
OPTIMIZING THIN CLIENTS FOR WIRELESS COMPUTING VIA
LOCALIZATION OF KEYBOARD ACTIVITY DURING HIGH NETWORK

LATENCY

By

SIVASUNDAR RAMAMURTHY

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2000

Copyright 2000

by

Sivasundar Ramamurthy

I dedicate this thesis to my parents

iv

ACKNOWLEDGMENTS

I offer my highest gratitude to Dr. Abdelsalam Helal for providing me with the

guidance and motivation to complete this thesis. I also thank Dr. Gerhard Ritter and Dr.

Randy Chow for serving on my thesis committee. It makes me feel very proud to have

people of their stature related to my work.

This thesis would have not been possible without the generous sponsorship of

Citrix Systems, Inc., and I extend my sincere gratitude to them.

Last, but not the least, I would to take this opportunity and say thanks to my

parents and my sisters. Nothing means more to me than their love, affection, and support.

v

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS ... iv

LIST OF TABLES ...viii

LIST OF FIGURES ..ix

ABSTRACT...x

CHAPTERS

1 INTRODUCTION ..1

Thin Client Architecture ... 1
The Client Server Model... 1
The Thin Client Model.. 2

Advantages and Disadvantages of Thin clients .. 3
Advantages.. 3
Disadvantages ... 4

Mobile Computing and Thin Clients .. 5
Relevance of Thin Clients in Mobile Computing... 5
Benefits of Thins Client for Mobile Computing... 6
Drawbacks of Thins Client for Mobile Computing .. 7
Real World Scenarios.. 7

Need for Optimization .. 8
Scope of Thesis ... 10

2 CLIENT SERVER MODELS FOR MOBILE COMPUTING.......................................12

Client Server Models with Mobile Aware Adaptations .. 12
Application-Transparent Adaptation... 13

Coda .. 13
WebExpress .. 14

Application-Aware Adaptation... 16
Odyssey... 16
Rover Toolkit .. 18

Extended Client-Server Model.. 19
Full Client Architecture .. 20

vi

Dynamic Client-Server Architecture .. 20
Mobile Objects .. 21
Collaborative Groups.. 21

Virtual Mobility of Servers ... 22
Thin Clients... 23

3 PROBLEM DEFINITION..26

Localization of Keyboard Activity ... 26
Fundamental Requirements of Keyboard Localization .. 27
Target Applications for Localization.. 28

Heuristics: The Definition of a KB Blitz .. 30
Keyboard Activity Samples .. 31
Key Types and KB Blitz ... 31
Latency and KB Blitz.. 32

Experiments and Evaluations.. 33

4 THIN CLIENT PROTOTYPE AND TOOLS ..35

Microsoft's Terminal Server ... 35
Citrix's MetaFrame and ICA Technology... 36
Citrix Virtual Channel Software Development Kit... 37
Utility of the VC SDK .. 42
Development Environment ... 43

5 IMPLEMENTATION: THE KB PRO SYSTEM ...45

Relevance of Virtual Channels ... 45
VdHook: the Virtual Channel Driver .. 46

The Shared Header File... 46
The Shared Data Segment and Exported Functions.. 47
Keyboard Hook and Window Enumeration.. 49
Virtual Channel Communication Functions ... 51
Latency Detection Scheme .. 52

KBWin: The Localization Process... 53
Interaction with VdHook during Entry.. 54
Interaction with VdHook during Exit .. 55
Localization Mechanism... 56

KBServer: The Server Side Component.. 58
Design Scheme .. 59
Services of KBServer .. 60
Caret Position Detection Scheme .. 63

Summary... 67

6 EXPERIMENTS ...68

vii

KB Pro Benchmark... 69
Design Scheme .. 69
Refreshing Events ... 71
Keystroke Generation Scheme .. 72
The Stopwatch and the GUI.. 73

Network Emulator... 76
Design Scheme .. 77
Bandwidth Manipulation: Future Work.. 79
Impleme ntation ... 80

Performance Monitor .. 81
Experimental Variables... 83
Experiment Mechanism.. 85
Experiment Data and Analysis.. 88

Time and Communication Data .. 89
Processor and Memory Measurements ... 96

7 CONCLUSION...101

Goals Accomplished ... 101
Future Work.. 102

LIST OF REFERENCES ...104

BIOGRAPHICAL SKETCH ...105

viii

LIST OF TABLES

Table Page

1: Server side SDK functions ...41

2: Virtual Driver API functions ..42

3: Time and communication measurements without KB Pro ...90

4: Time and communication measurements with KB Pro..91

5: Comparison of time and communication measurements (1)..92

6: Comparison of time and communication measurements (2)..93

7: Comparison of time and communication measurements (3)..94

8: Measurements of processor and memory utilization...97

ix

LIST OF FIGURES

Figure Page

1: ICA Client at run time...39

2: Interaction between WinStation Driver and Virtual Drivers ..40

3: Excerpts from module.ini file...41

4: KB Pro system architecture ..67

5: A snapshot of the ICA Client log file..74

6: A snapshot of the GUI for Bench ..75

7: A snapshot of Bench's GUI during a benchmark...76

8: A snapshot of Bench's GUI at the conclusion of a benchmark..76

9: A snapshot of the Latency Emulator GUI ..81

10: A snapshot of the Performance Monitor GUI..82

11: Graph showing results of benchmark durations ..98

12: Graph showing effect of refreshing events in packets exchanged98

13: Graph showing effect of refreshing events on bytes exchanged ..99

14: Graph showing average CPU utilization...99

15: Graph showing average memory utilization..100

x

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science

OPTIMIZING THIN CLIENTS FOR WIRELESS COMPUTING VIA
LOCALIZATION OF KEYBOARD ACTIVITY DURING HIGH NETWORK

LATENCY

By

Sivasundar Ramamurthy

August, 2000

Chairman: Dr. Abdelsalam Helal
Major Department: Computer and Information Science and Engineering

