
MODELS OF COMPUTATION FOR PERFORMANCE ESTIMATION
IN A PARALLEL IMAGE PROCESSING SYSTEM

By

YUE YIN

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2000

Copyright 2000

by

Yue Yin

To My Parents

iv

ACKNOWLEDGMENTS

I would like to thank Dr. Ritter for providing the opportunity to work for him on

the AIM project, and for all the help, advice, and supervision he offered.

Special gratitude goes to Dr. Schmalz for his great guidance and continuous

encouragement that are essential to this research. His tireless patience, intelligence, and

diligence have been invaluable.

Further thanks go to Dr. Wilson for his patient advisement and support throughout

this research, and Dr. Dankel for his graciously agreeing to serve on my committee and

careful review of my thesis.

And many thanks go to my parents and my sister for their loving support and

encouragement. Also, I would like to thank all my friends for their kind assistance and

constant support.

v

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS ... iv

LIST OF FIGURES .. vii

ABSTRACT..ix

CHAPTERS

1 INTRODUCTION ..1

1.1 Background and Justification.. 1
1.2 Key Assumptions .. 2
1.3 Methodological Overview... 4

2 RELATED RESEARCH...8

2.1 Performance Modelling... 8
2.2 Bus and Memory Modelling ... 11
2.3 Network Performance Modelling.. 11
2.4 CPU and Multiprocessor Performance Modelling.. 14

3 MODELS OF COMPUTATION ..17

3.1 Overview of Model Strategy... 17
3.1.1 Comparison of Two Modelling Approaches.. 17
3.1.2 Hierarchical Modelling .. 18
3.1.3 Model Validation ... 20

3.2 Bus Model... 21
3.2.1 Linear Bus .. 23
3.2.2 Packet Bus.. 24
3.2.3 Nonlinear Bus .. 27

3.3 Memory / Buffer Model .. 28
3.3.1 Buffer Model.. 28
3.3.2 Basic Memory Model... 29
3.3.3 Memory Model with Associative Cache.. 31

3.4 CPU Model ... 34
3.4.1 Switch .. 34
3.4.2 ALU ... 35
3.4.3 CPU Model .. 38

vi

4 IMPLEMENTATION AND SIMULATION RESULTS ...39

4.1 The Translator ... 39
4.1.1 Translating ASCs into ASMs... 39
4.1.2 Translating ASMs into BVCs .. 44

4.2 The Simulator.. 46
4.2.1 Bus Model Implementation.. 46
4.2.2 Memory / Buffer Model Implementation... 48
4.2.3 CPU Model Implementation.. 49
4.2.4 Composition of Models.. 50

4.3 Example Simulation Outputs .. 51

5 SIMULATION RESULTS AND ANALYSIS ...54

5.1 I/O Costs ... 54
5.2 Computational Cost vs. I/O Cost .. 59
5.3 Effects of Mesh Size ... 62

6 CONCLUSIONS AND FUTURE WORK ...67

6.1 Summary... 67
6.2 Future Work.. 68

APPENDICES

A ASC GRAMMAR...70

B EBLAST..71

LIST OF REFERENCES ...75

BIOGRAPHICAL SKETCH ...78

vii

LIST OF FIGURES

Figure Page

1. Hardware architecture ..3

2. Instruction hierarchy ...5

3. Hierarchical structure of AIM MOCs ...19

4. Bus system..21

5. Crossbar switch..34

6. Data and instructions flows in a von Neumann architecture..37

7. Data and instructions flows in SIMD..38

8. Flow chart of translating ASCs to ASMs..40

9. Flow chart of translating ASMs to BVCs ...45

10. Time graph at Host level ..52

11. Time graph at IPV Card level ...53

12. Instruction vs. data I/O at Host level ..55

13. Instruction vs. data I/O within IOC card...56

14. Instruction vs. data I/O from IOC to IPV...57

15. I/O across all levels ...58

16. Computational cost vs. I/O cost at Host Level..60

17. Computational cost vs. I/O cost at IOC Level...60

18. Computational cost vs. I/O cost at IPV Level ...61

19. Ratios of I/O cost vs. computational cost ...62

viii

20. ALU computational times for different mesh sizes and different image sizes63

21. ASM translation times for different mesh sizes and different image sizes64

22. Data I/O vs. instruction I/O for different image sizes ...65

23. Data I/O vs. instruction I/O for different mesh sizes...66

ix

Abstract of Thesis Presented to the Graduate School

of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

MODELS OF COMPUTATION FOR PERFORMANCE ESTIMATION
IN A PARALLEL IMAGE PROCESSING SYSTEM

By

Yue Yin

August 2000

Chairman: Dr. Gerhard X. Ritter
Major Department: Computer and Information Science and Engineering

Image and signal processing applications usually require high computational

power. One common approach is to partition image data across several processors, and

then to process each partition in parallel. Estimating the performance and power

consumption of processors is necessary to obtain high performance.

In this thesis, we describe an infrastructure and methodology for estimating

system performance by hierarchical modelling. We develop several models of

computation for underlying hardware modules such as bus, memory and CPU, based on a

thorough study of the characteristics of various hardware objects. The system model is

an ensemble of these modules.

The hardware architecture is divided into three levels: the host, the unit, and the

processing elements (PEs). These three hardware levels accept three sets of instructions:

AIM Server Call (ASC), assembly-language-like instruction (ASM), and Bit Vector Call

x

(BVC), respectively. The implementation is realized by accomplishing ASC → ASM →

BVC translation hierarchy and then performing a simulation on the system constructed

from those modules based on the models of computation.

After running simulations with the EBLAST (Enhanced Blurring, Local

Averaging, and Thresholding) compression algorithm, the simulation results are

represented in the accumulated computed time vs. elapsed time graphs. The results show

the differences between I/O at each level, data vs. instruction I/O at each level and across

all levels, as well as computational cost vs. I/O cost at all levels.

1

CHAPTER 1
INTRODUCTION

1.1 Background and Justification

Image and signal processing (ISP) tasks are usually computationally intensive,

because of (a) the large amount of data that must be processed and (b) the complexity of

modern image processing algorithms. The space and computational requirements of

image processing algorithms can be observed from the following example. For a 1,024 ×

1,024 image, up to 3Mbytes of data must be processed for an RGB-encoded color image.

For an N × N-pixel image, the computational complexity is at least of the order O(N2) for

simple operations such as pointwise arithmetic or local operations. The computational

complexity is much higher for more complex tasks. For example, edge detection, with an

M × M-pixel mask, an important operation, has a complexity of O(N2M2). The execution

time of these tasks on a general purpose computing platform is very high compared to the

desired real-time response. Thus, the usual performance limits of general purpose

computers can be easily reached in image processing applications. Currently, parallel

and distributed processing (PDP) provides a practical solution to these limits [BOU99].

There is a wide range of PDP architectures, which can be classified by the

topology of the interconnection network, type of processing elements (PE), and the

computational model employed. The topology of the network includes the logic layout of

the PE nodes and the communication paths connecting PEs. Reconfiguration is an

additional issue to be considered, which facilitates dynamically changing hardware

2

organization, designed to be flexible enough to accommodate different computational

tasks without hardware redesign.

The Adaptive Image Manager (AIM) project [SCH98] developed at University of

Florida’s Center for Computer Vision and Visualization (UF/CCVV) is designed to

distribute the computational process across multiple machines to take advantage of

parallelization. AIM maps image and signal processing (ISP) algorithms across a

heterogeneous network of processors. All or a portion of such hardware could be PDP

hardware, for example, reconfigurable Single Instruction stream Multiple Data Stream

(SIMD) processor and Symmetric Multi-Processor (SMP), as well as machines based on

Field-Programmable Gate Arrays (FPGAs).

The performance of such architectures is a major concern during the design and

development stages as well as after the completion of the system. Simulation, the most

common approach to estimate the system performance, is the process of developing a

model that captures the system characteristics, coding and running a program that

behaves like the model, and observing the program’s estimates of actual system

performance. Simulation is a good choice for performance evaluation due to flexibility

and possible application to a wide variety of situations, including existing and under-

development systems. Also, via software simulation techniques to estimate hardware

performance instead of building and testing hardware, significant cost savings are

realized.

1.2 Key Assumptions

ISP Algorithms in AIM are specified using Image Algebra [RIT96]. Image

Algebra provides a mathematical basis for specifying image processing algorithms in a

3

rigorous, concise notation that unifies linear and nonlinear mathematics in the image

domain. Several lines of image algebra operations can replace many more lines of

underlying source code (written in a programming language such as C++), so that

describing algorithms in image algebra is easier than writing an equivalent C++ program.

Algorithms in image algebra are also more readable and easier to maintain.

In AIM, based on the architectures of PDP hardware objects such as SMP, SIMD

and FPGA, a generalized architecture model has been constructed for the purpose of

estimating timing of various ISP operations. The model is divided into three levels, PDP

hardware Host, PDP hardware Unit, and PEs, as shown in Figure 1. These three different

hardware levels accept different sets of operations, AIM Server Call (ASC), assembly-

language-like instruction (ASM), and Bit Vector Call (BVC). ASC is the high level

instruction accepted by the host. ASMs are the assembler-like representation of hardware

instructions. BVCs are the low-level bit vectors that actually control the PEs.

Figure 1: Hardware architecture

System

Unit

Host Bus

ASC

BVC

ASM Host

PE

4

Symmetrically, image processing tasks are usually divided into a three-level

hierarchy comprised of high, intermediate, and low-level instructions, based on the

computational characteristics. High-level instructions consist of image or template

operations. Operations over an image partition are intermediate-level. Low-level

instructions are typically pixel-based. Therefore, this ASC-ASM-BVC instruction

hierarchy can be thought of as reflecting the logic structure of the application.

The AIM models of computation are built on the proceeding hardware

architecture and instruction hierarchy, and address the common-case effects and

attributes. For example, a communication channel model considers the channel

bandwidth, overhead, error rate, and switch type. In a memory module, the I/O protocol,

capacity, and bandwidth are taken into account. The computational bandwidth, degree

and type of parallelism, and I/O are studied for the processor.

Because the model of computation generalizes a SIMD or FPGA model, and

because it both captures the main factors determining the system performance and

considers the detailed design, the simulation based on the model of computation is

designed to be realistic. The results of the simulation are expected to be within ±10

percent of physical reality.

1.3 Methodological Overview

In the AIM project, we have developed models of computation for SIMD and

FPGA processors. It would be useful to extend the underlying hardware to simulate a

wider range of systems, by connecting hardware objects in a network-like structure to

simulate the structure of user-specifiable hardware systems. This thesis focuses on

estimating the performance and power consumption of a system constructed from

5

heterogeneous components. We first develop software models for the performance of

different hardware objects, such as bus, memory, and CPU, then compose these models

and perform simulation on them to get performance estimation.

Timing is crucial in modelling a computer system. Also, performance is closely

related to cost, that is, a computer system should have adequate performance at

reasonable cost. High performance usually requires high cost, and low cost often

sacrifices system performance [HAR90]. Additionally, power modelling is another

important aspect of performance modelling.

In AIM, mapping of the algorithms to the hardware proceeds as follows. First,

the system host accepts the ISP algorithms, i.e., a sequence of ASCs, and then transforms

each ASC into a collection of ASMs, incurring a time delay. After being transmitted

through the host bus and entering the unit, each ASM is transformed into a stream of bit

vectors (BVCs) in the unit, also incurring a time delay. BVCs are transmitted to the next

lower hardware level, the processing elements (PEs). Finally, an ALU or FPGA logic

block executes the BVCs. This decomposition procedure is shown in Figures 1 and 2.

