 

displacements that are on the order of the spot size.  Because of the eccentricity in the 

intensity distribution, the linear regime is often larger for the axial force.  Beyond the 

linear regime, the force–distance relationship reaches a maximum and quickly falls off to 

zero.  For force measurements, we are interested in the linear regime for simplicity of 
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calibration and in the data analysis.  With values for zγ  and 0z  for the trap, we can 

readily apply a simple force balance to the particle as it finds a new equilibrium location 

in response to external forces such as double layer repulsion. 

To calibrate the trap, we observe the Brownian fluctuations of the trapped particle 

over time.  The calibration procedure occurs far from any surface to ignore contributions 

from surface forces.  The trajectory of the particle is governed by the (one-dimensional) 

Langevin equation: 
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where m is the mass of the particle, δ is the drag coefficient, and ( )tξ  is a random 

Brownian force.  In most cases, the mass of the particle is small, so we can neglect the 

left-hand side (inertia term) of the Langevin equation.  The exact motion of the particle is 

random, and the time-series solution requires a somewhat complicated Brownian 

dynamics simulation (which we have attempted and will show later).  However, the 

equilibrium statistics of the particle’s motion are relatively easy to find since the random 

force term is normally distributed around a zero mean.  For a Hookean spring model of 

the trapping force, the trap stiffness is simply 
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where 2
zσ  is the variance of axial position.  The trap center is the peak of the distribution 

and is equal to the mean axial position: 

 

 zz =0 . (2.40) 

 

With a calibrated method of detecting axial position, like EWLS, we can in turn 

calibrate the optical trap and use it as a sensitive force measurement device.  The details 

of how force is measured using a gradient optical trap and EWLS are described in the 

following section.
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CHAPTER 3 
DESCRIPTION OF THE TECHNIQUE 

3.1  Apparatus 

A schematic diagram of the experimental setup is shown in Figure 3-1. 

 

 

Figure 3-1.  Schematic of the experimental apparatus. 
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The optical trap is a Cell Robotics LaserTweezers 100 which employs a 100 mW diode 

laser in the near infrared ( 0λ  = 830 nm).  The trap housing is mounted in the 

epifluorescence port of a Nikon TE300 inverted microscope.  The trapping beam is 

collimated and slightly overfills the rear opening of a Nikon 100× oil immersion 

objective (plan fluor, 1.3 NA) and is focused to a diffraction-limited spot within the fluid 

cell.  The particle suspension is placed upon a pre-cleaned glass microscope slide (75 × 

25 × 1 mm) and enclosed with a coverslip (25 × 25 × 0.13 mm).  With the sample 

mounted to a three-axis motorized stage (Ludl Electronic Products), the objective lens is 

optically coupled to the glass coverslip with index matching oil (n = 1.515 at 23ºC). 

The evanescent wave is formed by directing a Melles Griot 35 mW He–Ne laser 

beam ( 0λ  = 632.8 nm, linearly polarized) into the 45º hypotenuse face of a BK–7 glass (n 

= 1.515 at 632.8 nm) dove prism, which is optically coupled to the glass slide with index 

matching oil.  The He–Ne beam angle is precisely positioned with a rotation stage that is 

accurate to within 0.1º.  This allows the evanescent wave penetration depth, 1−β , to be 

adjusted by varying the incident angle of the beam, as indicated by equation (2.20).  A 

fraction of the scattered intensity from a particle near the glass slide is collected by the 

objective, and the image is visualized using a color CCD camera and a dedicated monitor.  

The magnitude of the scattered intensity is measured by a side-on photomultiplier tube 

(PMT; Oriel Instruments) mounted to the side port of the microscope.  The PMT is fitted 

with an adjustable iris (typically forming a 1 mm diameter aperture) and bandpass filter 

(633 ± 2 nm) which isolates the scattered light from the trapped particle.  The PMT signal 

is sent to a current pre-amplifier where it is electronically averaged by a 150 µs time 

constant RC circuit (low-pass filter) and then digitally sampled by a National Instruments 
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12-bit data acquisition board.  The time series intensity data are saved to a PC file for 

later analysis. 

3.2  Procedure 

The following procedure was used for nearly all measurements performed over 

the course of this work.  Particle solutions were prepared using Barnstead Nanopure 

ultrafiltered water (18.2 MΩ-cm resistivity).  Silica microspheres were purchased from 

Geltech as dry powders and suspended in electrolyte solutions at low particle densities 

(~105 particles/mL).  A similar density of 9.14 ± 1.24 µm diameter polystyrene 

microspheres (Polysciences) served as gap spacers.  All solutions were prepared the day 

of an experiment to limit contamination.  The solutions were each sonicated for one hour 

to break up particle aggregates and then agitated briefly with a touch mixer just prior to 

an experiment to resuspend settled particles. 

A small amount (~10 µL) of the particle suspension was placed on the center of 

the glass slide and overlaid with a pre-cleaned glass coverslip.  Excess solution was 

withdrawn from the slide using bibulous paper.  The edges of the coverslip were then 

sealed using a minimum amo unt of insoluble silicone vacuum grease to prevent the liquid 

from evaporating during the course of the experiment.  With the sample mounted, a 

single diffusing silica sphere was isolated in the field of view of the microscope and the 

optical trap was activated to confine the particle in the fluid gap.  The He–Ne laser was 

activated at least 30 min prior to any measurements to ensure stability of the beam 

intensity.  The particle was moved toward the glass slide surface until it began to scatter 

light from the evanescent wave.  The incident angle of the He–Ne beam was adjusted to a 

value exceeding the critical angle (61.6°) for total internal reflection.  The penetration 
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depth, 1−β , for these experiments ranged from 150 to 230 nm.  A mirror mounted to a 

precision rotation stage (0.1° increments) adjusted the angle of the beam.  The stage angle 

depended on the geometry of the system, but was calculated using equation (2.30).  

Shorter depths offer better distance resolution whereas larger depths lead to a measured 

signal and provide information about movements made farther from the slide surface.  

The lateral position of the beam was also adjusted to maximize the scattered intensity. 

With the He–Ne beam properly aligned, the particle was moved away from the 

glass slide surface to a position where only background levels of intensity were 

measurable (several microns from the slide surface).  A program was written in 

LabVIEW (National Instruments) to sample PMT measured intensities at varying 

positions from the surface.  At each step in the scan, the program acquired an adjustable 

number of intensity samples (~104 to 105) at an adjustable rate (~2 to 50 kHz), recorded 

the data to a file, and moved to the next position toward the slide surface in adjustable 

increments (~10 to 30 nm).  This process was repeated until the particle was as near to 

the surface as possible with the optical trap.  The measurement procedure was repeated 

several times for the same particle–solution system in order to assess the quality and 

reproducibility of the data.  The glass slides were discarded following an experiment, and 

each new particle–solution sample was mounted on a new glass slide. 

3.3  Data Analysis 

3.3.1  Signal Processing 

The actual voltage signal obtained by the data acquisition system is not strictly 

proportional to the scattering intensity from the particle, )(tI , used in the above analysis.  

This is because the measured signal is persistently affected by a background intensity 
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level and uncorrelated (white) noise.  An RC circuit associated with the pre-amplifier also 

filters the signal by removing high frequency fluctuations. 

For typical experimental conditions, noise contributes less than 5% of the total 

signal magnitude, but accurate correction for this small noise is important for calibration 

of the optical trap and subsequent force measurements.  Fortunately, most contributions 

to the total noise can be isolated.  The first noise contribution is the fluctuating 

background intensity, ( )tI B , due to scattered light from surface irregularities and the 

residual background reading from the PMT.  The second source is known as “shot noise,” 

( )tIS , where the discrete number of photons incident on the photodetector (described 

mathematically as a Poisson process) contributes to a distribution of measured intensities 

around a mean value.  Assuming intensity contributions to be additive, the total measured 

intensity at some instant in time is 

 

 )()()()( tItItItI SBT ++= . (3.1) 

 

The mean background intensity, BB I≡µ , is measured when the particle is far enough 

from the surface as to not scatter the evanescent wave.  This allows the correction of the 

subsequent positions using the background-corrected intensity, ( )tIC : 

 

 ( ) ( ) ( ) ( )tItItItI NBTC +=−≡ µ  (3.2) 
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where ( ) ( ) ( ) BBSN tItItI µ−+≡  is the total fluctuating noise contribution.  Because 

0=SI , then µ== II C . 

Assuming that fluctuations in ( )tI  and )(tI N  are uncorrelated, the autocorrelation 

function of ( )tIC  is given by 

 

 ( ) ( ) ( ) ( ) ( )ττµττ NICCC GGtItIG +=−+≡ 2  (3.3) 

 

where ( ) ( ) ( ) 2µττ −+≡ tItIG I  and ( ) ( ) ( )tItIG NNN ττ +≡ .  The relaxation time of 

the fluctuations in ( )tI N  is much smaller than that of ( )tIC , which allows a substantial 

amount of noise to be removed by the RC filter without corrupting the desired lower 

frequency fluctuations of ( )tI .  In most cases, the time constant, fτ , of the RC filter was 

set to 150 µs.  The autocorrelation function of the filtered signal is given by 
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where 2
Nσ  is the variance of the filtered noise [32].  Extracting force data from the 

measurements using equation (3.4) requires a model for the fluctuating particle position.  

Our approach is to model these fluctuations as Brownian motion in a potential energy 

well. 
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3.3.2  Brownian Motion in a Potential Energy Well 

The goal of the measurements is to simultaneously extract force–distance profiles 

for the conservative (static) forces, which depend only on separation distance, and non-

conservative (dynamic) forces, which depend on the position and velocity of the particle.  

The conservative forces are characterized by the gradient of the potential energy, ( )zφ : 

 

 ( ) ( )zzF φ ′−= . (3.5) 

 

The simplest example of a non-conservative force is the low Reynolds number viscous 

force, which is directly proportional to the particle velocity: 

 

 ( ) ( )
dt

dz
zzFdrag δ−=  (3.6) 

 

where ( )δ z is the drag coefficient in the direction normal to the flat surface.  For large 

separations, ( )δ z  approaches the Stokes’ law value, ( ) az πηδ 6= , where η is the fluid 

viscosity and a is the particle radius.  However, for separations on the order of several 

particle radii and less, there is sufficient viscous coupling with the solid wall such that the 

drag coefficient becomes a strong function of separation: 

 

 ( ) ( )zaz λπηδ 6=  (3.7) 
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where ( )λ z  is a correction factor that depends on separation distance.  For particle 

motion in a Newtonian fluid with no-slip boundary conditions, ( )λ z  has an analytical 

solution that becomes infinite as the separation vanishes, and tends to unity (as in Stokes’ 

law) for infinite separation.  This result was first derived by Brenner [33] in 1961. 