Figure 2: Instruction hierarchy

ASC
A1
A2

… …
Ai

… …
Am

m ASCs

BVC
Ai,j,1
Ai,j,2

… …
Ai,j,k

… …
Ai,j,q

q BVCs

ASM
Ai,1
Ai,2

… …
Ai,j

… …
Ai,n

n ASMs

6

The models of computation are driven by the proceeding three-level instruction

hierarchy (ASC-ASM-BVC). The decomposition of ASC to ASM to BVC involves

detailed attributes and variables of the system such as the precision of instructions and

data, instruction translation time, computation time, data transfer delay, parallel

communication mechanism, channel and processor bandwidth, component failure rate,

etc. As mentioned previously, the simulation procedure goes through the three hardware

levels, Host, Unit and PEs, which is based on the decomposition procedure. Therefore,

the models of computation are built on the three-level instruction hierarchy.

Another consideration for the models of computation is the interface requirement

with the AIM debugger and display, such that simulation results must be displayed and

analyzed. Because the models of computation are supported by the hardware architecture

and reflect the logical structure of applications, the interface must be carefully designed

to be congruent with all aspects of the model.

To perform simulations on computer systems is the goal of models. We study a

wide range of hardware components, including various kinds of buses, memories,

switches, and CPUs. Special attention is paid to the main computational hardware, such

as FPGA and SIMD. The characteristics and performance attributes for each hardware

object are obtained so that an accurate simulation can be performed. So, the models of

computation are also designed to simulate salient functionality of hardware at Control

Logic Block (CLB) of FPGA and ALU of SIMD levels.

This thesis is organized as follows. In Chapter 2, recent research on performance

modelling of hardware objects is overviewed. Chapter 3 presents the models developed

in this project. Chapter 4 describes how these models are implemented. Chapter 5

7

presents example simulation results and analysis. Finally, Chapter 6 contains

conclusions, open issues, and possible future work.

8

CHAPTER 2
RELATED RESEARCH

Performance is the most important concern with a computer system. During

system design and development, direct measurement of performance is not feasible,

hence performance modelling is necessary. Modelling requires (1) capturing the main

factors determining system performance, (2) representing them in a model, (3)

determining performance measures in the model, and (4) using these measures from the

model as performance estimates of the actual system.

There are basically two performance analysis techniques: analytical modeling and

simulation. Analytical modeling formulates an analytical expression that solves a given

model, then the performance data can be evaluated from this expression, whereas

simulation involves the formulation of a computer program and its execution. Given the

requirements imposed by the fast evolution of computer architectures, performance

modelling and simulation is a major research area that has been in constant development

over the past four decades. Salient research is reviewed, as follows.

2.1 Performance Modelling

Clement and Quinn [CLE97] developed a dynamic performance prediction

methodology to analyze parallel systems. The model first inserts instrumentation code to

gather execution statistics and to arrive at a symbolic equation for the execution time of

each basic block. After analyzing the major architectural features, such as on-chip cache

and page fault behavior, message startup time, and bandwidth characteristics, the

9

expressions for operation counts are computed as a function of the problem size and the

number of processors. The total execution time can be predicted from the counts and cost

of each operation. Statistical techniques are used to estimate the cost for each operation

for a dynamic performance prediction model. The compiler-generated analytical model

accounts for the effects of cache behavior, CPU execution time, and message passing

overhead for realistic programs written in high level data-parallel languages.

Experimental results show this dynamic performance prediction technique is effective in

analyzing general and scalable applications of Massively Parallel Processing (MPP)

systems.

Noh, Dussa-Zieger, and Agrawala [NOH99] suggested a heterogeneous mixed-

mode (HeMM) model for the possibility of providing different processing power within a

single tightly coupled computing system. The model consists of a data parallel

component that is composed of a massive number of slow processors and a control

parallel component that is composed of a small number of fast processors. Performance

analysis includes computation time and communication time for both single and multiple

level transfer, as follows:

1. The execution time of a parallel application on a HeMM system is bounded by

Tcps = (βifiT) / [δ(nf)nf],

where β is the ratio of time to execute a unit of computation on one processor

of control parallel component to the execution time on one processor of data

parallel component, T is the execution time of a parallel algorithm on the data

parallel component, i is the number of processors executing in parallel, fi is

the fraction of T such that i processors are executing in parallel, nf is the

10

number of processors on the control parallel component, and δ is the

efficiency factor function;

2. The communication time is given by

Tdps = Tsd + Trd,

where Tsd and Trd are the times required to respectively send and receive a unit

of data on a processor of the data parallel component.

Zaleski [ZAL96] presents a methodology by which the number of executed lines

of C code associated with a given application are transformed into an estimate of

processing time on the IBM RS/6000 990 processing platform. The total number of

machine instructions processed per line of executed C code, NI/C, is computed by

analyzing the specific code and determining the number of executed lines NC, then

dividing NC into the total number of processed instructions NI. The actual performance

can vary depending on the specific C functions, the level of optimization, the number of

users on a platform at a given time, and the number of background processes. A

mathematical expression is derived which relates the MIPS (Millions of Instructions Per

Second) and MFLOPS (Millions of Floating-point Operations Per Second) rating of a

given processor to the CPU processing time tCPU associated with a C program up to a

million lines of code:

tCPU = (NI/C)(NELOC)[F/MFLOP + (1 - F) / MIP],

where NELOC is the number of executed lines of C code, F is the fraction of the code

which is determined to be floating point, MFLOP is MFLOP rating of the target

processor, and MIP denotes the MIP rating of the target processor.

11

Previous research has also investigated models that focus on selected hardware

objects of an overall system, as shown in the following sections.

2.2 Bus and Memory Modelling

A network model can be constructed by aggregating several instances of a model

of a single switch or stage of switches. For example, Harper and Jump [HAR90] first

specify and solve a queuing network approximation of a 2 × 2 crossbar switch. Next, a

resource model is developed and combined with a single switch to form the network

model. To evaluate performance of the network, contention between multiple switch

outputs for a common resource bus is modeled. Access to the bus is granted to each

packet requesting the bus with equal probability without consideration of aging or

priority schemes. Blocking for the output link consists of two parts: contention within

the switch, and contention among the switch outputs for access to each resource bus.

Experimental results suggest that a slower network could be used to reduce system cost

without sacrificing system performance. Therefore, hybrid networks provide a simple

method of incrementally trading network bandwidth for network cost.

2.3 Network Performance Modelling

Interconnection network types such as Mesh, Torus, and Hypercube are

generalized as a k-ary n-cube in Xiao’s research [XIA97]. Each node consists of a

process, a switch, a router, and some channels associated with input queues and output

buffers, for example, the MPP system supports message passing, store and forward, and

wormhole flow control mechanisms. The Analysis model takes account of the network

properties (such as topology and channel width), the effects of message size and message

blocking. During simulation, the queue corresponding to each network output port is

12

treated as a queuing server. Simulation models are implemented in SLAM and C. The

results show that when the bisection width is constant, which is the minimum number of

wires that must be cut to separate the network into two equal halves, the network latency

of three or four dimensional networks is shorter than that of other dimensional networks.

When the messages that have not been accepted by their destinations increase, the

network efficiency is sensitive to a threshold such as the number of outstanding requests.

The performance of a parallel application running on a network of workstations

depends on the number and type of the workstations, local workload at each workstation,

network connectivity, and scheduling algorithm used to allocate parallel tasks to the

workstations.

In Menasce and Rao [MEN96], a hybrid analytic and simulation model is used to

predict the performance of parallel applications specified by a task graph on a network of

workstations. The model computes the total execution time of the parallel application

given a task graph, a network of workstations, a scheduling policy, and owner job

information. The model first accounts for owner job interference, then accounts for

interference from other parallel tasks, and finally computes parallel task execution. The

results show that the computing demand of the interactive workload has a non-linear

effect on the execution time of the parallel application, that the slower workstations show

an increasing degradation as the number of concurrent owner submitted commands

increases. Additionally, simulation indicates that the execution time of the parallel

application decreases dramatically as the sleep time of owner workload increases.

Karatza [KAR94] proposed a cyclic queuing network model of a multiprocessor

system consisting of an I/O channel and two single-server homogeneous processors

13

linked in tandem (i.e., in series). Each processor is equipped with its own queue. Both

the nonblocking case and the blocking case are compared, depending on the capacity of

the second processor queue. The effects of blocking on the overall system and program

performance in relation to nonblocking for various degrees of multiprogramming and

coefficients of variation of the CPU service times are studied. The performance of the

model is measured using CPU response time of a random job, mean cycle time, system

throughput rate, and the utilization factors of the CPU processors. The results show that

the blocking mechanism slightly degrades system performance in relation to

nonblocking, and this deterioration depends on both the degree of multiprogramming and

the coefficient of variation of the CPU service times.

A closed queuing network model [KAR97] can represent a distributed computing

system that is comprised of several loosely-coupled workstations communicating over a

network. The model consists of the CPU and the I/O unit. The CPU consists of four

identical and independent processors each serving its own queue. A single I/O channel

which has the same service capacity with the CPU is used. Each task is assigned to a

processor queue according to the task routing policy. Of four task routing strategies, two

are static: Probabilistic (P) and Round Robin (RR), and two are adaptive: Shortest Queue

(SQ) and Shortest Response Time Queue (SRT). Performance of these strategies is

estimated with discrete event simulation models using the method of independent

replications. Every simulation model was repeated 30 times for 10,000 CPU service time

requests in each time, with the same starting conditions but with different streams of

random numbers. The results show that the two adaptive strategies are superior to the

two static techniques, but their performance advantages are not completely exploited due

14

to subsequent resequencing delay of jobs. This delay is much higher with these policies

than with the static ones.

2.4 CPU and Multiprocessor Performance Modelling

Obaidat and Abu-Saymeh [OBA93] presented a simulation model for the RISC-

based multiprocessor system. The RISC processing elements are simulated using a

detailed model that could be used to generate a memory reference trace by running

benchmark programs on the processor models. All units and stages of pipelines are

modeled as resources, with a first come first serve (FCFS) queue. Data buses, address

buses and internal buses are also modeled as resources. To model data dependencies, all

operands are modeled as resources. For multiprocessor systems, an interconnection

network (IN) is simulated as a decision routine. Each processor is simulated using the

previous model with a local instruction memory and a shared data memory.

Multiprocessor system performance is studied using two types of INs: delta and crossbar

switch. Theoretical benchmark programs are created with various alpha ratios. The main

performance measures used are the speedup, mean waiting time, probability of blocked

requests and relative speedup. The results show that the relationship between the

speedup and the number of processors is linear for a given alpha ratio.

Wang, Wu, and Nelson [WAN90] investigated three MIMD computing surfaces,

namely, torus, augmented torus, and grid-bus machine. In the augmented torus, each PE

can use either links or buses for communication. In the torus, each PE can only use links

for communication. In the grid-bus machine, each PE can only use buses for

communication. All three machines operate as message-passing MIMD machines and

each processing element has its own private memory. The generalized stochastic Petri

15

nets (GSPN) modeling scheme is used to probabilistically model the behavior of the three

MIMD architectures. Each PE has three states: active, communicating, and queued. The

processing power, defined as the average number of processors executing in their private

memory, is used to measure the performance of the augmented torus. Solution of a 2-D

n2-point FFT problem exemplified the architectural merits and demerits of the three

MIMD architectures in a deterministic method. The two modeling methods generate the

same conclusion: the augmented torus has better performance than the torus and the grid-

bus.