In these experiments, the particle’s range of motion is limited by a potential 

energy well created by the optical trap alone or together with the surface.  The probability 

density of a Brownian particle in a potential energy well can be described by the one-

dimensional Fokker–Planck equation, 
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where ( )dzztzp 0,|, ′  is the probability of finding the particle between z  and dzz +  at 

time t  given the particle was at position z′  at time zero, ( )ztotφ  is the total potential 

energy, k is Boltzmann’s constant, and T is the absolute temperature.  In the case of a 

Newtonian fluid, the calibration and measurement procedures assume the validity of 

equation (3.8) for the trapped particle.  The primary assumptions underlying this equation 

are the validity of equation (3.6) (viscous force proportional to velocity) and a fast 

relaxation of velocity fluctuations relative to the time scale of interest.  Based on a root 

mean square velocity, mkTvrms 2= , the Reynolds number is estimated to be less than 

0.004, validating the Stokes flow assumption.  The velocity relaxation time, equal to 

δm , is estimated to be less than 10-7 s for typical measurements.  Also, the persistence 

length associated with the velocity fluctuations, estimated by δmvrms ⋅ , is less than 0.5 
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nm, which indicates that any persistent motion of the particle due to a finite relaxation 

time of the velocity can be neglected. 

Solving equation (3.8) for the stationary probability density yields 
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which is a statement of Boltzmann’s law.  A key property of equation (3.9) used in the 

force measurements is that, because ( ) ( ) ( ) kTzzpzp totss φ′−=′ , ( )ztotφ  and ( )zps  share 

extrema with respect to z .  In other words, the maximum in the measured position 

histogram and the minimum in the total potential profile occur at the same location.  The 

autocorrelation function of the particle position, given by 
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can also be obtained from equation (3.9) and the solution to equation (3.8). 

In the special case where ( )ztotφ  is approximately parabolic of the form 
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from which the mean position, pzz = , and the variance, ( )zkT totz φσ ′′=
2 , can be 

obtained.  Furthermore, when ( )zδ  is nearly constant and approximately equal to ( )pzδ  

over the local range of fluctuations, then equation (3.8) can be solved and introduced into 

equation (3.10) to yield 

 

 ( ) ceG zz
ττ

στ
−

≡
2  (3.12)  

 

where ( )zkT totzc φδδστ ′′== 2  is the characteristic relaxation time of the fluctuating 

position.  We show in the Appendix that equation (3.12) remains a good approximation 

even when the potential well is slightly skewed and ( )z1−δ  (or the particle diffusivity) 

varies linearly with position. 

Because we are directly measuring the intensity rather than the particle position, 

we need to relate the statistical properties of the two variables using equation (2.19).  

From equations (2.19) and (3.11), the mean intensity, µ , and variance, 2
Iσ , are given by 
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respectively.  Moreover, it can be shown that the autocorrelation function of intensity is 

given by 

 

 ( ) ( ) ( ) ( )[ ]1)(exp 222 −=−+≡ τβµµττ zI GtItIG  (3.15) 

 

where )(τzG  is given by equation (3.12). 

Equation (3.15) is the key result to be used in the calibration of the trap and in the 

measurement of dynamic forces, which requires estimation of 2
zσ  and cτ  from the 

measured autocorrelation function of intensity.  However, the actual signal is represented 

by equation (3.4) due to the low-pass filter.  Upon introducing the series expansion of the 

exponent in equation (3.15) into the integral in equation (3.4), we find 
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where cf ττε ≡  is the ratio of the filter time constant to the relaxation time of particle 

fluctuations.  Because cτ  is typically at least one order of magnitude larger than fτ , the 

higher-order terms in equation (3.16) are safely dropped. 

3.3.3  Calibrating the Optical Trap 

Since the stiffness of the optical trap may be sensitive to experimental conditions, 

an independent calibration is performed for each experimental run.  For separation 

distances where the surface forces are negligible, the trapping force is the only 
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conservative force acting on the particle.  The restoring force due to the trap is 

approximately linear for axial displacements on the order of a particle diameter: 

 

 ( ) ( )0zzzF ztrap −−= γ  (3.17) 

 

where zγ  is the axial trap stiffness and 0z  is the trap center (neither is known a priori).  

Since the location of the particle is specified by the separation distance, z, the convention 

is adopted to define the trap center as the equilibrium separation distance of the particle 

in the absence of surface forces.  This means that the actual location of the trap focal 

point and the so-called “trap center” are offset by a distance approximately equal to the 

particle radius, a.  A linear model for the trapping force implies a simple harmonic 

potential energy profile; integrating equation (3.17) with respect to separation distance 

gives 

 

 ( ) ( )2
02

zzz z
trap −=

γ
φ  (3.18) 

 

which is the potential energy relative to the local minimum value at 0z . 

If no other forces are present, then ( ) ( )zz tottrap φφ = , and the stationary density is 

simply the Gaussian distribution given in equation (3.11).  The trap stiffness, 

( )ztrapz φγ ′′= , and the trap center, 0z , are determined by the first two statistical moments 

(i.e., the mean, z , and variance, 2
zσ ) of the particle’s position within the trap.  This 

calibration is performed over a range of trap positions far from the surface where only the 
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trapping force is significant and the position variance, 2
zσ , is a constant and equal to 

zkT γ .  The position variance, 2
zσ , is determined at each calibration position by fitting 

equation (3.16) to the measured autocorrelation function by non-linear least-squares 

regression, using 2
zσ , cτ , and 2

Nσ  as fitted parameters.  This provides a precise, noise-

corrected estimate of the trap stiffness, zγ , and ultimately the drag coefficient, ( )zδ . 

The calibration is performed by at known trap positions { }jz ,0  initially defined 

relative to an arbitrary zero point.  The calibration procedure also determines the intensity 

at zero separation, ( )00 == zII , on this scale.  This can be estimated by rearranging 

equation (3.13) to relate 0I  to 0z  and the measured mean intensity, µ , then taking the 

appropriate average from the measurements: 
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where jµ  is the measured mean intensity at trap position jz ,0 . 

3.3.4  Measuring Static Forces 

Once the optical trap is calibrated, it is used as a sensitive force transducer.  Of 

particular interest are the DLVO-type forces which include the screened electrostatic (i.e., 

double layer) and van der Waals interactions of the particle with the flat surface.  These 

are considered to be static forces because they are conservative over the entire range of 

separation distances and are insensitive to the particle’s Brownian motion.  In the 

calibration region, the static forces are negligible due to the relatively large separation 



54 

 

distance; here, only the force due to the trap is significant.  However, as the particle 

approaches the surface, the surface forces begin to perturb the equilibrium position of the 

particle within the trap.  Assuming that the potential energy contributions from the trap, 

( )ztrapφ , and particle–surface interactions, ( )zφ , are additive, the total potential energy of 

the particle is 

 

 ( ) ( ) ( )zzz traptot φφφ += . (3.20) 

 

The local minima of ( )ztotφ  represent separation distances where there is a stable balance 

between the trapping force and surface forces such that 

 

 ( ) ( ) ( )00 zzzFz pzpptot −+−==′ γφ . (3.21) 

 

Therefore, once pz  is identified, the force can be calculated directly from 

 

 ( ) ( ) ( )0zzzFzF pzptrapp −=−= γ  (3.22) 

 

for any trap position.  The details of the procedure for estimating pz  from the raw 

intensity measurements are presented elsewhere [13].  Briefly, pz  is obtained from the 

minimum of a fourth-order polynomial fit to the negative logarithm of the measured 

distribution of positions, i.e., ( )( ) ( )zIzp totφ∝− ln .  By moving the location of the trap 

center, 0z , toward the surface in small increments, the interaction force as a function of 



55 

 

separation distance is readily determined from an equilibrium force balance at each new 

location.  A smoothly varying force–distance profile can be integrated numerically to 

yield an estimate of the potential energy, 

 

 ( ) ( ) zdzFz
z

p ′= ∫
∞

φ , (3.23) 

 

over the same range of separation distances.  This offers a comparison with potential 

energy data produced by TIRM measurements. 

3.3.5  Measuring Dynamic Forces 

In order to determine the drag force as a function of separation distance, we again 

examine the autocorrelation function at each new trap position.  A key assumption is that 

equation (3.12) and, consequently, equation (3.16) remain good approximations even 

when particle is within a potential energy well created by the trap and the surface 

together.  This requires that the particle fluctuations are reasonably symmetric about the 

potential energy minimum and the drag coefficient does not deviate largely over the 

range of fluctuations from its value at pz .  A Taylor series expansion of the potential 

energy centered at the most probable position, pz , yields 

 

 ( ) ( )
( )

( )2

2 p
p

ptot zz
z

zz −
′′

≈−
φ

φφ  (3.24) 
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where we have noted that ( ) 0=′ pzφ  at equilibrium.  Equation (3.24) assumes that the 

total potential profile, ( )ztotφ , is approximately harmonic (parabolic in shape) near pz  

such that the effective stiffness, combining trap and surface force effects, is 

 

 ( ) ( ) ( )pzpeffz zFzz ′−=′′= γφγ , . (3.25) 

 

Equation (3.25) shows that repulsive surface forces that decrease with separation distance 

(i.e., ( ) 0>pzF  and ( ) 0<′ pzF ) enhance the effective stiffness and narrow the total 

potential energy well.  Conversely, weakly attractive forces ( ( ) 0<pzF , ( ) 0>′ pzF ) tend 

to decrease the effective stiffness and broaden the potential energy well.  We also assume 

that ( )z1−δ  (or the particle diffusion coefficient) depends weakly and linearly on z  over 

the range of fluctuations to justify the use of equations (3.12) and (3.16) to estimate the 

position variance, ( ) effzpz kTz ,
2 γσ = , and the relaxation time, ( ) effzpc z ,γδτ = , as 

functions of pz .  As with the calibration procedure, these parameters are estimated at 

each trap location by first measuring ( )τfG , and using equation (3.16) to fit to the data 

via weighted non-linear least-squares regression, with 2
zσ , cτ , and 2

Nσ  as fitted 

parameters. 