For reconfigurable systems, the performance can also be evaluated through

simulation and analysis. Kwiat [KWI9] modeled and simulated the architecture of

Dynamic Reconfigurability Assisting Fault Tolerance (DRAFT), which is composed of

the following main components: a set of Computing Modules (CMs) (each containing a

processing unit and memory), an FPGA, an FPGA controller, and ROM. The host

communicates with DRAFT through the host interface unit. In simulation, a concurrent

VHDL process model exhibits the following parallel behavior. Applications arrive at an

input queue and are dispatched with delay D1 to a subset of the N CMs, delay D2 denotes

the time required for message passing and output service. The analytic approach to

performance modelling uses a Markov model for tracking the number of applications

completed. The results obtained from the simulation compare closely with results

obtained from analytic models.

Ratha’s study [RAT97] emphasizes the Splash 2 architecture. Splash 2 is an

FPGA processor board that is connected to the host through an interface board that

extends the address and data buses. Each processing board has 16 processing elements

16

(PEs) in addition to a seventeenth PE which controls the data flow into the processor

board. Each PE has 512KB of memory. The PEs are connected through a crossbar

switch. There is a 36-bit linear data path (SIMD Bus) running through all the PEs. In

simulation, the reconfigurable logic is specified in VHDL. The results of the VHDL

simulation are compared with those obtained manually or by a sequential program. In

synthesis, the main concern is to achieve placement of the logic in an FPGA that

minimizes the timing delay. Three representative examples are used to demonstrate the

mapping of vision algorithms onto Splash 2. As a low-level vision algorithm, a

generalized 2-D convolution is implemented. For intermediate level vision, a texture-

based segmentation algorithm is implemented. Point pattern matching represents a high-

level vision process. All three examples come to the same result: when comparing the

implementation on Splash 2 with implementations on different platforms such as

SPARC-20, i-860, CM-5, etc, the execution time on Splash 2 is much less than the others.

Besides the efficient mapping of algorithms, the examples also demonstrate the suitability

and superiority of custom computing approach for all levels of vision algorithms.

17

CHAPTER 3
MODELS OF COMPUTATION

3.1 Overview of Model Strategy

A model is a representation of a system intended to enhance our ability to

understand, analyze, predict and evaluate the behavior of the system. The ability to gain

sufficient knowledge of a system by analyzing system models depends on how successful

the model captures the essential features of the system in a scientific way. Construction

of a clear, logical, and unambiguous model is thus an important, scientifically oriented

process.

3.1.1 Comparison of Two Modelling Approaches

Based on the different viewpoints models represent, there are two primary

methods in system modelling, namely, (1) the black box approach and (2) the

componentwise approach.

The black box approach builds a model based on observations of system behavior

and statistical analysis without actually explaining the properties of individual system

components. It treats the system like a closed box with an internal structure that is

unknown. The output is expressed in terms of inputs.

The black box approach is convenient and can estimate or predict system

performance without one knowing the internal structure of a system. However, its

applications are limited to reasonably stable and closely specified.

18

The componentwise approach, on the other hand, builds a model describing the

system based on parameters of individual system components and knowledge of internal

system structure.

Models built by the componentwise approach tend to be more flexible than

models constructed with the black box approach, because there are more degrees of

freedom for each component. The componentwise approach can be used in most

applications, but it may be harder to express the model due to a complicated arrangement

of objects within the model.

In this study, we choose the componentwise approach because

1. AIM requires detailed knowledge of each component, i.e., the functionality of

each individual device. In contrast, the black box approach tells us little about

intra-component functionality, and is thus only a general model.

2. The underlying hardware objects in AIM can be flexibly designed, since in a

physical model, the hardware is user-specified. In contrast, when a device

specification changes, the black box model must be recalibrated; but the

componentwise model parameter(s) only require(s) modification.

3.1.2 Hierarchical Modelling

Computer systems like AIM often have high structural complexity. The

performance evaluation of these systems, based on single-level unstructured models, may

not be sufficiently adequate in terms of model definition or analysis. Instead, a structured

or hierarchical modelling method can be applied to avoid a single-level view of the

system.

19

The hardware components most frequently used in practice are buses, CPU, and

memory, which are the most important components in computer system. In AIM, we

decompose the system model (the top level) into three major models (secondary level):

bus, CPU, and memory models. This hierarchical structure is shown in Figure 3.

Figure 3: Hierarchical structure of AIM MOCs

Hierarchical modelling has several advantages:

1. Consistency with hierarchical system structureA component in the system

can be further decomposed into sub-modules. With hierarchical modelling, it

is easy to partition a model into submodels. This partitioning procedure can

be iterated downward through the model hierarchy to obtain a model at the

appropriate level of detail.

2. Physical fidelity and diversityThe properties and performance of different

hardware components often differ widely, and cannot be portrayed using the

same model. In practice, a single hardware component may have different

types, where each type has its own instance of a basic model. Therefore, the

diversity of the components also supports hierarchical modelling.

System Model

Bus Model CPU Model Memory Model

Top Level

Secondary Level

20

3. ModularityEach model can be built and analyzed in isolation with little

effects to other models. If we want to change one type of hardware object to

another (e.g., change a synchronous bus to an asynchronous bus), we only

need to replace the original object model (e.g., synchronous bus model) with

the new model (e.g., asynchronous bus model).

Thus, with hierarchical modelling, the system behavior can be easily observed

and studied.

3.1.3 Model Validation

Model validation is the process of substantiating that the model within its domain

of applicability is sufficiently accurate for the intended application. A model is of little

practical use without validation, because one cannot determine whether or not the results

obtained from the model are accurate.

To determine how accurately a model represents a system, simulation is carried

out to obtain the resultant predicted behavior of the system. Additionally, observed

performance data is obtained by measurement of physical system parameters. The

predicted behavior (simulation results) is compared with that of the real system

(measured or observed data). If the differences between model and system behaviors are

within the range of accuracy with respect to the nature of the system, then the model is

said to be validated. This validation process ideally occurs with a large sample of

random input. If time or test resources are insufficient, a typical subset of input

encountered in practice is often used. If this subset corresponds statistically to typical

physical input, then validation is said to be physically accurate.

21

3.2 Bus Model

In a system, the various modules must be interfaced to each other. For example,

the processor and memory/buffer need to communicate, as do the processor and the I/O

devices. Such communication paths are provided by a bus. As the degree of system

parallelism increases, the overall system performance and cost is limited by the

performance and cost of its communication paths [HEN95]. Therefore, a bus model is

key to accurate estimation of the performance of the overall system.

In AIM, various kinds of buses are used to connect different components. A local

bus provides the communication between ALU and local memory in a single processor.

A host bus provides the common communication path among host and all add-on units.

Multiple-bus or switched networks provide dynamic interconnections for

multiprocessors, for example, SIMD mesh interconnection. Figure 4 depicts the

examples of these three kinds of buses.

Figure 4: Bus system

Control Unit

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

Host
1

LM ALU
3

2

1: Host bus
2: Comm. network
 (NEWS grid)
3: Local bus

22

To study the performance of different kinds of buses, we first specify some

general attributes for the buses we consider in this study:

1) Nominal bandwidth: In an ideal situation, there is no bus failure or any kinds

of communication overhead, the bus bandwidth equals the nominal

bandwidth. Units are bits per second.

2) Communication overhead: In reality, there are costs for processing data, such

as that incurred by error correction or encryption. These costs comprise

communication overhead, which must be considered since each of these costs

can degrade bus bandwidth.

3) Bus failure rate: Bus failure arises because of noise, intersymbol interference,

etc. This is another key decrement to bus bandwidth.

4) Synchronous or Asynchronous: In synchronous timing, all bus transaction

steps take place at fixed clock cycle according to the global clock used by all

the devices on the bus. Asynchronous timing is based on a handshaking or

interlocking mechanism. A synchronous bus is simple to control and costs

less. It is suitable for connecting devices having relatively the same speed.

The advantage of an asynchronous bus lies in the freedom of using variable

length clock signals for different-speed devices. It offers better flexibility at

the expense of increased complexity and costs.

5) Switch: For communication networks, switches are used to route data streams

from one link to another. A network can transfer data using either circuit

switching or packet switching. In circuit switching, once a device is granted

use of a bus it occupies the bus for the entire duration of data transfer

23

[YAN90]. In packet switching, the data are partitioned into small packets and

a bus is held only during the transfer of a packet. In AIM, only packet

switching is used because communication links can be utilized more

efficiently by packet switching.

In this study, we consider three kinds of bus models: (1) Linear Bus, (2) Packet

Bus, and (3) Nonlinear Bus.

3.2.1 Linear Bus

A linear bus is the simplest way to connect several computational hardware

modules. In its simplest form, a linear bus is comprised of one or more wires. In this

study, we model basic effects, such as bus failure and overhead due to error correction or

encryption, expressed as follows:

1) Bus failure rate (RBF), denotes the probability of bus failure (open circuit).

Bus success rate (RBS) is computed from RBF:

RBS = 1 − RBF.

2) Security overhead (OS), expressed as a factor > 1, usually accrues from

encryption and is computed as a penalty factor expressed in terms of the bus

bandwidth. For example, if OS reduces the bus bandwidth by 50%, then OS =

2.

3) Bandwidth fluctuation (FBW) ≥ 0 with respect to a nominal-bandwidth. For

example, if the bandwidth fluctuates from 80 percent to 120 percent of

nominal bandwidth, then FBW = ±0.2.

Note that RBF, OS, and FBW can vary with time, but not within the time slice specific to a

given low-level instruction.

24

The nominal bandwidth (BWNOM) of a bus is decreased by RBS, OS, and FBW to

yield the modified bandwidth (BWMOD) as follows:

RBS: BWMOD = BWNOM · RBS,

OS: BWMOD = BWNOM / OS, and

FBW: BWMOD = BWNOM · (1 ± FBW).

This leads to the simple linear model:

BWMOD = BWNOM · (1 − RBF) · (1 ± FBW) / OS .

The linear bus is useful as a model of simplest and least costly connection

between a small number of modules, for example, in local bus. When the number of

modules increases, the bus is often heavily loaded, has long propagation delay, and

consumes significant amounts of energy.

The following bus models have been proposed especially for communication

networks to (1) increase utilization, (2) offer high-communication bandwidth, and (3)

reduce contention between partitions of information that must be retransmitted.

3.2.2 Packet Bus

For more effective use of communication resources, the idea of packet

transmission was introduced. In packet transmission, a data stream is divided into fixed-

length packets, which are sent out individually over the network through multiple paths,

then marshalled and reassembled at the final location prior to being delivered to the user

at the receiving end [SHE85].

Each packet must contain a destination address to facilitate routing. The sender’s

address and other control information are also appended to the original data to identify

which part of which message the packer belongs, so that it can be reassembled at the

25

receiving end [NAP90]. The dividing and reassembling procedures cause transmission

overhead. To ensure transmission reliability, mechanisms are included to detect and

correct errors for each packet, which leads to error detection/correction overhead. These

two overheads vary per packet.

In packet transmission, when two or more stations transmit a packet along the

same channel during the same time period, this causes interference and destruction of

these packets, called collision. The colliding packets must be retransmitted. Also,

individual buses may fail.

Based on these properties of the packet bus, we propose the following attributes:

1) Number of partitions or packets (NP): In packet transmission, the effective

bandwidth is changed by dividing a data stream into partitions. NP

approximates the data stream length (N bits) divided by the packet size (K

bits):

NP = N / K .

In the absence of errors or overhead, the relationship between the nominal

bandwidth (BWNOM) and the effective bandwidth (BWEFF) for packet bus is:

BWEFF = BWNOM · N / (NP · K).

2) Collision probability (PC): The probability of packet collision is denoted by

PC. For example, if 10 percent of packets collide and must be retransmitted,

then PC = 0.1. The effect of collision increases the number of packets as

follows:

NP′ = NP / (1 − PC) .

26

3) Failure probability (PF): The probability of bus failure is denoted by PF. For

example, if a bus fails 10 percent of time, then PF = 0.1. Bus failure affects

the bandwidth as follows:

BW′ = BW · (1 − PF).

The aggregate effect of collision and failure is described as follows:

4) Transmission overhead (OT): OT is a function on packet size K. In this study,

f(K) is computed as a penalty factor. Here, we assume a linear model for f(K):

f(K) = C1K

where C1 is a constant. This effect reduces the bandwidth as follows:

BW′ = BW / C1K.

5) Error detection/correction overhead (OD): OD is, also, a function on packet

size K, denoted by g(K), is computed as a penalty factor. Again, we assume a

linear model for g(K):

g(K) = C2K

where C2 is a constant. Error detection/correction overhead reduces the

bandwidth as follows:

BW′ = BW / C2K.

Combining the preceding expressions, we obtain the effective bandwidth for a

packet bus:

KCK CK
P 1

N
N) P 1 (BW

 BW
21

C

P

FNOM
EFF

 ⋅ ⋅ ⋅

 −

 ⋅ −⋅
=

K
) P 1 (

N

N) P 1 (BW
 BW

C

P

FNOM
EFF

⋅

−

⋅−⋅
=

27

The primary benefit of packet transmission is sharing the data burden evenly and

effectively throughout a communication network. The use of packets reduces the traffic

contention and has the capability for transmission of large volumes of data with less

propagation delay. Because of the multiple routing path capabilities, individual line

failures will not cause the loss of a complete message path.

3.2.3 Nonlinear Bus

In the packet bus model, transmission overhead and error detection/correction

overhead vary linearly with packet size. However, for some bus configurations, these

relations are not linear. In this section, we refine the packet bus model to produce a

nonlinear bus model. In this model, all the bus parameters except packet size, nominal

bandwidth, and success/failure rates, are dependent on packet size. In addition, error

correction overhead is dependent on the probability of bus failure.

In the nonlinear bus model, the number of packets (NP), packet collision

probability (PC), and bus failure probability (PF) are formulated the same as in the packet

bus model. The following parameters are different from those in the packet bus model:

1) Transmission overhead (OT): a nonlinear function on packet size K, denoted

by f(K). This effect reduces the bandwidth as follows:

BW′ = BW / f(K).

2) Error detection overhead (OD): a nonlinear function on packet size K, denoted

by g(K). It reduces the bandwidth as follows:

BW′ = BW / g(K).

28

3) Error correction overhead (OC): a nonlinear function on packet size K and

bus failure probability PF, denoted by h(K, PF). Error correction overhead

reduces bus bandwidth as follows:

BW′ = BW / h(K, PF).

This leads to the following expression for effective bandwidth:

3.3 Memory / Buffer Model

Memory is a portion of a computer system that is used for the storage and

subsequent retrieval of data and instructions. A computer system is usually equipped

with a hierarchical memory subsystem due to a tradeoff among the three key

characteristics of memory, namely cost, capacity, and access time. A typical memory

hierarchy includes buffer, cache, main memory, and secondary (external) memory

[HEN95].

3.3.1 Buffer Model

A buffer is a temporary storage area shared by hardware devices that operate at

different speeds. The buffer allows each device to operate without being delayed by

another device. It exists not so much to accelerate the speed of an activity as to support

the coordination of separate activities. A buffer is kind of a “dumb” memory, because it

needs no memory management unit (MMU). Thus, a buffer is simpler and costs less than

memory.

)P (K, (K) (K)K
P 1

N
N) P 1 (BW

 BW
F

C

P

FNOM
EFF

hgf ⋅ ⋅ ⋅ ⋅

 −

 ⋅ − ⋅
=

29

For a buffer to be effective, the size of the buffer and the algorithms for moving

data into and out of the buffer need to be considered by the buffer designer. FIFO (first-

in, first-out) and LIFO (last-in, first-out) are two approaches to move data into and out of

buffers.

In this study, we consider the following parameters for our buffer model:

1) Buffer width (WBUF): is the number of bits read out of or written into buffer at

a time.

2) Cycle time (CBUF): in unit of seconds, is the time between the start of one

buffer access to the time when the next access can be started. It consists of

the access time plus any additional time required before a second access can

commence.

3) Buffer failure rate (RBF): denotes the probability of buffer failure.

Then, we obtain the effective bandwidth for buffer model:

BWEFF = (1 − RBF) · WBUF / CBUF.

3.3.2 Basic Memory Model

Memory is more complex than a buffer, requiring a MMU to manage access to

the memory. All requests for data are sent to the MMU, which determines whether the

data is in memory or needs to be fetched from the secondary storage device. If the data is

not in memory, the MMU issues a page fault interrupt. The MMU holds the Translation

Look-aside Buffer (TLB), which matches virtual address to physical addresses. Thus, the

MMU has finite, nonzero overhead.

Memory is the destination of input as well as the source for output. A key design

goal is to broaden the effective memory bandwidth so that more memory can be accessed

30

per unit time. Memory interleaving is used to take advantage of the potential parallelism

of having multiple memory banks. When different addresses are presented to different

memory banks, parallel access of multiple words can be performed simultaneously. Each

memory bank is accessed once per cycle, so if two addresses to the same memory bank

are presented at the same time, then a conflict results. Thus, a given access should wait

until the other one is finished.

For purposes of simplicity, we model memory using the following parameters

without consideration of cache effects:

1) Memory width (WMEM): is the number of bits read out of or written into

memory at a time;

2) Cycle time (CMEM): is the time between the start of one memory access to the

time when the next access can be started;

3) Memory size (SMEM): is the total number of bytes or words in memory;

4) TLB size (STLB): is the length of the TLB, in bits;

5) MMU overhead (OM): a function of TLB size STLB, is denoted by f(STLB).

MMU overhead reduces the bandwidth as follows:

BW′ = BW / f(STLB).

6) Conflict probability (PCF): denotes the probability of memory access conflict.

This increases the effective cycle time as follows:

C′MEM = CMEM / (1 − PCF).

7) Memory access failure rate (PMF): denotes the probability of memory access

failure.

31

The following effective bandwidth for basic memory model is obtained:

3.3.3 Memory Model with Associative Cache

Cache is a special high-speed storage mechanism that a processor can access more

quickly than it can access regular memory. A cache is made of smaller, faster, and more

expensive hardware than memory.

Memory caching is effective because of the principle of locality. The cache

contains a copy of a portion of main memory. As the processor attempts to read data

from memory, the MMU looks first in the cache. If it finds the data there (from a

previous reading of data), it does not have to do the more time-consuming reading of data

from larger memory. If the data is not in the cache, a block of main memory, consisting

of some fixed number of words is read into the cache [STA96].

Three approaches are used to place a block in a cache:

• Direct: each block has only one place it can appear in the cache.

• Fully associative: a block can be placed anywhere in the cache.

• Set associative: a block can be placed in a restricted set of locations in the

cache. If there are n blocks in a set, the cache placement is called n-way set

associative.

Because set associative cache captures the advantages of both the direct and fully

associative approaches, it is used in the majority of cache applications.

) S (C

 W) P 1 () P 1 (
 BW

TLBMEM

MEMMFCF
EFF

f⋅
 ⋅−⋅−

=

32

The cache is controlled by the MMU [HWA93], which translates the virtual

address to a physical address. Then the tag field of the address is checked and validated

to determine a hit, which incurs address checking overhead.

When a cache miss occurs, a block must be replaced with the desired data. Four

of the most common strategies employed for replacement are: (1) least recently used

(LRU), (2) first-in-first-out (FIFO), (3) least frequently used (LFU), and (4) random.

To study cache performance, we consider the following parameters affecting

cache speed and hit rate:

1) Block size (SBLK): the number of bytes in a block. Larger block sizes will

reduce compulsory misses but may increase conflict misses and even capacity

misses. Larger blocks also increase the miss penalty.

2) Cache size (SCA): the number of bytes or words in cache. A larger cache size

can certainly reduce miss rate, but is more expensive.

3) Associative degree (DWAY): the number of blocks in a set. Greater

associativity can reduce miss rate at the cost of increased hit time.

4) Miss rate (Rm): the fraction of accesses that are not in the cache, a function

also denoted by r(SBLK, SCA, DWAY).

5) Cycle time (CCA): the time in seconds needed for one cache access.

6) Address checking overhead (OAC): in unit of seconds, the time needed to

check a cache address for a hit. It is a function of associative degree DWAY

and cache size SCA, denoted by OC(DWAY, SCA). The hit time Th for cache

access is

Th = CCA + OC(DWAY, SCA).

33

7) Replacement overhead (OR): the time in seconds needed to replace a block if

there is a miss, which is dependent on replacement strategy. When a

replacement strategy is determined, replacement overhead is a function of

block size SBLK, denoted by OR(SBLK). The miss penalty time Tm is

replacement overhead plus the time to access memory:

Tm = OR(SBLK) + CMEM / [(1 − PCF) · (1 − PMF)].

Then, the effective memory access time TEFF is given by:

TEFF = Th + Rm · Tm

= CCA + OC(DWAY, SCA) +

 r(SBLK, SCA, DWAY) · {OR(SBLK) + CMEM / [(1 − PCF) · (1 − PMF)]}

8) Word width (WWD): is the number of bits per memory word. A word is the

basic unit of one cache access.

9) Cache access failure rate (PCAF): denotes the probability of cache access

failure.

Combining the preceding expressions, we obtain the effective bandwidth for

memory model with associative cache as follows:

BWEFF = (1 − PCAF) · WWD / [TEFF · f(STLB)]

)(S]}
)P(1)P(1

C
)(S[)D ,S ,(S)S ,(D {C

 W) P 1 (

TLB
MFCF

MEM
BLKWAYCABLKCAWAYCA

W DCAF

fOrO RC ⋅
−⋅−

+⋅++

 ⋅−=

34

3.4 CPU Model

3.4.1 Switch

The CPU contains the logic circuitry that executes the instructions in a computer

program. Since instructions and data are stored in memory, switches are used to transfer

information between the CPU and its memory. There are three principal types of

switches: monostable, bistable, and crossbar.

A crossbar switch allows any CPU to communicate with any memory in one pass.

In the crossbar shown in Figure 5, each processor has a (horizontal) wire linking it to all

memories, or equivalently, each memory has a (vertical) wire linking it to all processors.

Figure 5: Crossbar switch

An n × m crossbar allows up to min{n, m} transactions to take place simultaneously, so it

can relieve contention problems encountered in the von Neumann architecture discussed

later in this chapter. To model the switch, we only need to consider the latency and the

faults caused by intermittent connections or connections that are open-circuit or frozen to

ground:

P1

P2

Pn

M1 M2 Mm

.

.

.
. . .

. . .

35

1) Switch latency (LS) in unit of seconds/word, is the time needed to transfer one

word through the switch. The bandwidth of a switch (BWSW) would be:

BWS = WWD / LS.