3.3.6  Determining Absolute Separation Distances 

As mentioned above, the measured separation distances using this technique are 

initially expressed relative to an arbitrary reference point since we lack a direct estimate 

of the intensity at zero separation distance.  To determine absolute separation distances, 

we compare the drag force data with theory such that the position offset can be inferred 
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from a fitting procedure.  Whereas DLVO theory depends on several unknown 

parameters (the surface potential is often the most difficult to estimate for a particular 

system), the hydrodynamic drag far from the surface theoretically depends only on the 

particle radius, fluid viscosity, and absolute separation distance.  This allows for a rather 

simple method of determining absolute separation distances using the measured drag 

force profile.  Similar procedures of using the drag coefficient (or, equivalently, the 

apparent diffusion coefficient) as a means of determining absolute distances has been 

applied previously in TIRM measurements [9, 10]. 

All dynamic force data reported here were ascribed absolute distances determined 

from a fit of equation (3.7) to the data.  Because our measured drag coefficient deviated 

significantly from equation (3.7) in the region of double layer overlap, we performed the 

fit using only data from larger distances where there the measured static force was near 

zero and the overlap of the double layers is negligible.  Nevertheless, the large number of 

data points remaining at these larger separation distances provides a good estimate of the 

absolute separation distance. 
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CHAPTER 4 
INITIAL FORCE MEASUREMENTS AND EVIDENCE OF INTERFERENCE 

EFFECTS 

4.1  Initial Static Force Experiments 

This section summarizes the first set of static force measurements made using the 

new technique.  This study was intended to demonstrate the technique’s accuracy for 

measuring static interactions between a micron-sized particle and a flat glass plate.  

Experiments were performed using 1.5 µm silica spheres suspended in solutions of 

varying ionic strength.  Since the characteristic distance of electrostatic interactions, the 

Debye length, varies with the ionic content of the solution, this is a convenient way to test 

the accuracy of the technique.  As will be shown, however, the measurements produced 

unexpected results that did not agree well with theoretical predictions.  At first it was 

thought that these measurements were accurate because they follow DLVO theory, 

although the Hamaker constant required for such agreement was unusually high.  

Regardless, the measured double layer repulsion agreed well with theory. 

Following this study, further investigations eventually led to the hypothesis that 

reflection effects at the glass–water interface might be influencing the experimental 

results.  This was verified by adjusting the entry point of the trapping beam to the 

objective lens which would reduce or enhance this effect depending on the beam 

placement.  Additional studies using slides with reflective dielectric coatings further 

showed that this was the source of the anomalous data.  The details that lead to this 

conclusion are presented in this chapter as well. 
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4.1.1  Static Force Results 

In order to validate the technique experimentally, we chose to study a well-

characterized system that could be described by classical DLVO theory.  The simplest 

system we can consider is a spherical particle interacting with a flat plate immersed in an 

aqueous solution of known ionic strength.  We chose silica microspheres because of their 

spherical shape, monodisperse size distribution, availability in the micron-size range, and 

tabulated material properties.  Standard microscope glass slides were used as the test 

surfaces and were found to be reasonably smooth for experiments (surface roughness of 

about 2 nm RMS as measured by AFM).  Solutions were prepared with NaCl added to 

ultra-purified water to a specified concentration.  The ionic strength of the solutions was 

measured using a conductivity bridge.  Using equation (2.19), we were able to specify 

several values for the Debye length, 1−κ .  The measured exponential force–distance 

relationship created by the overlapping double layers offers the most robust test of the 

technique’s accuracy since the Debye length is only a function of the electrolyte 

concentration.  Attractive forces due to van der Waals interactions are usually not 

measurable for most common systems of low ionic strength where the double layer forces 

dominate. 

Measurements were made using 1.5 µm silica microspheres interacting with a 

soda-lime glass slide in solutions of varying NaCl concentration.  We prepared solutions 

of 0.10, 0.18, and 0.40 mM NaCl in doubly distilled water (corresponding to three equal-

spaced Debye lengths), each suspended with a low density of silica particles and 

polystyrene spacers (~105 particles/dm3).  We made several runs of the same system to 
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assess repeatability of the data, and saved all data to PC files for later analysis using an 

algorithm written in MATLAB.  The details of the analysis are given in detail previously. 

The applied trap potential is assumed to be harmonic, and we can demonstrate this 

by looking at the position histograms generated by a trapped particle.  Figure 4-1 is a 

histogram plot for two different locations of the trap center. 
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Figure 4-1.  Position histograms of a particle trapped (a) far from and (b) near the plate 
surface. 

 

Histogram (a) shows a trapped particle sufficiently far from the plate surface such that the 

interaction forces are negligible.  Fitting this histogram with a Gaussian distribution 

function (solid line) shows a good agreement with the harmonic trap model for 

displacements up to about 100 nm.  From this data, we cannot tell if the model fails for 

larger displacements within the trap since the particle does not naturally sample these 

regions.  Histogram (b) shows the same particle trapped much closer to the plate surface 

where interaction forces become significant.  Rather than having a Gaussian shape, the 
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distribution is now skewed to the right due to the presence of strong double layer 

repulsion. 

The histograms in Figure 4-1 represent the collected data for a given location of 

the trap center.  To calculate a complete force–distance profile, many such histograms are 

generated as the trap center is moved toward the plate surface.  For each of these 

locations, a force balance is made at the peak of these distributions knowing the location 

of the trap center.  The experimental force–distance profiles are shown in Figure 4-2. 
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Figure 4-2.  Experimental force–distance profiles for 1.5 µm silica near a glass slide.     
(� – 0.1 mM NaCl, ¯ – 0.18 mM NaCl, £ – 0.40 mM NaCl) 

 

The symbols in Figure 4-2 represent measured data points, and the lines are a DLVO 

theory fit generated from a Hogg–Healy–Fuerstenau (HHF) expression [18].  In all three 

measurements, there was good agreement between the expected Debye length and the 

observed decay constant of the data.  However, there is an obvious region for the two 

higher electrolyte concentrations where the forces are attractive (negative), signifying the 
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existence of an unusually deep secondary energy minimum.  Note that the reasonable fit 

of the data using the HHF expression is only achieved by choosing a relatively high value 

for the Hamaker constant (for a silica–water–glass system).  In this form of the DLVO 

theory, the van der Waals forces are calculated using equation (2.16).  This expression for 

the van der Waals energy does not assume retardation effects, however, which will be 

significant above separations of about 10 nm [7].  If we use a more rigorous Lifshitz 

expression for the van der Waals interactions, the predicted attractive force will be much 

lower for our system than the measurements in Figure 4-2 would indicate, over the same 

range of separation distances.  In effect, a rigorous version of DLVO theory suggests that 

our system should generate purely repulsive interactions over the range of separation 

distances and concentrations measured. 

4.1.2  Discussion of Static Force Results 

 It is clear that the measured attractive forces are unusually large for these systems, 

so we need to consider some reasonable explanations for the discrepancy.  One possible 

explanation is to assume that our measurements of large attractive forces are legitimate 

and that the theory somehow does not apply in this case.  This explanation is tempting, 

but is probably presumptuous since a large number of studies—many using SFA—have 

shown the Lifshitz theory to be very accurate [4, 34].  Another possible explanation 

would be the presence of depletion interactions, which can induce significant attractive 

forces, but this is unlikely since it requires the addition of small particles or long-chain 

molecules to the solution in sufficient concentration. 

If we assume that DLVO theory is accurate, our attention turns to the assumptions 

about optical trap.  It is possible that the trap does not act as a linear spring over a large 

range of axial displacements from the trap center, as it is assumed.  We might infer from 
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our measurements of strong attractive forces that the trap is somewhat weak in the 

reverse direction (i.e., opposite to the direction of beam propagation) as opposed to the 

forward direction.  This may allow the particle to be disrupted from the trap more easily 

if there are moderate attractive forces.  One argument against this view is that Lifshitz 

theory predicts van der Waals attractive forces to be significant only within 100 nm, and 

even then these forces are very small for a micron-sized particle (recall that van der 

Waals forces scale with particle radius).  Although our force–distance profiles in Figure 

4-2 reflect relative separation distances, clearly there appear to be strong attractive 

interactions occurring at separations much beyond 100 nm.  For these unusually large 

attractions to occur, even with weak reverse trapping, there would still need to be a 

significant attractive force that extends significantly beyond 100 nm.  This hypothesis is 

not supported by Lifshitz theory. 

 Thus far, our attempts to explain the experimental force data have been 

inadequate.  It appears as though we are accurately measuring double layer repulsion 

(note the 0.1 mM data in Figure 4-2), but the relatively strong attractive forces seemingly 

defy explanation using reasonable arguments.  There are cases in the literature where 

attractive forces appear to be higher than usual, and we might consider our measurements 

to support these findings.  Of note are results from recent experiments by Velegol et al. 

[35, 36] using differential electrophoresis where the electric field required to separate 

two particles of differing surface charge, loosely bound in mutual secondary minima, was 

found to be much higher than that predicted by DLVO theory.  A possible explanation for 

this effect, however, might be that the applied separation force is not well known in 

electrophoresis.  The resolution of force in such a study would be far less than that found 
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using an optical trap.  This experimental result alone is not enough to bolster our 

findings. 