2) Switch failure rate (PSF) denotes the probability of a switch failure. Switch

failure affects the bandwidth as follows:

BW′ = (1 − PSF) · BW.

The time used to transfer a word through a switch is as follows:

TS = LS / (1 − PSF).

3.4.2 ALU

Two major structural components of a CPU are

• The arithmetic and logic unit (ALU), which performs arithmetic and logical

operations, and

• The control unit, which extracts instructions from memory and decodes and

executes them, calling on the ALU when necessary.

The ALU is that part of the computer that actually performs arithmetic and logical

operations, such as addition, multiplication, and comparison, on operands in the computer

instruction words [HAY98, PAT97]. Typically, the ALU has direct I/O access to the

processor controller, main memory, and input/output devices, where connectivity is

provided by buses. The input consists of an instruction word that contains an operation

code, one or more operands, and an optional format code. The operation code tells the

ALU what operation to perform. The operands are input to the operation. For example,

two operands might be added together or compared. The output consists of a result of the

36

operation that is placed in a storage register, with settings that indicate whether the

operation was performed successfully.

In general, the ALU includes storage elements for input operands, parameters, an

accumulated partial result, and shifted results [STA96]. The arithmetic and logical

operations performed on the operands are controlled by precisely clocked circuits. In this

section, we view the ALU as a “black box”, i.e., we ignore how these storage elements

and gated circuits are implemented in digital logic.

To model an ALU as a black box, we consider the following parameters:

1) ALU throughput (BWALU) in unit of bits/second;

2) Bits of precision (PRALU) accuracy of computational precision in bits;

3) Error rate (PALUE) the probability of ALU error;

4) Datapath width (WDP) the width of a word along the datapath, in bits; and

5) Error burst duration (TEB) in seconds, the time an error burst lasts.

Thus, we get the ALU execution time:

TALU = (WDP / BWALU) + PALUE · TEB.

Although the ALU is obviously a critical part of the CPU, other elements of the

computer system, such as, switches, registers, memory, bus, and I/O processor, bring data

into the ALU for it to process and output. A key example of this technique is the von

Neumann architecture [STA96], which is built from the following components:

• A main memory, which stores both data and instructions;

• An ALU capable of operating on binary data;

• A control unit, which interprets the instructions in memory and causes them to

be executed; and

37

• Input and output (I/O) equipment operated by the control unit.

The data and instruction flows in a von Neumann architecture are shown in Figure 6.

Figure 6: Data and instructions flows in a von Neumann architecture

In contrast, in a SIMD computer, an array of PEs is typically managed by one

control unit [CYP90, SUN90, HWA93]. The instruction set is decoded by the control

unit. The PEs are passive ALUs executing instructions broadcast from the control unit.

Program and data are loaded into the control memory through the host computer. An

instruction is sent to the control unit for decoding. Partitioned data sets are distributed to

all the local memories attached to the PEs through a data bus. The PEs are

interconnected by a communication network (NEWS grid) which performs inter-PE data

communication such as shifting, permutation, and other routing operations. The

communication network is also managed by the control unit. In other words, the same

instruction stream is used to operate on separate data streams by the PEs. Figure 7 shows

the data and instructions flows in SIMD computers.

I/O

Memory

CPU

Instruction
Register

Data
Register

Control
Unit

ALU

address

instr.

control condition
code

38

Figure 7: Data and instructions flows in SIMD

3.4.3 CPU Model

As the CPU comprises the ALU and the control unit, and I/O is connected to the

CPU by switches, the CPU model is a composition of the ALU model, the control unit

model (with delay TCU), and switch model.

When the control unit is decoding the instructions, operands may be loaded into

the ALU or results may be stored to memory through switch at the same time to gain

speedup. With this parallelism, the CPU model is as follows:

TCPU = max(2TS, TCU) + TALU.

If there is no such parallelism, the CPU model would be:

TCPU = 2TS + TCU + TALU.

Control
Unit

Control Memory
(Program & Data)

Instr. Data
Bus

Instr.

• • •

I/O

Communication Network

ALU1

LM1

Data 1 Data 2

ALU2

LM2

Data n

ALUn

LMn

Host

Network
Control

39

CHAPTER 4
IMPLEMENTATION AND SIMULATION RESULTS

We have presented several models of computation in Chapter 3. In this Chapter,

we discuss implementations of the models of computation (MOCs) that estimate system

performance. Based on the architecture shown in Figure 1, we can see how, as the

instructions (ASC → ASM → BVC) go through the three hardware layers, the time delay

on each hardware object can be computed.

Before the simulation procedure begins, we need a translator to generate ASMs

and BVCs from ASCs. Thus, two major components are required in our implementation:

I. The translator: scanning in AIM Server Calls (ASCs), translating them

into assembly instructions (ASMs), and then translating ASMs into Bit

Vector Calls (BVCs); and

II. The simulator: running ASCs, ASMs and BVCs through the three

simulated hardware layers and gathering performance information.

4.1 The Translator

The translator has two stages, in which the first one is to translate ASCs into

ASMs and the second one is to translate ASMs generated from the first stage into BVCs.

4.1.1 Translating ASCs into ASMs

In this stage, there are three phases: (1) lexical analysis, (2) syntactic analysis, and

(3) semantic analysis and code generation. The program first scans the source code file

containing a set of ASC instructions. It decomposes characters into meaningful tokens

40

such as keywords, numbers, and special symbols. In the meantime, it ignores the

comment lines and in-line comments. This is the lexical analysis phase.

The next phase is syntax analysis. There are two kinds of statements in an ASC

file. One is the MOCSET construct that sets variable values, and the other statement is an

ASC call. Because the ASC grammar is simple, there is no need to construct a parse tree.

The translator checks the tokens from the lexical analysis according to the grammar. If

the token is not what it expects, then a syntax error occurs.

The semantic analysis and code generating phase is much more complicated than

the first two phases. The flow chart of this phase is shown in Figure 8.

Figure 8: Flow chart of translating ASCs to ASMs

set variables

evaluate parameters

unwrap nested loop

look up ASC opcode
in translation table

generate ASMs

gather translation info.

ASCs

ASMs and translation
information

41

In order to support the MOCSET construct, which has the form:

MOCSET <variable-name> = <value>[, <variable-name> = <value>]*

a variable name-value table is established to maintain the binding between the variable

names and their values. Variable names are case sensitive. So, when a variable name is

detected in the following instructions, the translator looks in the table to obtain the value

associated with the variable name.

ASC instructions are expressed in the following format [SCH00], in forms of a

vector representation:

<opcode> (D1, M11, M12, . . ., M1D1, S1, N1, T11, T12, . . ., T1D1,

 D2, M21, M22, . . ., M2D2, S2, N2, T21, T22, . . ., T2D2,

γ, Pγ, ο, Pο)

whose parameters are defined in Table 1:

Table 1: List of ASC Parameters and their definitions.

Parameter Definition

<opcode> ASC operation code

D1 Dimensionality of first operand

M11, M12, ..., M1D1 Size of each dimension 1..D1 of domain of first operand

S1, N1 Number of signal and noise bits per pixel in first operand

T11, T12, ..., T1D1 Origin of first operand

D2 Dimensionality of second operand

M21, M22, ..., M2D2 Size of each dimension 1..D1 of domain of second operand

S2, N2 Number of signal and noise bits per pixel in second operand

T21, T22, ..., T2D2 Origin of second operand

γ, Pγ, ο, Pο Operators γ and ο, with bits of precision

The majority of these parameters are currently represented by expressions in the

ASC file. The expressions use the basic arithmetic operators: +, −, *, /, and specify the

order of evaluation by using parentheses. If there are variables in the expression, then the

42

translator first examines the name-value table to retrieve the value associated with the

variable. During the evaluation of an expression, a number stack and a symbol stack are

used to implement proper operator priority and proper evaluation order.

The translator accepts nested loops in the ASC description. These are a composite

representation of instructions having form:

{ ... { ... { ... }*m ... }*n ... }*k

where ... denotes a list of comma-delimited ASC instructions, and m, n, k are expressions

that denote how many times the instruction loops repeat. Nested loops make the

algorithms concise, as well as improve conciseness and readability. However, for

purposes of translation, nested loops must be unwrapped using a stack. For example,

each time the translator detects an open brace, it pushes the index of the current ASC call

onto the stack. When the translator detects a closed brace and detects the repetition factor

(e.g., m, n, k), it pops the stack to get the last { position. The ASCs ranging from the last

{ position to the current ASC are replicated per the given repetition factor.

In the next step, the translator looks up the ASC opcode in a translation table,

which is specific to a given device. This file contains translation information for each

ASC opcode, for example, (a) a series of ASM opcodes into which an ASC is translated,

(b) the number of ASMs in this series, (c) the number of operands for each ASM

instruction, (d) translation time, expressed in machine cycles, and (e) type of opcode.

After finding the ASC opcode, the translator obtains a series of ASMs and associated

translation information. This ASM sequence can also be represented in nested loops

using the same general approach as ASC specification and translation.

43

The translator then generates ASM instructions. For each ASM, the translator

first generates the i.d. tags for the specified registers. From parameters in each ASC, the

translator computes image and template size, and determines the type of image algebra

operations based on the outer (and inner) operators γ (and ο). Then the translator

computes the register sizes from image size, template size, signal bits, type of operation,

and precision bits of the outer and inner image algebra operators γ and ο according to the

following rules:

1. When γ is null and ο is non-null, a pointwise operation occurs, and the sizes

for register 1, 2 and 3 are:

reg-size-1 = reg-size2 = max(S1 and S2) · I, and

reg-size-3 = Pο · I.

where I denotes the image size. S1, S2 and Pο are defined in Table 1.

2. When γ is non-null and ο is null, a global reduce operation occurs, and the

size for register 1, 2 and 3 are:

reg-size-1 = S1 · I,

reg-size-1 = 0, and

reg-size-3 = Pγ · I.

where Pγ is defined in Table 1.

3. When γ and ο are both non-null, an image-template or template-template

operation occurs, and the sizes for registers 1, 2 and 3 are:

reg-size-1 = reg-size2 = max(S1 and S2) · I, and

reg-size-3 = max(Pγ, Pο) · I.

In this way, a list of ASM instructions is built, each of which has the format:

44

<opcode> <reg-id-1> <reg-size-1> <reg-id-2> <reg-size-2>

 <reg-id-3> <reg-size-3>

where the variables signify:

<opcode> ASM operation code,

<reg-id-i> Register id for i-th operand, and

<reg-size-i> Register size for i-th operand.

The final but the most important step is to gather translation information. The

numbers of data bits and instruction bits are computed from dimensionalities of ASC

operands, image size, template size and signal bits. The number of result bits is estimated

from the image size and from the type of image algebra operations (based on operators γ

and ο), as shown in the derivation of register 3’s size in the preceding rules. In addition,

the translation information obtained in translating ASCs into ASMs can be used for

performance evaluation. For convenience, these data are stored in tables that are

prespecified as ASCII files.

4.1.2 Translating ASMs into BVCs

Because the ASMs are generated by the translator and are less complicated than

ASCs, the lexical and syntax analysis is straightforward. For example, there are no

variables to be set. Also, in generating ASMs, the translator has computed the register

size and unwrapped the nested loops, so there is no need to evaluate parameters or

unwrap. Therefore, this stage is similar to but simpler than the first one. The flow chart

of this stage is shown in Figure 9.

45

Figure 9: Flow chart of translating ASMs to BVCs

For each ASM call generated in the first stage, the translator also locates the ASM

opcode in the translation table file for a given device and obtains a series of BVC

opcodes into which an ASM is translated for that device. Associated translation

information includes the number of BVCs in this sequence, the number of operands for

each BVC instruction, translation time, and type of opcode.

To generate BVC instructions, the translator first generates the register i.d. tags

for each BVC. Based on the register sizes of ASM, operators γ and ο, as well as device

information, the translator computes the register sizes for the BVCs. Then, a list of BVC

instructions is built. The BVC instructions generated by the translator are in a format

similar to ASMs.

In the next step, the translator computes the numbers of data bits, instruction bits,

and result bits for each ASM. These data are computed from register sizes specified in

the ASM and device tables described previously. In addition, the numbers of data bits,

instruction bits and result bits for each BVC are also are computed based on the BVC

gather translation info.

look up ASM opcode
in translation table

generate BVCs

ASMs

BVCs and translation
information

46

register sizes. Thus, a list of ASCs is translated into ASMs and BVCs, and key

information about the translations is obtained.

4.2 The Simulator

The second part of implementation is to perform the simulation. Obtaining the

results of the translator, the simulator runs ASCs, ASMs and BVCs through each

hardware object and calculates the performance information based on the models of

computation we developed in Chapter 3. The following subsections describe in detail the

implementation components.

4.2.1 Bus Model Implementation

In AIM models of computation, there are various kinds of buses. In this

subsection, we give typical implementations of the linear bus model and the packet bus

model. Additional types of buses are similarly implemented.

A host bus provides the communication path between the host and the control

unit. ASMs and data are transferred from the host to the control unit for execution, and

the results are returned from the control unit to the host via the host bus. The host bus is

modeled using the linear bus model. Given the choice of a simulated device for the host

bus, we can get the parameters, nominal bandwidth (BWNOM), bus failure rate (RBF),

security overhead (OS), and bandwidth fluctuation (FBW) for this device. These

parameters are the inputs to the simulator. The simulator computes the effective

bandwidth (BWEFF) based on the linear bus model (in Section 3.2.1). Then, for every

transmission on the host bus, the simulator gets the number of bits in this event from the

results of the translator. If one ASM instruction and its associated data are transferred on

the bus, then the number of transmission bits (bxhbu) is the sum of the ASM instruction

47

bits and the data bits. If a result is transmitted along the bus, then the number of

transmission bits (bxhbu) equals the number of result bits. The simulator computes the

transmission time (∆txhbu) on the host bus as follows:

∆txhbu = bxhbu / BWEFF.

The interconnections among multiprocessors can be modeled using a linear or

packet bus. For example, when simulating a SIMD processor, we can implement the

communication network (NEWS grid) among PEs as follows. In the beginning, the

simulator gets the input parameters, number of partitions or packets (NP), collision

probability (PC), and failure probability (PF), for the NEWS grid. Then, for every

transmission on the NEWS grid, the simulator gets the number of transmission bits from

the results of the translator. If the data are transferred from the I/O buffer to the PE for

execution, the number of transmission bits equals the number of the data bits (variable

dbtsbvc) in a BVC instruction. If the result is returned from the PE to the I/O buffer, then

the number of transmission bits is the number of result bits (resbts).

The simulator then computes the transmission overhead (OT) and the error

detection/correction overhead (OD) for each packet, because these two parameters vary

with the packet size. And the effective bandwidth (BWEFF) is then computed based on

the packet bus model (in Section 3.2.2). Finally, the simulator computes the transmission

time (∆tibcm for transmission from the I/O buffer to the interconnection mesh, ∆tcmib for

transmission from the mesh to the I/O buffer) in the NEWS grid as follows:

∆tibcm = dbtsbvc / BWEFF

and

∆tcmib = resbts / BWEFF.

48

4.2.2 Memory / Buffer Model Implementation

There are diverse memories or buffers in a computer system. In AIM, the host

has its own memory, there are instruction memory and frame buffer(s) in the control unit,

I/O buffer in the chip, local memory in SIMD PE, and several buffers in FPGA

Functional Block.

A buffer is simpler than memory, so simulation of a buffer is also straightforward.

For each buffer, in the beginning the simulator inputs buffer width (WBUF), cycle time

(CBUF), and buffer failure rate (RBF), and then computes the effective bandwidth (BWEFF)

according to the buffer model (in Section 3.3.1). In the simulation, when there is I/O to

the buffer, the simulator computes the delay time (∆tbf) as:

∆tbf = b / BWEFF

where b denotes the number of I/O bits.

To implement the basic memory model, the simulator takes the following

parameters as inputs: memory width (WMEM), cycle time (CMEM), memory size (SMEM),

Translation Lookaside Buffer (TLB) size (STLB), conflict probability (PCF), and memory

access failure rate (PMF). Memory management unit (MMU) overhead (OM) is computed

from TLB size (STLB). Based upon the values of these parameters, the simulator

computes the effective bandwidth (BWEFF) according to the memory model (in Section

3.3.2). For every memory access, the simulator computes the memory access delay

(∆tmem) as:

∆tmem = b / BWEFF

where b denotes the number of data bits stored in (or retrieved from) memory with each

memory access.

49

For the memory model with associative cache (in Section 3.2.3), the simulator

needs more parameters such as the block size (SBLK), cache size (SCA), associative degree

(DWAY), miss rate (Rm), cycle time (CCA), word width (WWD), and cache access failure

rate (PCAF). The simulator computes the address checking overhead (OAC) upon DWAY

and SCA, replacement overhead (OR) upon SBLK, and then the effective bandwidth

(BWEFF) according to the model. For every cache/memory access, the simulator

computes the access delay (∆tca) as

∆tca = b / BWEFF

where b denotes the number of bits in the cache/memory access.

4.2.3 CPU Model Implementation

The CPU model is a composition of the ALU model, control unit model, and

switch model.

Initially, the simulator gathers the inputs for these three models. The switch model

parameters are switch latency (LS) and switch failure rate (PSF). The simulator computes

the time used to transfer a word through the switch (TS) based on these parameters

according to a switch model. The ALU model parameters are ALU throughput (BWALU),

bits precision (PRALU), error rate (PALUE), datapath width (WDP), and Error burst duration

(TEB). The simulator calculates the ALU execution time TALU according to the ALU

model. Also, the simulator takes the control unit delay TCU as input.

During the simulation of an instruction being executed in the CPU, the simulator

obtains the number of words in the operands (NWOP) and the number of words in the

result (NWRST). Then it computes the switch time delay (∆tsop) for loading operands into

ALU as

50

∆tsop = NWOP · TS,

the ALU execution time (∆talu):

∆talu = NWOP · (WWD / WDP) · TALU,

and the switch time delay (∆tsrst) for storing the result into memory:

∆tsrst = NWRST · TS.

Finally, the simulator computes the time delay for CPU execution (∆tcpu)

according to whether there is parallelism between the control unit and I/O to the CPU or

not, as

∆tcpu = max(∆tsop + ∆tsrst, TCU) + ∆talu

with parallelism, or

∆tcpu = ∆tsop + TCU + ∆talu + ∆tsrst

without parallelism.

4.2.4 Composition of Models

The simulator is a composition of the implementations of the selected sub-models.

In our MOCs, the simulation begins at the host, which accepts a sequence of ASCs. For

each ASC, the simulator obtains a sequence of ASMs into which an ASC is translated,

the ASC → ASM translation time delay, the number of data bits and the number of

instruction bits from the translator. Then, it simulates the transmission of data and

instructions to the unit through the host bus, and uses the bus model to compute the

transmission delay.

In the unit, for each ASM, the simulator obtains a sequence of BVCs into which

an ASM is translated, the ASM → BVC translation time delay, the number of data bits

and the number of instruction bits from the results of the translator. The BVC

51

instructions are stored in the instruction memory, and the data are stored in a frame

buffer. The access times for the memory and the buffer can be computed according the

memory/buffer model.

The instructions and data are transferred to every PE through a bus or

communication network. The transmission delay is obtained using a linear or packet bus

model. In each PE, the execution time is computed using the CPU model, and the access

time to its own local memory is computed using a memory model.

The results are returned from the PE to the unit through the communication

network and then from the unit to the host through the host bus. These transmission

delays are computed from the appropriate bus models.

4.3 Example Simulation Outputs

To illustrate the operation of our MOC simulation process, we simulate a SIMD

processor, which is a PC host system with a PCI-bus connecting SIMD Unit(s), using the

EBLAST compression algorithm [SCH99] in ASCs. The system is configured as

follows: the PC host is a 500MHz Pentium, the Host ↔ Unit PCI bus is 32bits parallel at

33MHz, the IOC card controller is also a 500MHz Pentium, and the SIMD mesh size is 8

× 8 PEs, with each PE running at 200MHz and mesh data transfer rate at 1Gbyte/sec.

These configuration parameters are input to the MOC simulator. Figures 10 and 11

exemplify time graphs from the simulation results.

Figure 10 illustrates the accumulated times for different functional modules at the

Host level. Line 1 in the Figure shows the accumulated execution time (∆tsimd) for the

SIMD processor, including computational cost and I/O cost, line 2 shows the

accumulated execution time (∆tunit) for the unit, and line 3 shows the accumulated

52

transmission time (∆txubh) for the host bus. ∆tsimd is the summation of ∆txasc, ∆tunit, and

∆txubh. Note that ∆txasc, which is the ASC → ASM translation time, is too small to be

shown in this Figure. In Figure 10, if we add line 2 and line 3 together, we obtain line 1.

Figure 10: Time graph at Host level

Figure 11 illustrates the accumulated times for different functional modules at the

IPC Card level. Line 1 in the Figure shows the accumulated I/O time (∆tibcm) for the

transmission from the I/O Buffer to the communication network (NEWS grid). Line 2

shows the accumulated I/O time (∆tcmau) for the transmission from the NEWS grid to the

ALU. Line 3 shows the accumulated I/O time (∆tlmio) for the transmission from each

PE’s local memory (LM) to the ALU. Line 4 shows the accumulated computation time

53

(∆taluf) for the ALU, which is net computational cost. This is not like the total SIMD

execution time ∆tsimd (Line 1 in Figure 10), which includes computational cost and I/O

cost, and is thus small.

Figure 11: Time graph at IPV Card level

At the IPV level, data and instructions are brought from the IOC and local

memory through different paths to the ALU, where the main computation takes place.

Thus, the structure at this level is more complex than at the Host level. Additionally,

there are more I/O channels in the IPV card, as we can see from Figure 10 and 11.

54

CHAPTER 5
SIMULATION RESULTS AND ANALYSIS

In this chapter, we present the time graphs and analysis for all simulation

variables for the EBLAST compression algorithm.

5.1 I/O Costs

I/O is usually the bottleneck of a system. Thus, I/O bandwidth is a key

performance measure.

Instruction and data transmission comprises I/O, which are sometimes assigned to

different channels. We first discuss the difference between instruction and data I/O for

each level.

Figure 12 exemplifies the instruction and data I/O for the transmission from the

Host to the Unit. Line 1 in the Figure is the accumulated instruction I/O time on the Host

→ Unit PCI bus. Line 2 is the accumulated data I/O time on that bus. As we expected,

the data I/O cost is more than the instruction I/O cost. In our simulation example, the

image size is 10 × 10-pixel. Thus, the difference between data and instruction I/O costs

is not great. When image size is large, the data I/O cost will be much more than the

instruction I/O cost.