The lack of an obvious explanation for the poor agreement between theory and 

data led us to look at the data more carefully.  Based on DLVO theory and an accurate 

description of the trapping energy, we can simulate an experiment and determine how the 

data should appear for a certain particle–surface system.  Using the overall potential 

energy for the particle as the sum of DLVO-type interactions and trap contributions, we 

can use Boltzmann’s equation to predict how the histograms should appear as we move 

the trap center toward the plate surface.  These histograms can be difficult to compare 

with a large set of experimental histogram data, so it is often useful to compare the 

statistics of these distributions.  The raw data sampled by the data acquisition program is 

measured in terms of a voltage level that is proportional to the scattered intensity of the 

particle, so it is convenient to analyze the mean and variance intensity profiles as the 

particle approaches the surface.  This is a convenient way of comparing the measured 

data with predicted quantities.  It is a simple matter to calculate the expected intensity 

mean and variance from the theoretical distributions by first using the EWLS relation in 

equation (2.32) to convert distances to intensities, and then integrating the curves to 

generate the first two statistical moments.  A comparison of the mean intensity profiles is 

shown in Figure 4-3. 
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Figure 4-3.  Experimental and theoretical mean intensity versus trap position for 1.5 µm 
silica sphere.  (0.1 mM NaCl solution; ç – raw data, � – background level subtracted, 
solid line – model prediction) 

 

With the background level subtracted, the mean intensity profile appears to follow 

the model prediction (solid line) very well.  The plot clearly shows an exponential rise of 

the average intensity as the trap center is moved toward the surface (leftward on this 

plot).  The exponential rise is then followed by a curve inflection and finally a leveling of 

the intensity.  We can interpret this data as an indication of repulsive forces for smaller 

separations because the curve deviates far below an exponential dependence.  In the 

absence of surface forces, the intensity data should vary exponentially until contact.  We 

can divide the curve into two distinct regions:  a calibration region where the surface 

forces are negligible (exponential rise of mean intensity), and a measurement region 

where surface forces are significant to oppose the trapping force and displace the particle 

from the trap center (portion of the curve to the left of the inflection point). 
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The data shown in Figure 4-3 corresponds to the force curve shown Figure 4-2 for 

a 1.5 µm silica sphere in 0.1 mM NaCl.  In both plots, the data is consistent with DLVO 

theory predictions, showing a purely repulsive interaction over the range of 

measurements.  Unfortunately, this agreement is not easily reproducible.  In most cases, 

there is significant deviation from DLVO theory predictions.  Without having to 

rigorously analyze the data to produce force–distance profiles (the ultimate end-result of 

measurement), the raw data of mean intensity versus trap position can suggest if the 

measured data follows DLVO theory predictions or not.  In many cases, the measured 

profile of the mean intensity has certain unexpected features.  A typical example is shown 

in Figure 4-4. 
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Figure 4-4.  Experimental mean intensity versus trap position for a 1.5 µm silica sphere. 

 

In comparison to the plot in Figure 4-3, the data shown in Figure 4-4 shows two unique 

features.  First, there is an unusual “bump” in the data occurring in the exponential rise 

portion of the data (from about 200 to 400 nm).  This feature cannot be explained using 
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DLVO theory.  Second, the maximum slope of the curve is so extreme that the curve 

appears to be nearly discontinuous.  Since the data depict discrete 20 nm movements of 

the trap center toward the plate surface, this discontinuity would appear to be due to an 

unusually strong attractive force.  Most of the static force measurements using colloidal 

particles ranging from 0.5 to 5.0 µm in diameter have shown these effects to varying 

degrees. 

In order to analyze this data, we had to account for these unexpected features.  

The simplest explanation seemed to be that the small “bump” was due to some artifact 

that did not affect the force measurement, and that the discontinuity in the mean intensity 

was due to a strong attractive force.  As such, we could disregard the data to the right of 

and including the “bump,” and perform a calibration using a smoothly varying portion of 

the exponentially varying region.  Notice that the force data shown thus far have been 

over a limited range of separation distances, up to about 300 nm.  This is primarily due to 

the presence the “bump” where we have omitted anomalous data.  Isolating the cause of 

these unexpected features has been extraordinarily difficult.  These effects appear to be 

independent of the sample preparation and experimental conditions.  Fortunately, though, 

a reasonable explanation was discovered for this unexpected result.  This is the subject of 

the sections to follow. 

4.2  Effect of Trapping Beam Alignment 

An additional adjustable parameter not considered in the previous experiments is 

the position of the trapping laser beneath the objective lens.  The LaserTweezers 100 unit 

is designed to simply slide into place within the epifluorescence port of the microscope 

without end-user adjustment.  It was determined that the position of the trap along the 
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guide rail was important only after the trap was inserted and removed from the 

microscope (before and after experiments) with greater regularity.  Only then was the 

connection drawn between the quality of the measured data the location of the trapping 

unit.  This observation led to the conclusion that there may be significant reflection of the 

trapping beam at the glass–water interface.  It is not intuitively obvious that this should 

be the case since the interface should reflect a minute fraction of the total beam intensity 

(<1%).  Nonetheless, experiments were run to deduce the dependence of the trapping unit 

location within the microscope, which affects the entry point of the beam to the back 

aperture of the objective lens.  The results of these studies are discussed below. 

A schematic of the optical trapping unit (Cell Robotics LaserTweezers 100) 

placed within the microscope is shown in Figure 4-5. 

 

 

 

Figure 4-5.  Schematic of LaserTweezers unit placed within the microscope. 
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The trapping laser is contained within a small plug-in unit that is specifically designed to 

fit within the epifluorescence port of an inverted microscope.  The unit collimates an 

infrared beam and reflects the light to the rear opening of a high numerical aperture 

objective.  The collimated beam intentionally overfills the rear opening (by about 20%) 

such that the marginal rays are occluded; this significantly improves the axial trapping 

strength.  The entire unit slides into position on a dovetail-shaped rail that restricts 

movements along one axis (as indicated by the arrows in Figure 4-5).  A small setscrew is 

used to fix the position of the unit along this axis.  Ideally, the beam axis should be 

concentric with the axis of the objective.  This corresponds to the maximum power of the 

beam exiting the objective and the maximum trapping force. 

The most precise way of aligning the trap is to measure the light intensity emitted 

from the objective.  Since the laser operates in the near-infrared (IR) spectrum, the beam 

can be imaged using an IR-sensitive card or a CCD camera.  The properly aligned 

position will yield a maximum intensity spot.  A more practical approach is to align the 

unit using a trapped particle as a guide.  As the trapping unit slides along the guide rail, 

the particle will also show small micron-scale movements along one axis.  The details of 

this method are somewhat difficult to describe and require hands-on experience.  

Essentially, the method involves correlating the particle’s movements to the ideal 

location of the trapping unit within the microscope.  Although difficult to describe here, 

this method is far more convenient than measuring the beam output each time. 

The so-called “artifacts” in the initial force measurements appeared be attributable 

to a yet unknown physical phenomenon since the particle was visually observed to make 

unexpected movements as it neared the flat plate surface, corroborating the trends seen in 
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the anomalous data.  Recall that this particularly strange observation was shown in the 

region where the intensity jumped discontinuously as a function of trap position (see 

Figure 4-4).  Here it was noted that the particle became somewhat unstable within the 

trap and moved almost erratically towards and away from the surface.  This was 

qualitatively observed under the microscope as large variations in the intensity.  

Experimentally, the sampled data clearly showed a larger than expected peak in the 

intensity variance, 2
Iσ , than would be predicted by DLVO theory.  This observation leads 

to two possible explanations:  either the attractive surface forces sufficiently broaden the 

overall potential profile, or the trap itself is weakened significantly in this region.  If we 

are reasonably confident that DLVO theory is accurate for this system, we should 

naturally suspect that the trap is responsible the unexpected results.  At this point, it is not 

as important to describe a precise mechanism for this result (to be addressed in a later 

section) as it is to show the effect of beam alignment on the data. 

To test the effect of the beam alignment, intensity mean and variance plots were 

generated for different locations of the trapping unit beneath the objective.  

Representative mean intensity plots are shown in Figure 4-6. 
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Figure 4-6.  Mean intensity versus trap position for two locations of the trapping unit. 

 

The data show an obvious dependence on beam alignment.  Curiously, “anomalous” data 

results when the beam is precisely centered beneath the objective.  Conversely, when the 

beam is moderately off-axis, (i.e., intentionally misaligned) the data are consistent with 

DLVO theory predictions.  This result is both exciting and frustrating:  we have 

implicated the alignment of the trap as the cause of our inaccurate measurements, but the 

solution to this problem makes little sense.  Why should an aligned beam, and hence a 

well-formed trap, lead to inaccurate measurements?  This is the subject of the next 

section. 

While it is not yet described why an off-axis beam gives improved results, it is a 

useful pragmatic approach that significantly improves experimental static force 

measurements.  Unfortunately the measurements are extremely sensitive to the beam 

location beneath the objective, so even minor movements of the trapping unit can 

influence the data greatly.  This represents a significant obstacle to achieving repeatable 

measurements using this system. 
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4.3  Reflection Effects in Optical Trapping 

That an aligned beam would give the most unusual results while a misaligned 

beam would yield agreement with theory seems counterintuitive.  The most rational 

explanation would be that the description of the optical trap is inadequate in some 

fundamental way.  One explanation previously conjectured for this discrepancy is that the 

presence of the flat plate in proximity to the beam focus somehow perturbs the 

electromagnetic field distribution.  Since the beam propagates normal to the plate, it is 

possible that effects due to beam reflection could be responsible for a more complicated 

field distribution as the particle nears the surface. 

4.3.1  Standing Wave Trapping 

Interestingly, there is a related technique called standing wave trapping (SWT) 

developed by Zemánek and co-workers [39, 40].  This technique intentionally generates 

interference between the incoming trapping beam and its reflection at the plate surface, 

thereby forming a standing wave that confines micron-sized particles near the plate 

surface.  Rather than generating a single focal point to which a particle is attracted, the 

standing wave is comprised of several periodic intensity maxima that can collect several 

particles at regular intervals of one-half the wavelength of the light, 2λ .  Sufficient 

reflection of the beam is achieved by coating a glass plate with several layers of 

alternating refractive index materials.  In some cases, the reflected intensity can reach 

values near 99%.  Although our technique does not encourage reflections, it is possible 

that SWT characteristics are inherent into our technique.  This may fully explain the 

unexpected results. 
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There are two primary differences between the standing wave trap and our 

technique.  First, SWT uses a beam that is usually not focused as tightly as that found in a 

gradient trap.  In fact, the beam is more characteristic of a two-dimensional or radiation 

pressure trap as described previously.  Second, the glass surface in SWT is coated with 

reflective layers to encourage the formation of a standing wave.  While the techniques are 

not precisely the same, we might infer some general similarities between the two since 

the arrangements are nearly the same (focused trapping beam normally incident at a 

glass–water interface).  For this reason, we would expect to see some reflection of the 

gradient trapping beam, especially as the focal point nears the plate surface, but the 

reflected amount is typically expected to be about 0.4% for an unmodified glass–water 

interface.  In that case, we would not expect reflection to be an important consideration 

for our technique, but there is compelling experimental evidence that suggests otherwise. 

4.3.2  Experimental Evidence of a Standing Wave 

Examining the data for which there are obvious artifacts (“bumps” or 

discontinuities seen in plots of the mean intensity versus trap position—as shown in 

Figure 4-6), we see that these features appear at periodic intervals of about 400 nm.  This 

corresponds well with the expected interval of 2λ  for a standing wave trap.  Further 

evidence of this effect is provided by the individual position histograms where these 

intensity discontinuities occur.  The appearance of two distinct potential energy minima 

is shown in Figure 4-7 for three slightly different locations of the trap center (offset by 

~20 nm). 
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Figure 4-7.  Position histograms for three slightly different locations (separated by 20 
nm) of the trap center in a standing wave arrangement (1.0 µm silica). 

 

For critical locations of the trap center, it is possible to create two local energy minima 

(corresponding to intensity maxima) of equal depth such that the particle will spend an 

equal amount of time in each.  This result is possible if we consider an unusually deep 

secondary energy minimum, but this is expected from DLVO theory for the particle 

systems considered here.  In addition, the effect occurs at regular intervals, lessening as 

the separation distance increases, which DLVO theory could never predict.  The 

experimental evidence seems to support the generation of a standing wave as the cause of 

the unusual data. 

To definitively prove the importance of reflections at the interface, the trajectory 

of a trapped particle was observed as the trap focus was stepped toward slide surfaces 

having reflective dielectric coatings.  If experiments using uncoated glass slides show 

evidence of a standing wave, then a more reflective slide should show an exaggerated 
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effect.  Several experiments were run to deduce the effect of a reflective surface.  

Zemánek and co-workers supplied us with reflective glass slides using multiple layers of 

dielectric materials (SiO2 and TiO2).  We were provided two sets of coated slides having 

1% and 25% reflectivity values (R).  Experiments were performed using the standard 

measurement procedures detailed previously.  The trap center was moved in increments 

of 40 nm toward the slide surface.  A plot of the mean intensity data using these reflective 

slides is shown in Figure 4-8. 
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Figure 4-8.  Mean intensity as a function of trap position for a 1.5 µm silica particle near 
a reflective glass slide (R=25%). 

 

The data show obvious discrete jumps of the particle from one stable trapping position to 

the next as the trap focus is moved toward the slide.  Notice also that as the focal point 
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moves beyond the interface, the particle actually moves away from the surface to a 

location near its initial position.  This is because there is sufficient reflection of the beam 

to create a focus that moves away form the surface.  The basic features of this data 

demonstrate the clear existence of a standing wave since the particle essentially can only 

find discrete positions with respect to the surface.  Notice that this plot is an exaggeration 

of the trends seen in Figure 4-6.  The spacing of these discrete movements is found by 

converting the intensity data in Figure 4-8 to position data, shown in Figure 4-9. 
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Figure 4-9.  Mean relative separation distance as a function of trap position for a 1.5 µm 
silica particle near a reflective glass slide (R=25%). 

 

The three stable locations closest to the surface appear to be spaced nearly equally (~300 

nm); this interval is consistent with the distance of 2λ  seen in SWT (recall that the 
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wavelength of the trapping light in water is roughly 624 nm, since the frequency is 

unchanged as it propagates through a dielectric material).  In this arrangement, rather 

than follow a single beam focus that moves in 40 nm increments, the particle is finding 

the antinode with the highest intensity.  Since the locations of the antinodes remain fixed 

regardless of the location of the theoretical focal point, the particle is restricted to make 

discrete movements from one antinode to the next as the intensity distribution shifts. 

The variance of separation distance also shows interesting behavior as the particle 

makes its discrete movements.  This data is shown in Figure 4-10. 
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Figure 4-10.  Variance of  separation distance as a function of trap position for a 1.5 µm 
silica particle near a reflective glass slide (R=25%). 
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The variance of particle fluctuations decreases markedly as the particle approaches the 

surface.  This indicates that the effective energy wells trapping the particles become 

increasingly sharp at shorter separations.  This is expected since the interference of 

trapping light would be maximized when the focal point is very near the interface.  

Because the trap stiffness is inversely proportional to the position variance, the data are 

re-expressed as stiffness values in Figure 4-11. 
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Figure 4-11.  Axial trap stiffness as a function of trap position for a 1.5 µm silica particle 
near a reflective glass slide (R=25%). 

 

The trap stiffness gives a measure of the steepness of the potential well that holds the 

particle at any given antinode.  This plot reiterates that the steepest well is located near 

the surface.  The variability in the data is due to the sensitivity of the calculation upon the 
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measured variance since the stiffness grows quickly for small values of the variance.  The 

magnitude of the trap stiffness seen in these measurements far exceeds the typical values 

observed for a usual force measurement experiment.  Typical force measurements with 

micron-sized silica using the LaserTweezers 100 optical trap have consistently shown 

stiffness values ranging from 6101 −×  to 6103 −×  N/m (1 to 3 fN/nm).  Figure 4-11 shows 

a maximum stiffness value that is at least an order of magnitude larger than what is 

typical for our technique.  This maximum value may be elevated due to the presence of 

the particle–surface interactions, but even locations far from the plate show large stiffness 

values.  These higher stiffness values are a novel aspect of SWT especially considering 

that a strong axial force can be created without requiring a high numerical aperture lens 

(i.e., a tight beam focus) or a large increase in laser power. 

Similar results were obtained for studies using coated slides where R=1%, where 

the standing wave effects were less pronounced.  The effects were greater than those seen 

for an uncoated glass slide, however.  It is surprising that such a low reflectivity (R<1%) 

slide could give rise to these effects, but clearly the technique is highly sensitive to any 

such reflections.  In fact, we ran additional experiments using an “anti-reflective” slide 

(R<0.15%) and saw no major improvements over measurements made with uncoated 

slides.  The reason for this is likely that the reflectivity of the trapping beam is a strong 

function of incident angle.  The predicted reflectivity values for these coatings assume at 

most a 30º deviation from normal incidence.  The microscope objective lens (1.3 NA) 

used in these experiments, however, has a maximum convergent angle that is far in 

excess of this limit, so it may be that the actual reflectivity is much higher than the 

predicted value. 
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4.3.3  Modeling the Trapping Beam Profile Near a Reflective Surface 

 It is possible to predict standing wave behavior theoretically by using beam optics 

to describe the intensity profile near the glass–water interface.  This is the subject of a 

publication by Zemánek et al. [39] where the force–distance profile of a Rayleigh sphere 

( λ<<a ) is predicted using a paraxial (PA) approximation of the light rays.  In the case 

of a tightly focused beam, however, the PA assumption becomes quite poor.  For highly 

convergent rays, higher-order corrections are required to accurately describe the EM 

fields of a Gaussian beam near the focal point.  To our knowledge, no previous work 

exists that provides a theoretical description of a standing wave using a tightly focused 

beam (i.e., single-beam gradient trap).
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CHAPTER 5 
STATIC AND DYNAMIC FORCE MEASUREMENTS USING A REVISED 

METHODOLOGY 

5.1  Description of the Revised Methodology 

Chapter 4 discussed the problems associated with reflection of the trapping beam 

as its focus approaches the flat surface.  Significant reflection of the beam can generate a 

standing wave that compromises the accuracy of the technique.  Rather than trapping the 

particle into a single beam focal point, the actual electromagnetic field distribution may 

be far more complex and lead to unexpected movements of the particle as the trap focus 

is moved toward the flat surface.  Though this is a problem when the trapping beam is 

centered below the objective, the standing wave effects can be largely eliminated if the 

beam is positioned to enter the objective slightly off-axis.  We can adjust beam entry 

point by sliding the trapping unit along the guide rail.  A beam that is concentric with the 

objective aperture gives the greatest standing wave effects and is considered undesirable 

in force measurements.  However, if the trapping unit is moved a small distance (a few 

millimeters) in either direction from this location, the beam axis is incident at the slide 

surface at a slight angle.  This reduces the amount of retro-reflected light that can 

interfere with the incoming beam. 

The ideal position of the beam to reduce standing wave effects appears to depend 

upon several factors related to the sample.  The particle type and the precise placement of 

the glass slide upon the microscope stage may both influence this ideal position.  For the 

results shown in this chapter, we adopted a trial-and-error approach to minimizing the 
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reflections.  This is done by trapping a particle, positioning the trapping unit at some off-

axis position, and then taking rapid samples of the intensity as a function of the trap focus 

position.  If there is a significant standing wave effect, it is manifests as discontinuities in 

the statistics of the measured intensity.  The trapping unit can then be repositioned and 

the diagnostic sampling repeated until an optimum location is found.  In general, this 

optimum location will vary only slightly depending on the sample such that the trapping 

unit can be left in place to achieve satisfactory results.  With this additional parameter 

optimized, the experiments proceed exactly as described in Chapter 3.  As will be shown, 

data generated using this revised methodology are far superior to earlier measurement 

results where the trapping unit position was unaltered. 

5.2  Static Force Measurements 

5.2.1  Procedure Details 

The measurements reported in this section precisely follow the experimental 

procedure described previously in Chapter 3.  The specifics of this procedure are noted 

here.  Two solutions of NaCl (0.23 and 1.0 mM) were prepared using Barnstead 

Nanopure ultrafiltered water.  Silica microspheres of 1.0 and 1.5 µm nominal diameter (± 

0.1 µm) were purchased from Geltech as dry powers and suspended in the NaCl solutions 

at low particle densities (~105 particles/mL) for a total of four different samples.  A 

similar density of 9.14 µm diameter polystyrene spacer particles (Polysciences) served as 

gap spacers.  Solutions were prepared the day of the experiment to eliminate 

contamination of the samples.  The samples were sonicated to break up aggregates and 

mixed just prior to an experiment to resuspend the particles in solution.  The He–Ne laser 

beam was a set to an incident angle of 63.7º.  This gives an evanescent wave penetration 
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depth, 1−β , of 184.4 nm.  The data acquisition program was set to acquire 65536 

intensity samples at a sampling rate of 20 kHz for each trap position.  The trap was 

moved by 20 nm increments until the particle was found to achieve its minimum 

accessible separation distance.  The data was continuously saved to a file and analyzed at 

a later time using the MATLAB analysis program. 