55

Figure 12: Instruction vs. data I/O at Host level

Within the IOC card, data are stored in Frame Buffer and instructions are stored

in Instruction Memory. Figure 13 shows the difference between instruction and data I/O

in the IOC card. Line 1 in the Figure is the accumulated instruction I/O time (∆tisio) to the

Instruction Memory. Line 2 is the accumulated data I/O time (∆thfio) to the Frame Buffer.

It’s easy to see that the data I/O cost is much more than the instruction I/O cost. When

the Frame Buffer and Instruction Memory can be accessed in parallel, the instruction I/O

cost is reduced.

56

Figure 13: Instruction vs. data I/O within IOC card

Instructions stored in the Instruction Memory of the IOC card are transferred

directly to the ALU in the PE. Data stored in the Frame Buffer are transferred to the I/O

Buffer in the IPV card. Figure 14 shows the difference between instruction and data I/O

from IOC to IPV. Line 1 in the Figure denotes the accumulated instruction I/O time

(∆timau), and Line 2 denotes the accumulated data I/O time (∆tfbib). When instructions and

data can be transferred in parallel, the instruction I/O cost is also saved.

57

Figure 14: Instruction vs. data I/O from IOC to IPV

The I/O overheads within the IPC card are shown in Figure 11 (in Section 4.3).

Data are input to the ALU through the communication network (NEWS grid) with

transmission time ∆tibcm + ∆tcmau. The register contents in the PE’s local memory are

transferred to the ALU with transmission time ∆tlmio. Instructions are transferred directly

to the ALU from the Instruction Memory of the IOC card with transmission time ∆timau.

When the I/O from the I/O Buffer via the communication network to the ALU can be

performed in parallel with the I/O from local memory to the ALU, considerable I/O cost

savings result.

58

From the above figures, we can see that it takes much more time to transfer data

than instructions because the size of the data is much larger than the size of the

instructions.

Figure 15: I/O across all levels

Figure 15 shows the difference between total I/O at each level. Line 1 in the

Figure is the accumulated I/O time (∆txhbu) at the Host level for the transmission from the

Host to the Unit, which is the summation of ∆txhbui and ∆txhbud (in Figure 12), because

instructions and data are transferred together in the PCI bus. Line 2 is the accumulated

I/O time (∆thfio) for the Frame Buffer at the IOC level. From this level downward in the

SIMD MOC, instruction I/O and data I/O are separated. Data I/O cost is the major I/O

59

cost within IOC and instruction I/O cost may be ignored with parallelism, so only the

data I/O cost is selected to represent the I/O cost at this level. Line 3 is the accumulated

I/O time (∆tfbib) from the IOC card to the IPV card. Line 4 is the accumulated I/O time

through the communication network (NEWS grid) in the IPV card. Line 5 shows the

accumulated I/O time (∆tlmio) for the transmission from each PE’s local memory (LM) to

the ALU. As it can be seen, the most costly I/O is in the IOC, and the second most costly

I/O is from the IOC to the IPV. This is due to the storage and retrieval of intermediate

data during the computation. If register-register transfer is employed, this figure can be

significantly reduced. The I/O within the IPV is small comparing with the I/O in the

IOC, because the data size to each PE is small.

5.2 Computational Cost vs. I/O Cost

Computation is the most important task of a computer system, which requires

analysis of computational cost. We compare computational cost with I/O cost to

visualize system performance.

Figure 16 shows the accumulated computational time vs. the I/O time at the Host

level. At the Host, the computation is to translate ASCs to ASMs, and the I/O is via the

Host bus between the Host and the Unit. The lines show that the I/O costs nearly twice

as much as the computation.

Figure 17 shows the accumulated computational time vs. the I/O time at the IOC

level. In the IOC card, the computation translates ASMs to BVCs, and the I/Os are the

data I/O to the Frame Buffer and the instruction I/O to the Instruction Memory. As stated

earlier, the I/O cost predominates in the IOC card. The lines show that at this level the

I/O costs over ten times more than the computation, as expected.

60

Figure 16: Computational cost vs. I/O cost at Host Level

Figure 17: Computational cost vs. I/O cost at IOC Level

61

Figure 18 shows the accumulated computational time vs. the I/O time at IPV

level. Within the IPV card, the computation is the ALU computation, and the I/Os are in

the communication network and between the ALU and the local memory. The lines

show that at this level the I/O also costs much more than the computation.

Figure 18: Computational cost vs. I/O cost at IPV Level

Figure 19 shows the ratios of the I/O time vs. the computational time at each level

of the system and for all levels. Line 1 is the ratio of the I/O time vs. the translation time

at the Host level. Line 2 shows the ration at the IOC level. Line 3 shows the ratio of the

I/O time vs. the ALU time at the IPV level. And Line 4 is the ratio of the total I/O time

vs. the total computational time for all levels. It is oscillatory, because the ratio is large

when the system performs I/O operations, and the ratio is small when the system

performs computational operations.

62

Figure 19: Ratios of I/O cost vs. computational cost

5.3 Effects of Mesh Size

To show the effects of mesh size on system performance, we perform simulation

with a pointwise addition image algebra operation (see the ASC instruction in Appendix

A).

Figure 20 shows the effect of mesh size on the ALU computational time. Line 1,

2 and 3 are the accumulated ALU computational times on mesh size 64 × 64 with image

size 64 × 64, 80 × 80, and 100 × 100 correspondingly. Line 4 is the accumulated ALU

computational time on mesh size 100 × 100 with image size 100 × 100. As we can see

from Line 1, the first two ALU working periods are occupied with loading the two

63

operands, the third period is occupied by the addition operation, and the fourth period

involves storage of the result. When mesh size and image size both equal 64 × 64, there

is only one ALU working period for computation since all the pixels can go to the mesh

for computation together. When image size becomes larger than mesh size, all the pixels

cannot go to the mesh at a time, so it needs more ALU computation periods as shown in

Line 2 and 3. However, when the mesh size increases to 100 × 100, image size equals

mesh size again, the computation time decreases to one ALU period as shown in Line 4.

In conclusion, the computation time for pointwise operations increases when the image

size increases, but decreases when the mesh size increases.

Figure 20: ALU computational times for different mesh sizes and different image sizes

64

Figure 21 shows the effect of mesh size on the ASM translation time. Similarly to

Figure 20, Line 1, 2 and 3 are the accumulated ASM translation times on mesh size 64 ×

64 with image size 64 × 64, 80 × 80, and 100 × 100 correspondingly. Line 4 is the

accumulated ASM translation time on mesh size 100 × 100 with image size 100 × 100.

The conclusion is also similar to the previous case of pointwise addition: if the mesh size

is fixed, the translation time increases when the image size increases; and if the mesh size

increases with all other parameters held constant, then the translation time decreases.

Figure 21: ASM translation times for different mesh sizes and different image sizes

In Figure 22, Lines 1 and 2 are the accumulated data I/O and instruction I/O for

image size 64 × 64 on mesh size 64 × 64. Line 3 and 4 are the accumulated data I/O and

65

instruction I/O for image size 100 × 100 on mesh size 64 × 64. It is easy to see that I/O

operations for larger image size cost more than for smaller image size.

Figure 22: Data I/O vs. instruction I/O for different image sizes

In Figure 23, Line 1 and 2 are the accumulated data I/O and instruction I/O on

mesh size 64 × 64 for image size 80 × 80. Line 3 and 4 are the accumulated data I/O and

instruction I/O on mesh size 64 × 64 for image size 100 × 100. In this case, I/Os for

larger mesh size cost less than for smaller mesh size.

66

Figure 23: Data I/O vs. instruction I/O for different mesh sizes

67

CHAPTER 6
CONCLUSIONS AND FUTURE WORK

In this chapter, we present a summary in Section 6.1, as well as suggestions for

future work in Section 6.2.

6.1 Summary

This thesis presents a methodology for estimating the performance and power

consumption of parallel systems, e.g., UF’s AIM project, which maps image and signal

processing algorithms across parallel and distributed processing hardware architecture.

To obtain high performance is a primary goal of parallel systems.

After investigating the requirements and system architecture of the AIM project

and reviewing several approaches used in related research projects, we decided to adopt a

hierarchical modelling with a componentwise approach to build performance estimation

model. We developed several models of computation for the underlying hardware

modules:

• Bus Model, which has three alternatives: linear bus model, packet bus model,

and nonlinear bus model;

• Memory Model, which has three alternatives: buffer model, basic memory

model, and memory model with associative cache; and

• CPU Model, which is a composition of switch model and ALU model.

68

These models are built based on a thorough study of the characteristics of various

hardware objects. A mathematical equation is derived for each model. The system

model is an ensemble of these modules.

The image processing algorithms are specified using the Image Algebra expressed

in AIM Server Calls. Before simulation, the algorithms expressed in ASCs needed to be

translated into ASMs and then further translated into BVCs. The implementation of the

system model is realized by performing simulation through the three-level hardware

hierarchy: Host, Unit, and PEs, with the corresponding ASC, ASM, and BVC instruction

hierarchy. Each hardware object is simulated according to the model of computation for

this hardware.

We performed the simulation of a SIMD processor with the EBLAST

compression algorithm. The main performance measures that we analyzed are

computational cost and I/O cost, which are represented in the Accumulated Computed

Time vs. Elapsed Time graphs. The results revealed the differences between I/O at each

level, data vs. instruction I/O at each level and across all levels, as well as computational

cost vs. I/O cost at all levels.

6.2 Future Work

The models of computation for performance estimation we developed in this

research can be used in performance debugging of parallel applications and in making

architectural improvements for system hardware. However, extensions and

improvements to this research remain as follows:

First, we plan to extend the range of the hardware model. Though we have

developed models of computation for the hardware objects currently employed in the

69

AIM project, there is still a wide range of hardware that is not included but may be used

in the future. We need to build the models of computation for them to support further

design and implementation.

Second, in the implementation, the translator accepts nested loops in the ASC

description and in the ASM sequence from the translation table, so an algorithm is

translated into a large number of ASM calls. When the mesh size is large, the iteration

times for the nested loops are very large, millions of ASM calls and more BVCs will be

generated. And when running the simulator, every performance variable will be

computed a value for each instruction. So, massive memory is needed to store them, but

the run time memory space is limited. To make them useful for a large mesh size, we

suggest developing a database for the instructions and performance variables.

Third, improving the accuracy of the model is another major part of the future

work. Accuracy is the key concern of performance estimation. The accuracy of this

system is dependent upon extensive knowledge about the system architecture and the

physical characteristics of every hardware object. The models we developed in this study

may need to be refined to better represent computational hardware. With higher

accuracy, the performance estimates will be more useful for algorithm and system

designers.

70

APPENDIX A
ASC GRAMMAR

The grammar for an AIM Server Call (ASC) in Extended BNF format is listed as

follows:

<program> :: [<MOCSET constr>]* [<ASC instr>]+

<MOCSET constr> :: MOCSET <variable-name> = <value>[, <variable-name> =
 <value>]*

<ASC instr> :: <opcode> (D1, M11, M12, . . ., M1D1, S1, N1, T11, T12, . ..,
 T1D1, D2, M21, M22, . . ., M2D2, S2, N2, T21, T22, . . ., T2D2,
 γ, Pγ, ο, Pο)

where * indicates zero or one or more repetitions, and + indicates one or more repetitions.