5.2.2  Static Force Results 

Figure 5-1 shows histograms of particle positions for a 1.5 µm silica sphere at 

equilibrium separation distances of 56.2 and 543.7 nm, which correspond to regions 

where the surface forces are appreciable and negligible, respectively. 
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Figure 5-1.  Measured histograms of particle positions and estimated potential energy 
profiles corresponding to most probable separation distances of 543.7 and 56.2 nm. 
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The dashed lines are the predicted potential energy profiles in the absence of surface 

forces, equivalent to ( )ztrapφ .  Note that it is possible to have a trap potential minimum 

theoretically located within the solid plate.  The static force is calculated directly from the 

distance between the hypothetical trap minimum and the actual minimum.  At pz  = 543.7 

nm, the histogram is centered over the trap potential profile indicating a negligible static 

force.  However, at pz  = 56.2 nm, there is a large deviation between the trap potential 

minimum and the most probable separation distance.  Assuming that the trap potential is 

harmonic, the static force is simply proportional to the observed distance deviation as in 

equation (2.37). 

Figures 5-2 and 5-3 show experimental force–distance profiles obtained for 1.0 

and 1.5 µm silica spheres, respectively, interacting with a flat glass plate in 0.23 and 1.0 

mM NaCl solutions. 
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Figure 5-2.  Static force measurements for a 1.0 µm diameter silica sphere near a glass 
plate in 0.23 mM (�) and 1.0 mM (r) NaCl.  DLVO theory predictions are plotted for 
both ionic strengths (0.23 mM – solid line, 1.0 mM – dashed line).   
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Figure 5-3.  Static force measurements for a 1.5 µm diameter silica sphere near a glass 
plate in 0.23 mM (�) and 1.0 mM (r) NaCl.  DLVO theory predictions are plotted for 
both ionic strengths (0.23 mM – solid line, 1.0 mM – dashed line). 

 

The absolute separation distances were obtained by fitting the viscous drag coefficient 

data to equation (3.7), as discussed previously and shown below.  From conductivity 

measurements, we were able to confirm the ionic strengths and accurately estimate the 

Debye lengths, 1−κ , which represent the characteristic exponential decay of the double 

layer forces as a function of separation distance ( 1−κ  = 20.0 nm for 0.23 mM NaCl, and 

1−κ  = 9.6 nm for 1.0 mM NaCl).  In each case we found very good agreement with 

DLVO theory (shown as solid and dashed lines in the static force plots), accounting for 

the combined effects of double layer and van der Waals interactions.  The double layer 

force model is based upon the Debye–Hückel approximation, which assumes low surface 

potentials (absolute value of ~25 mV or less) and slightly overlapping double layers 
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(principle of superposition).  Derjaguin’s approximation is used to account for the 

curvature of the silica particle.  The van der Waals model is based on Hamaker theory 

and neglects retardation and screening effects.  The van der Waals force should be small 

enough in this range of separation distances such that a more accurate model is not 

required. 

5.2.3  Discussion of Static Force Results 

For the systems tested in this study, the dominant static force is generated by an 

overlap of the diffuse double layers where the repulsive force is sufficient to keep the 

particle from finding regions very near the surface where van der Waals attractive forces 

become appreciable.  The double layer repulsive force, then, provides a convenient test of 

the accuracy of our technique since the agreement with theory does not strictly depend on 

the absolute separation distance.  The DLVO theory profile was generated using literature 

parameter values and an experimentally derived value for the particle radius.  By 

assuming shear plane potentials of –15 mV, the DLVO theory profile agreed well with 

our static force measurements.  This value of the potential provided good agreement for 

initial experiments and was therefore used throughout as a fixed parameter.  Although the 

actual shear plane potentials were not be verified independently for the silica particles 

and the glass slide directly, a shear plane potential of –15 mV is reasonable for SiO2 at 

neutral pH conditions. 

The static force results demonstrate the ability of the optical trap to apply a linear 

force to the particle for relatively large displacements from the trap center.  Since the 

intensity profile of the focused trapping beam decays more gradually in the axial 

direction, the linear force regime can extend well beyond a particle radius.  For the 

experiments reported here, we observed a linear response up to about one particle 
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diameter for a 1.5 µm diameter sphere.  The linear force approximation was assumed to 

be valid for regions where the static force profile agreed well with DLVO theory.  

Measured forces clearly beyond the linear regime were omitted. 

These revised measurements, which optimize the off-axis position of the trapping 

beam, are greatly improved over the initial results shown in Chapter 4.  The standing 

wave effects are almost completely eliminated using this new methodology.  However, 

some slight effects remain no matter how carefully the off-axis position is chosen.  Upon 

closer examination, the static force data in Figure 4-2 and 4-3 show non-zero force 

measurements in regions where the double layer and van der Waals forces should be 

negligible.  Consistently, there are small positive forces (~0.2 pN) that appear for 

separations of about 300 nm.  Also, there are small negative forces that appear just 

beyond 100 nm.  This leads to a slight wavy appearance of the overall force–distance 

profile, although the errors are minimal.  While this is likely due to slight interference 

effects, it does not seem to disrupt the force data where significant forces (>0.5 pN) are 

measurable.  Overall, the measurements agree very well with DLVO theory predictions 

which validates the accuracy of the technique for these particle systems.  Because the 

behavior of trapped particle within this complex electromagnetic field depends on the 

particle size and material, the results may be better or worse.  At present, it is difficult to 

predict which particle systems will behave well within this trap although it appears that 

higher refractive index particles (e.g., polystyrene) suffer greater effects due to the 

standing wave.  In fact, it was this early observation that led us to study silica particles 

rather than equivalently sized polystyrene microspheres. 
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5.3  Dynamic Force Measurements 

The dynamic (or drag force) interactions were also measured in this study.  The 

data analysis occurs simultaneous to the static force analysis using the same time-series 

data.  This analysis does not require any additional modifications of the experiments 

since the inherent Brownian fluctuations of the trapped particle are sufficient to measure 

its drag coefficient. 

5.3.1  Dynamic Force Results 

Figure 5-4 shows a plot of the autocorrelation function of intensity fluctuations at 

two particle positions (the same separation distances shown in Figure 5-2).   
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Figure 5-4.  A plot of the intensity autocorrelation function (�) at two separation 
distances for a 1.5 µm diameter silica sphere.  The separation distances correspond to 
those shown in Figure 5-1. 
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The dashed line is a fitted curve corresponding to equation (3.16).  These plots clearly 

show the two characteristic decay times representative of the filtered noise and particle 

motion.  A fit at each trap position in the scan was used to estimate the relaxation time of 

the particle fluctuations, from which the viscous drag coefficient was calculated. 

Figures 5-5 and 5-6 show plots of the experimental drag coefficient data as a 

function of separation distance.  The solid and dashed lines represent the “exact” drag 

coefficient profiles for the slow motion of a sphere normal to a flat wall [33]. 
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Figure 5-5.  Drag coefficient measurements for a 1.0 µm diameter silica sphere near a 
glass plate in 0.23 mM (�) and 1.0 mM (r) NaCl.  Hydrodynamic theory predictions 
are plotted based on the fitted particle radius far from the surface (0.23 mM – solid line, 
1.0 mM – dashed line). 
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Figure 5-6.  Drag coefficient measurements for a 1.5 µm diameter silica sphere near a 
glass plate in 0.23 mM (�) and 1.0 mM (r) NaCl.  Hydrodynamic theory predictions 
are plotted based on the fitted particle radius far from the surface (0.23 mM – solid line, 
1.0 mM – dashed line). 

 

These curves were fit to the data over the range where surface forces were negligible, 

using an offset distance as the only free fitting parameter.  This fit provided the absolute 

distances for both static and dynamic force measurements.  We observed excellent 

agreement with the theoretical hydrodynamic result when the double layers had minimal 

interaction with each other.  However, as the double layers begin to overlap significantly 

the drag coefficient increases dramatically, even more so than the hydrodynamic theory 

predicts.  This observation suggests that there may be an additional drag contribution due 

to the presence of the double layer ions.  It is possible that electroviscous phenomena 

(due to the coupling of electrostatic and hydrodynamic interactions) can account for the 

higher than expected drag measurements [37, 38]. 
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5.3.2  Discussion of Dynamic Force Results 

If the deviation between the measured drag coefficient and theory is due to 

electrical double layer interactions, then we expect the separation distance where the 

deviation occurs to scale with the Debye length, which is the characteristic thickness of 

the double layer.  This deviation occurred consistently at separations equal to about five 

Debye lengths, as shown in Figure 5-7 where the departure of the measured drag 

coefficient from the theory is plotted versus separation distance normalized by the Debye 

length. 
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Figure 5-7.  Dimensionless departure of the experimental drag coefficient from 
hydrodynamic theory. 

 

The departure value is defined as ( ) ( )[ ]ptheorp zz λλ − , where ( )pzλ  is the measured 

correction factor to Stokes’ law and ( )ptheor zλ  is the theoretical correction factor.  All four 
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curves tend to show little deviation from theory until there is a significant overlap of the 

double layers (occurring at about five Debye lengths), which supports the hypothesis that 

the double layer ions contribute to the enhanced drag force. 

 While there is evidence that double layer interactions may lead to an enhanced 

drag force on the diffusing particle, it is also possible that the measurements are not 

accurate analyzed in this region.  It has been observed that the fitting procedure used to 

deduce the relaxation time of particle fluctuations is progressively less accurate as the 

separation distance decreases.  There appear to be two reasons for this.  First, as the 

particle is trapped at small separations, the particle’s motion becomes constrained such 

that the variance of fluctuations is extremely small (~10 nm2 or less).  If the motion of the 

particle is this small, it is difficult for the detection system to resolve movement this amid 

the system noise (background noise and shot noise).  This is seen in Figure 5-4 for the 

autocorrelation function where 2.56=pz  nm.  Here, the fast decay (150 µs) represents 

the filtering of white noise and the slow decay is due to particle motion.  However, note 

that the noise contributions dominate such that an accurate fit of the data is difficult.  

Second, notice that the autocorrelation function does not decay to zero as expected.  

Rather, there is a non-zero baseline that undoubtedly affects the quality fit, and 

ultimately, the estimate of the drag coefficient.  It is possible that there is a slowly 

relaxing process in the system (with a time scale on the order of seconds) that is leading 

to this effect.  It is therefore difficult to determine whether the drag coefficient data is 

indicative of a physical process experienced by the particle or a measurement artifact. 
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CHAPTER 6 
SIMULATING AND MODELING EXPERIMENTS 

6.1  Brownian Dynamics Simulations of Trapping Experiments 

The drag coefficient is determined by measuring the experimental autocorrelation 

function of particle position shown in equation (3.12).  This equation assumes that the 

potential energy around the equilibrium position is harmonic, and that the drag 

coefficient at the equilibrium location, ( )pzδ , is insensitive to the sampling of other 

nearby locations within the trap.  In order to assess the accuracy of these assumptions, we 

chose to test our model using theoretical time-series data generated by one-dimensional 

Brownian dynamic simulations.  Using an appropriate iterative algorithm [41] to solve 

the Langevin equation for the motion of the particle, several seconds of real-time data 

were generated for a particular location of the trap center.  Simulations were performed 

on Sun Microsystems Ultra 10 workstations running MATLAB.  As with experimental 

data, the autocorrelation function was determined from the time-series data, and a non-

linear regression was performed to estimate the drag coefficient.  The simulation was 

repeated for various locations of the trap center until a sufficient profile could be 

produced.  In all cases, the observed drag coefficient from the exponential fit was 

assumed to be the value at the equilibrium separation distance. 
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6.1.1  Simulation Procedure 

The trajectory of the particle was calculated at each Brownian time step ( t∆ =10-4 

seconds) using an appropriate equation of motion (consistent with the Fokker–Planck 

equation): 
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where z is the position of the particle, D is the diffusion coefficient of the particle (recall 

that δkTD = ), F is the total conservative force on the particle, and ( )tξ  is a random 

displacement that has a Gaussian distribution with a zero mean and whose variance is 

tD∆2 .  This equation of motion is based on a more general expression from Ermak and 

McCammon [41] for the trajectories of many colloidal particles in a viscous fluid.  The 

initial location of the particle is chosen to be as close to the location of the total energy 

minimum as possible.  The diffusion coefficient is calculated using the analytical 

correction to Stokes’ law given in equation (2.27) and the Stokes–Einstein relation given 

in equation (2.23).  The total conservative force is the sum of the trapping force and the 

DLVO forces.  The simulation was run until the simulated time far exceeded the 

characteristic relaxation time, cτ , of the particle movements with in the energy well.  The 

time-series data were then written to a PC file, and the process was repeated for the next 

trap center position.  Upon completion of the simulation, the saved data was then 

decimated (to simulate the process of sampling real-time data with the acquisition 

system) and analyzed by finding the autocorrelation function of particle fluctuations and 

fitting the result with equation (3.12) using nonlinear regression.  With a value for the 
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relaxation time, the drag coefficient is simply 2
zckT στδ = .  This value is then recorded 

as the drag coefficient measured at the most probable position, pz .  The results can then 

be compared with the theoretical prediction from Brenner [33]. 

6.1.2  Simulation Results 

The results of this simulation showed that the drag coefficient is accurately 

predicted using the autocorrelation analysis.  Figure 6-1 shows a comparison between a 

Brownian dynamics simulation results and Brenner’s hydrodynamic predictions. 
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Figure 6-1.  Simulated experimental drag (�) versus Brenner’s correction to Stokes’ law. 

 

Over the entire range of separation distances, we see excellent agreement between 

simulations and Brenner’s result.  The simulations will not reveal anything new about the 

hydrodynamics since the algorithm implements Brenner’s analytical result, however the 

simulation can tell us how accurate equation (3.12) is for extracting dynamic information 

from time-series data.  In the case of ideal data acquisition (i.e., noiseless, unfiltered), the 
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simulation demonstrates that we should be able to construct a very accurate drag profile 

for the trapped particle.  It also turns out that an accurate measurement of the drag is 

nearly insensitive to the sampling rate.  That is, the low sampling rate alone cannot bias 

the measured drag data sufficiently to account for deviations such as those seen in 

Figures 5-5 and 5-6.  We might suspect that the analog low-pass filter is the cause of the 

deviations, but the relaxation time would not be expected to fall below the filter time 

constant of 150 µs.  As such, the current sampling method should provide accurate 

measurement of the drag coefficient over the entire range of separation distances. 

The simulated data can be further processed to approximate the effects seen in 

actual measurements.  For example, passing the data through a digital filter can 

approximate the analog RC filter of the preamplifier.  A simple iteration is used in the 

time-domain to implement a first-order low-pass filter: 

 

 ( ) iii xxx αα −+= − 11  (6.2) 

 

where ix  is the newly filtered data point, 1−ix  is the previously filtered data point, and α 

is the degree of filtering.  The time constant of the filter, fτ , is related to the degree of 

filtering in the following way: 
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where sT  is the sampling period (inverse sampling frequency).  As an initial condition, 

0x  is usually defined to be equal to 0x .  The analog and digital filter outputs do vary 

slightly in the amount phase lag experience.  The measurements are not particularly 

sensitive to the phase shift induced by filtering, so this is of little importance.  However, 

experiments that externally oscillate the particle could suffer greatly from this phase shift, 

so either type of filter could affect future experimental results. 

Also of interest is the effect of white noise on the data analysis.  By converting 

the simulated position data to intensity values using equation (2.30), random white noise 

can be added to the intensity data.  The magnitude of the noise corruption is related to the 

variance of the noise distribution, and this parameter can be altered to investigate its 

effect upon drag measurements. Such simulations may offer further insight into the 

nature of the enhanced drag measurements reported in Chapter 5.  It is possible that the 

noise in the system far exceeds the measurable variance due only to particle motion, thus 

leading to a poor estimate of the drag coefficient for these regions of double layer 

overlap. 

6.2  Modeling Statistical Data Generated from Force Measurements 

A convenient way to quickly assess an experiment is to examine the statistics of 

the intensity measurements.  The mean and variance profiles of the intensity as a function 

of trap position have distinctive shapes that are system specific (e.g., evanescent wave 

penetration depth, Debye length, background scattering, etc.).  For example, the shape of 

these profiles will change if we alter the ionic strength of the solution.  We can accurately 

model these profiles using experimental parameters and estimates of the interaction 

energy from DLVO theory.  This is useful during an experimental run where the mean 
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and variance profiles are used as a diagnostic tool to assess its accuracy.  If there is a 

problem with the run at some point (e.g., a second particle becomes trapped), these 

profiles will show uncharacteristic behavior that can readily be identified. 

Prior to modeling these profiles, it was not always known whether a particular 

data set contained accurate data until after a full analysis was made to produce force data.  

Because of the time associated with analyzing the data, it is desirable to only analyze data 

sets that are likely to produce accurate force measurements.  To this end, we have 

developed a strategy for estimating the mean and variance of scattered intensity as a 

function of trap position.  The procedure is relatively simple and attractive in that it does 

not require a full Brownian dynamics simulation to produce these statistics.  However, it 

tells us nothing about the hydrodynamics of the particle. 

6.2.1  Modeling Procedure 

The general procedure for modeling these profiles is given below: 

 

1. Starting at a relatively large separation distance (~1000 nm), calculate the 

theoretical total potential energy of the particle (sum of harmonic trap 

potential energy and DLVO energy).  Find the minimum potential energy and 

subtract this value off.  This yields energies relative to the minimum and is 

important to ensure numerical stability for the calculation in Step 2. 

2. Using Boltzmann’s law, calculate the equilibrium probability distribution for 

the trapped particle.  This distribution is in terms of separation distance. 

3. Create an equivalent probability distribution for intensities by using equation 

(2.30). 
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4. Calculate the mean and variance of the resulting intensity distribution: 

 ( ) ( )∑∑ ∆∆= IIpIIIpI  

 ( ) ( ) 222 IIIpIIIpI −∆∆= ∑∑σ  

5. Record the values for this position and move the location of the trap center a 

small distance (10 to 100 nm) closer to the surface.  Return to Step 1. 

6. After many iterations of Steps 1 to 5, plot both statistical quantities versus the 

trap position.  These results should resemble accurate experimentally derived 

statistics of the scattered intensity. 

6.2.2  Modeling Results 

This procedure was used to create a MATLAB program for calculating intensity 

statistics.  The predicted profiles can very closely resemble actual experimental results.  

Figure 6-2 shows the mean intensity profile for a 1.5 mm silica particle in a 0.1 mM NaCl 

solution compared directly with a model prediction for the same system. 
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Figure 6-2.  Model prediction (£) and experimental data (�) of the mean intensity 
profile. 

 

The profiles are intentionally offset by 1000 nm for clarity.  In this case, the profiles are 

surprisingly similar in shape which indicates that the measurements were mostly likely 

successful.  There are some slight irregularities in the experimental data around the 

inflection point (intensities between 0.15 and 0.5 V), but this is to be expected due to 

slight interference effects that are unavoidable.  Agreement is also seen with the variance 

profile shown in Figure 6-3 for the same system. 
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Figure 6-3.  Model prediction (£) and experimental data (�) of the intensity variance 
profile. 

 

In this comparison, the model appears to underpredict the variance slightly.  This is 

expected, however, because of noise contributions that increase the variance.  It also 

appears that the shape of the profiles not precisely the same.  In particular, the width of 

the peak predicted by the model appears to be slightly larger than the experimental data.  

It is likely that standing wave effects, although slight, may contribute to some deviations.  

This would be more evident in the variance profile as opposed to the mean profile; this 

appears to be the case here. 

While it gives quantitative results, the model is probably most useful for 

demonstrating the qualitative trends one should expect during a particular experiment.  

This allows the user to quickly identify whether the measurements are producing accurate 

Trap Position (nm) 

M
ea

n 
In

te
ns

ity
 (V

ol
ts

2 ) 



103 

 

results or if there is a problem.  Often, these problems can be diagnosed and fixed due to 

an understanding of the expected trends.  Because the model incorporates DLVO theory, 

it can also identify which runs are best suited for further analysis. 

 



 

104 

CHAPTER 7 
CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

7.1  Static Force Measurements 

We have shown that our technique can accurately measure static forces that arise 

between a micron-sized spherical particle and a flat surface.  Excellent agreement was 

observed between measurements and DLVO theory using micron-sized silica particles in 

solutions of varying ionic strength.  Initial force measurements did show anomalous 

results that suggested the possibility of strong attractive forces near the surface, but this 

was later shown to be due to standing wave effects.  Experiments using reflective slides 

showed that the retro-reflection of the trapping beam could cause significant interference 

of the electromagnetic fields which can lead to inaccurate results, even for a glass–water 

interface.  We were able to improve the measurement accuracy significantly by 

positioning the beam slightly off-axis with respect to the rear aperture of the objective.  

This reduced the amount of reflected light that contributed to the interference effects.  