For example, the following ASC instruction:

ITGCNX (2,M,N,P,Q,X0,Y0, 2,Kt,Lt,R,S,Xt0,Yt0, +,16,x,16)

has a 2-D operand of M × N pixels with P bits of noise and Q bits of signal and origin at

(X0,Y0), a 2-D operand of Kt × Lt pixels with R bits of noise and S bits of signal and

origin at (Xt0,Yt0), outer operation of 16-bit addition, and inner operation of 16-bit

multiplication. This implies 16-bit linear convolution of an M × N-pixel image with a Kt

× Lt-pixel template.

And the following ASC instruction:

IADDX (2,K,L,P,Q,X0,Y0, 2,K,L,P,Q,X0,Y0, -1,-1,+,16)

is a pointwise addition of two K × L pixels images. Each image has P bits of noise and Q

bits of signal, with origin at (X0,Y0).

71

APPENDIX B
EBLAST

EBLAST (Enhanced Blurring, Local Averaging, and Thresholding) [SCH99] is a

high-compression image transformation.

B.1 Compression and Decompression Templates

EBLAST performance is dependent upon two template convolution operations. A

compression template s preconditions the source image a to be more compressible, and to

better withstand distortions inherent in EBLAST’s block averaging process. The

decompression template postconditions the compressed image to be more visually

attractive or preserves statistics of a, by approximately inverting the effect of s on a.

B.1.1 Assumption

Let finite source domain X ⊂ R2 and compressed domain Y ⊂ X, with source

image a ∈ RX and compression template s ∈ (RX) X. Let decompression template t ∈

(RX) X be customarily space-variant. Let h : X → Y assign a source point x to an

encoding block index y, and let the dual operation h* : Y → 2X return the domain in X of

the y-th encoding block.

B.1.2 Compression Algorithm

Given Assumption B.1.1, EBLAST compression proceeds as follows:

Step 1. Subdivide X into encoding blocks by, y ∈ Y, where domain(by) = h*(y).

Step 2. Clamp the values in a to the interval [gb, gs], which is between the

perceived black and saturation levels of an image display.

72

Step 3. Convolve the compression template s with a to precondition the source

image, then average each preconditioned source block, thereby yielding an

image c on Y of block means.

Step 4. Quantize the means in c to yield an m-bit compressed image ac on Y.

B.1.3 Decompression Algorithm

Given Algorithm B.1.2, EBLAST decompression involves the following steps:

Step 1. Dequantize the pixel values of compressed image ac.

Step 2. Project each of the |Y| pixel values produced in Step 1 to the

corresponding source block domain. For example, the y-th pixel value is

projected onto an intermediate image d|D(y).

Step 3. Apply the decompression template t to d.

Step 4. [Optional] Inject noise or pseudorandom variance into the result of Step 3,

to disguise blocking effect and simulate natural image variance or noise

effects.

B.1.4 Image Algebra Formulation

Given Assumption B.1.1, let s and t be space-invariant templates, and let block

averaging function fL : RKL → R such that the y-th encoding block by is averaged and

quantized as

fL(by) = q(∑by) ,

where q is a quantization function. Similarly, let block projection function fB : R → RKL

dequantize a value ac(y) in the compressed image and project it to the domain D(y), as

follows:

d|D(y) = fB(ac(y)) = q*[ac(y)] .

73

The EBLAST compression transform is described in image algebra as

ac = fL(a ⊕ s),

and the decompression transform is given by

d = fB(ac) ⊕ t,

which does not include Step 4 of Algorithm B.1.3.

B.2 EBLAST Compression Algorithm in ASC

The EBLAST compression algorithm expressed in ASC is listed as follows:

AIM Project Demonstration algorithm -- EBLAST compression
AIM Server Call (ASC) format

Set mesh dimensions corresponding to image partition
MOCSET M=8, N=8

Set image origin and block dimensions
MOCSET X0=0,Y0=0
MOCSET K=10,L=10

Set template dimensions Kt,Lt and origin
MOCSET Kt=3, Lt=3
MOCSET Xt0=1,Yt0=1

Set block partition index limits
MOCSET NbX=3, NbY=3

Set number of signal & noise bits in image (P,Q) and template (R,S)
MOCSET P=8, Q=2
MOCSET R=8, S=2

#ASC:: Perform KxL convolution over MxN image partition at 16 bits
#precision
ITGCNX (2,M,N,P,Q,X0,Y0, 2,Kt,Lt,R,S,Xt0,Yt0, +,16,x,16)

#ASC::For each block (U,V loops start here)
{{

#ASC::Apply quantization lookup table (I/O ops)
ILUTX (2,K,L,P,Q,X0,Y0, -1,-1,-1,-1,-1,-1,-1, -1,-1,M,16)

#ASC::Compute the block sum
ISUMX (2,K,L,P,Q,X0,Y0, -1,-1,-1,-1,-1,-1,-1, +,16,-1,-1)

#ASC::Scalar divide by 1/KL to get block mean
IMULX (2,1,1,16,0,0,0, 2,1,1,16,0,0,0, -1,-1,x,16)

#ASC::Output block mean

74

IOUTX (2,1,1,P,Q,0,0, -1,-1,-1,-1,-1,-1,-1, -1,-1,M,16)

#ASC::End Block Processing Loops
}*NbX }*NbY

75

LIST OF REFERENCES

[BOU99] A. Bouridane, D. Crookes, P. Donachy, K. Alotaibi, and K. Benkrid, “A
high level FPGA-based abstract machine for image processing,” Journal
of Systems Architecture, Vol. 45, No. 10, pp. 809-824, 1999.

[CLE97] Mark J. Clement and Michael J. Quinn, “Automated performance
prediction for scalable parallel computing,” Parallel Computing, Vol. 23,
No. 10, pp. 1405-1420, 1997.

[CYP90] R.E. Cypher, J. L. C. Sanz, and L.Snyder, “Algorithms for image
component labeling on SIMD mesh-connected computers,” IEEE
Transactions on Computers, Vol. 39, No. 2, pp. 276-281, 1990.

[HAR90] D. T. Harper III and J. R. Jump, “Evaluation of reduced bandwidth
multistage networks,” Journal of Parallel and Distributed Computing, 9,
pp. 304-311, 1990.

[HAY98] John P. Hayes, Computer Architecture and Organization, Third Edition,
McGraw-Hill, Inc., Boston, 1998.

[HEN95] John L. Hennessy and David A.Patterson, Computer Architecture: A
Quantitative Approach, Second Edition, Morgan Kaufmann Publishers,
Inc., San Francisco, CA, 1995.

[HWA93] Kai Hwang, Advanced Computer Architecture: Parallelism, Scalability,
Programmability, McGraw-Hill, Inc., New York, 1993.

[KAR94] Helen D. Karatza, “Simulation study of a system with two processors
linked in tandem,” Journal of Systems and Software, Vol. 26, No. 3, pp.
285-292, 1994.

[KAR97] Helen D. Karatza, “Task routing and resequencing in a multiprocessor
system,” Journal of Systems and Software, Vol. 41, No. 3, pp. 189-197,
1998.

76

[KWI97] Kevin Kwiat, “Performance evaluation of a dynamically reconfigurable
multiprocessing and fault-tolerant computing architecture,” in
Proceedings of the 1997 Summer Computer Simulation Conference, pp.
91-96, San Diego, CA, 1997.

[MEN96] D.A. Menasce and A. Rao, “Performance prediction of parallel
applications on networks of workstations,” CMG Proceedings, Vol. 1, pp.
299-308, 1996.

[NAP90] Leonard M. Napolitano, “The design of a high performance packet-
switched network,” Journal of Parallel and Distributed Computing, Vol.
10, pp. 103-114, 1990.

[NOH99] Sam H. Noh, Klaudia Dussa-Zieger, and Ashok K. Agrawala, “HeMM
execution model for massively parallel system,” Journal of Parallel and
Distributed Computing, Vol. 56, No. 1, pp. 2-16, 1999.

[OBA93] M.S. Obaidat and Dirar S. Abu-Saymeh, “Performance of RISC-based
multiprocessors,” in Computers & Electrical Engineering, Vol. 19, No. 3,
pp. 185-192, 1993.

[PAT97] David A.Patterson and John L. Hennessy, Computer Organization and
Design, the Hardware/Software Interface, Second Edition, Morgan
Kaufmann Publishers, Inc., San Francisco, CA, 1997.

[RAT97] Nalini K. Ratha and Anil K. Jain, “FPGA-based computing in computer
vision,” in CAMP Proceedings, pp. 128-137, IEEE Computer Society
Press, Los Alamitos, CA, 1997.

[RIT96] Gerhard. X. Ritter and Joseph. N. Wilson, Handbook of Computer Vision
Algorithms in Image Algebra, CRC Press, Inc., Boca Raton, FL, 1996.

[SAU81] Charles H. Sauer and K. Mani Chandy, Computer Systems Performance
Modeling, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

[SCH98] Mark S. Schmalz, http://www.cise.ufl.edu/~mssz/AIM/Top-Level.html,
1998.

[SCH99] Mark S. Schmalz, Gerhard. X. Ritter and F. M. Caimi, “EBLAST – An
efficient, high-compression image transformation ,” in Proceedings SPIE
- The International Society for Optical Engineering, Vol. 3814, pp. 73-
85, 1999.

[SCH00] Mark S. Schmalz, http://www.cise.ufl.edu/~mssz/AIM/MOC-vars.ps,
2000.

http://www.cise.ufl.edu/~mssz/AIM/Top-Level.html
http://www.cise.ufl.edu.~`mssz/AIM/MOC-vars.ps

77

[SHE85] Ken Sherman, Data Communications, A Users Guide, Second Edition,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1985.

[STA96] William Stallings, Computer Organization and Architecture, Designing
for Performance, Fourth Edition, Prentice-Hall, Inc., Upper Saddle River,
NJ, 1996.

[SUN90] Myung Hoon Sunwoo and J. K. Aggarwal, “Flexibly coupled
multiprocessors for image processing,” Journal of Parallel and
Distributed Computing, Vol. 10, pp. 115-129, 1990.

[WAN90] C. J. Wang, C. H. Wu, and V. P. Nelson, “A Comparative architectural
study of three MIMD computing surfaces,” IEEE Proceedings Computers
and Digital Techniques, Vol. 137, No. 4, pp. 261-268, 1990.

[XIA97] XiaoQiang Xiao, HuaPing Hu, and ShiYao Jin, “Performance analysis of
k-ary n-cube interconnection networks,” in Proceedings of the 1997
Summer Computer Simulation Conference, pp. 107-111, San Diego, CA,
1997.

[YAN90] Qing Yang and Laxmi N. Bhuyan, “Perforamnce of multiple-bus
interconnections for multiprocessors,” Journal of Parallel and Distributed
Computing, Vol. 8, pp. 267-273, 1990.

[ZAL96] John R. Zaleski, “RS/6000 processor performance modeling a
methodology for IBM RISC 6000 model 990 modeling and performance
evaluation,” CMG Proceedings, Vol. 2, pp. 1002-1011, 1996.

[ZEI90] Bernard P. Zeigler and Guoqing Zhang, “Mapping hierarchical discrete
event models to multiprocessor systerms: concepts, algorithm, and
simulation,” Journal of Parallel and Distributed Computing, Vol. 9, pp.
271-281, 1990.

78

BIOGRAPHICAL SKETCH

Yue Yin was born in Wuxi, P.R.China, in October 1976. She received a B.S.

degree in computer science from Nanjing University, P.R.China, in July 1998. She

expects to receive her Master of Science degree in computer engineering from the

University of Florida in August 2000.