Though the accuracy of the measurements was greatly improved, the standing wave 

effect could not be completely eliminated using this method.  Depending on the type of 

particle used (e.g., size, refractive index), the standing wave effect may be more or less 

pronounced.  In some cases, it may be impossible to eliminate the effect sufficiently to 

give accurate results.  This is because the trapping force developed on the particle is a 

strong function of the exact electromagnetic field distribution and the dielectric properties 

of the particle. 
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7.2  Dynamic Force Measurements 

The technique is able to measure the drag force on the particle as a function of its 

position for the flat surface.  We accomplish this by calculating the intensity 

autocorrelation function and fitting this to a model predicted from the Fokker–Planck 

equation.  A nonlinear regression fit of the data yields the relaxation time of particle 

fluctuations within the trap and ultimately leads to a calculation of the drag coefficient at 

the most probable position.  The drag data were compared to Brenner’s analytical 

correction for the slow motion of a sphere normal to a solid wall.  We observed good 

agreement for separations where there was little overlap of the double layers.  However, 

closer to the surface, the data showed enhanced drag that was underpredicted by 

hydrodynamic theory.  Because the deviation was found to occur consistently at about 

five Debye lengths, it is possible that the electrostatic and hydrodynamic interactions are 

coupled to increase the drag force on the particle.  However, we also observed that the 

regression fit in this region becomes somewhat poor because of a low signal-to-noise 

ratio, and because the autocorrelation function does not decay to zero as expected.  

Unless the noise level is reduced in this measurement region, it may be difficult to 

accurately estimate the drag coefficient. 

7.3  Suggestions for Future Work 

The new technique can now be used to measure more complicated systems 

including sub-microscopic particles, solutions of varying rheological properties, and 

spherically shaped microorganisms.  There are also several key adaptations of the current 

technique that were in the process of implementation.  The most notable 

recommendations are presented below. 
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7.3.1  Assembly of an Improved Optical Trap 

A new optical trap has been designed for use with the current system and will 

ultimately replace the commercial LaserTweezers 100 unit.  A schematic of the optical 

trapping system is shown in Figure 7-1. 

 

beam expander
beam steering lenses

microscope
objective

dichroic mirror

PMT

CCD beam splitter

Nd:YVO4

piezoelectric
actuator

x-y-z positioner

 

Figure 7-1.  Schematic for a custom optical trapping system. 

 

The new trapping system uses a 1.5 W Nd:YVO4 solid state laser (λ=1064 nm) with an 

adjustable power control, high precision optical components to minimize spherical 

aberration effects, a three-axis mounted aplanatic lens for steering the beam laterally and 

adjusting the parfocality of the laser spot, and a single-axis piezoelectric positioner for 

repeatable nanometer-scale movements of the trapped particle.  The piezoelectric 

positioner is computer controlled and can be programmed to apply a variety of forcing 
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functions to dynamically move the trapped particle within the fluid.  This is a significant 

improvement over the current focus control which uses a stepper motor.  The stepper 

motor suffers from backlash effects when the direction of the motor is suddenly reversed 

which leads to significant hysteresis when positioning the trapped particle. 

7.3.2  Reduce Noise in Measurements 

The current system removes noise from the measurements by passing the signal 

through an analog RC circuit that acts as a low-pass filter.  This eliminates most of the 

uncorrelated white noise from the signal before it is passed to the data acquisition system.  

However it is more desirable to reduce the noise contributions due to the electronic 

circuitry by cooling the photodetector.  A new cooled PMT has been implemented for 

this purpose, but the results show that cooling alone has little effect on the overall noise 

in the system.  The cooled photodetection system also has an analog filter, but with a very 

small time constant (7 µs) which passes nearly any frequency without removing much of 

the noise.  Assuming that cooling the detector significantly reduces most of the electronic 

noise contributions, the other possible sources of noise are due to shot noise (from the 

discrete nature of photons striking the detector), and background sources.  The 

background variance is almost always very small, so shot noise is the most important 

contribution to consider. 

Added variance due to shot noise increases linearly with the mean of the scattered 

intensity.  This proportionality constant is estimated by measuring the signal of a fully 

attached (non-fluctuating) particle.  This allows the analysis program to correct the 

measured variance for shot noise effects by simply subtracting it away from the measured 

profile.  In terms of the calibration procedure, this is an effective way of correcting the 
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estimate of the trap stiffness.  However, when calculating the intensity autocorrelation 

function for dynamic measurements, the shot noise contributions cannot be subtracted in 

this manner.  The ratio of the shot noise variance to the mean intensity is constant with 

mean intensity (as described above), but the ratio of the variance due solely to particle 

movements to the mean intensity decreases as the intensity increases.  This means that 

shot noise contributions may begin to dominate as the particle is trapped very close to the 

surface (since the energy well in this region is very steep and the particle fluctuations 

correspondingly small).  Here, the measured intensity time-series has a mean value that is 

associated with the particle’s average position from the flat plate, but the variance of this 

signal is almost entirely due to shot noise.  To get an accurate estimate of the relaxation 

time of the particle in the trap, we must be able to measure an appreciable variance due to 

the particle’s motion.  Unfortunately, if the shot noise dominates, it is difficult to fit the 

resulting autocorrelation function effectively.  The drag measurements will continue to be 

inaccurate in this region unless a reasonable solution can be found. 

7.3.3  Investigate Possible Electroviscous Effects 

Assuming that a suitable strategy is found to remove most contributions of noise, 

the drag coefficient should be measured accurately for small separations where there is an 

appreciable double layer overlap.  It is possible that an enhanced drag will be measured 

under these conditions due to a coupling of the electrostatic and hydrodynamic 

interactions.  This is predicted theoretically, but it is not yet known if the effect will be 

significant for the particles used in these studies or if the measurement technique will be 

able to measure this for reasonable time scales. 
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7.3.4  Measure Specific Interactions of Bacteria with Coated Surfaces 

Until now, we have only considered non-specific forces that vary as a function of 

separation distance.  However, specific binding interactions (e.g., receptor–ligand) are 

important for bacterial adhesion and may be measurable using this technique.  The 

protocol for these measurements is yet to be devised, but it will have to consider an 

interaction energy surface that accounts for both non-specific forces (along the separation 

distance axis) and specific binding forces (along an axis indicative of the number of 

bonds).  The attachment of a bacterium will follow a trajectory along this energy surface 

until the cell is attached.  The difficulty with these measurements is that the particle can 

fall into a primary minimum where the force is attractive and likely far in excess of the 

trapping strength.  On approach to the surface, the bacterium will find a critical distance 

and jump into the primary minimum almost spontaneously.  Thus, the force or energy 

profile will have to be mapped using a stochastic analysis that somehow measures the 

probability of attachment for a given set of conditions. 

7.3.5  Force Measurements with Sub-Microscopic Particles 

The technique is theoretically capable of measuring interactions for any sized 

particle as long as there is an appreciable scattered intensity emitted from the particle.  As 

the particle diameter is reduced, the measured signal becomes weak, which may set a 

lower limit on the size that we can effectively use.  Preliminary experiments using 

particles with diameters from 0.2 to 0.5 µm have shown promise using this technique.  

While the success of these experiments will greatly depend on the ability to reduce the 

noise, it appears that these measurements are entirely possible.  Of particular interest in 

this size range are the interactions of viruses with flat surfaces.  These would be the first 

such measurements of their kind and may provide insight on the attachment mechanisms 
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of viruses to surfaces.  Also, as the particle radius decreases, Derjaguin’s approximation 

(the scheme for calculating interaction force or energy for curved surfaces) becomes 

poor, and predictions using DLVO theory will no longer be accurate.  Thus, direct 

measurements using sub-microscopic particles will be of great benefit. 

7.3.6  Measure Complex Properties of the Interface 

 Systems that have complex rheological characteristics near the solid–liquid 

interface are of interest as well.  For example, the presence of polymeric molecules near 

the interface may give rise to viscoelastic behavior that can be monitored using this 

technique.  By applying a forced oscillatory motion to the particle via a moving trap 

center, the rheological properties of the complex fluid can be probed directly.  This 

involves a revised analysis that accounts for the motion of the trap center and the 

viscoelastic behavior of the fluid. 

To consider dynamic trap movement and complex rheology, we introduce a 

generalized Langevin equation: 

 

 ( )( ) ( ) ( )ttHtzz
dt

zd
m z ξγ ++−−= 02

2

 (7.1) 

 

where ( )tz0  is the time-dependent position of the trap center, and ( )tH  is a combined 

force contribution from the complex fluid and the presence of surface forces, containing 

both static and dynamic elements.  By transforming equation (7.1) into the frequency 

domain, we can find an expression for the power spectral density.  Analysis of the 

experimental power spectrum yields information about the nature of the fluid, and can be 
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decomposed into viscous and elastic contributions which may be a function of frequency 

as well. 

 The use of an oscillating trap may also be of interest for measurements where the 

inherent particle variance is extremely small.  In these regions, the noise of the system 

can dominate the measured fluctuations due to the particle’s movement and the measured 

drag coefficient can be in serious error.  By inducing the particle to move with sufficient 

amplitude, the drag measurements can be improved significantly.  This is one possible 

way of improving the drag measurements if other means of reducing the system noise 

fail. 
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APPENDIX 
LABVIEW CODE FOR DATA ACQUISITION 

A program was written in LabVIEW to automate the movement of the optical trap 

focus and to collect the data.  The wire diagram for this program is shown in Figure A-1. 

 

 

Figure A-1.  LabVIEW wire diagram for the data acquisition program. 

 

The graphical programming language implements a wiring scheme to link subunits of the 

program together.  The graphical user interface of the program is shown in Figure A-2. 
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Figure A-2.  LabVIEW panel display for the data acquisition program. 

 

Once the program is started, the data acquisition procedure is fully automated until the 

user instructs the program to stop.  This is done either manually (by clicking the red 

“STOP” button) or automatically by specifying the total number of steps.  The data is 

displayed in real-time as graphs and arrays of collected data.  The program displays the 

mean and variance of intensity measurements as a function of trap position in the topmost 

windows.  The autocorrelation function is shown in the lower left window.  This is 

calculated by sending the data to MATLAB and returning the results to LabVIEW.  A 
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histogram of the data is shown in the lower middle window.  These allow the user to 

quickly evaluate the quality of the data as the experiment is progressing.  There is also a 

control option for using either a stepper motor or a piezoelectric device for moving the 

location of the trap focus.  Future versions of the program will likely produce force 

information in real-time as the data is analyzed continuously after each trap step.  This 

would eliminate the need to save the raw data file which can exceed 100 MB in size 

depending on the number of samples and steps.
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