The thin client model is based on the classic client-server model with all client

activity being processed at the server. Keyboard and mouse activities at the client are sent

to the server, which processes the activities and sends the refreshed display back to the

client. This model can be exploited for mobile computing by having powerful fixed

servers serve mobile thin client devices with poor computing resources. However high

latency in the wireless connection can lead to delay in display of keyboard and mouse

activities, thereby affecting the performance of the thin client. This can be remedied by

handling client activities locally, which will not only mitigate latency's ill effects but also

reduce the volume of exchanged messages passed. My thesis focuses on localization of

keyboard activities in thin clients during periods of high network latency.

1

CHAPTER 1
INTRODUCTION

At the birth of the next millennium, "ubiquitous computing" will become the most

prevalent trend among computer users. With the exponential growth in technology and

human skills, mobile computing devices characterizing lesser cost and more productivity

and utility will be developed and the number of mobile computer users will increase. As

this paradigm of computing continues to grow, newer problems and limitations will be

encountered and efforts would have to be taken to solve them. Mobile computing, as it

rightly should, serves as the main motivation behind my research on thin clients. This

chapter provides an introduction to my thesis on localization of keyboard activity for

wireless thin clients as a counter measure for high network latency. After a brief

introduction to thin clients, the relevance of thin clients in mobile computing will be

discussed along with the benefits and drawbacks. The need for optimization of wireless

thin clients will be discussed before concluding with the scope of the thesis.

Thin Client Architecture

The Client Server Model

The prevailing models of mobile computing are predominantly based on the

classical client/server architecture. This architecture is a logical model and not a physical

implementation. It consists of three entities: the client, the server, and a communication

2

channel, in most cases the network (a client can be invoked on a local server). A client is

a process running in a machine (part of a fixed network) that requests service of the

server, which is another process running in the same or different fixed network. All the

communication between these two parties is done through message passing, which is the

most important aspect of client-server computing. The communication channel used in

message passing is of two types: connection-oriented and connection-less. While the

reliability is greater in the former, the overhead in establishing and maintaining

connection is considerably high. In the latter, the reliability is low and might entail the

parties of communication to retransmit lost messages. The TCP/IP and UDP protocols are

examples of connection-oriented and connection-less communication models

respectively. The client-server architecture requires that:

Ø The client is always connected to the server

Ø The server is highly reliable

Ø The Network is fast and reliable

The Thin Client Model

In the traditional client/server model, the full client is placed in the mobile host. A

thin client, in contrast, is a dummy terminal that plays no role in processing application

specific events. It only handles the display for the thin client process and directs all client

mouse and keyboard events to the server. The server does the necessary processing,

determines the new display resulting from that event, and sends the update to the client.

Upon receiving these messages, the client updates the display on the host machine. Due

to the contents of data exchanged, thin client communication is characterized by short

messages (short requests and replies) and this allows for good performance even in a

3

weakly connected network. In addition, thin clients reduce the energy expended by the

client machine - a process that runs in a remote machine and displayed locally requires

considerably less processing power than a process that runs completely locally. This

advantage, coupled with the ability to perform under weak connections, makes this model

suitable for mobile computing. Examples of thin clients include the X-terminal and

Citrix’s ICA Client University of California, Berkeley has come up with their thin client

system called InfoPad that is mobile aware: this is done by adding software layers

transparent to the thin client application [1].

Advantages and Disadvantages of Thin clients

Advantages

The advantages of using thin clients range over a wide domain of computing

issues. As far as system requirements are concerned, thin clients can run on machines

with very little RAM and a relatively slow processor. For instance, Citrix's ICA Client

requires the equivalent of an Intel 286 processor and access to a minimum of 640k of

RAM to operate [2]. The advent of thin clients also means that less-powerful machines

that have become obsolete now can be brought back to use and machines built

specifically for use with thin clients can be made extremely compact and inexpensive.

All the above issues also lead to an advantage that assumes greater importance in

machines meant for mobility (like hand-helds, palmtops, etc). Since these machines can

be designed with low-speed processors, little RAM, and virtually no hard disk (except for

the underlying OS), the battery power requirements reduce considerably. Some of the

other benefits of thin clients are [3]:

4

Ø Access to Operating System specific applications can be given to thin clients

regardless of the client hardware and platform

Ø Applications can be scaled, deployed, managed and supported from a single location

(the server)

The next issue we consider is network connectivity. In the thin client model, the

client and the server typically communicate through bursts of short messages; all

keyboard and mouse events at the client trigger a message to the server and most

messages sent to the server trigger a reply to the client. Since the messages are short (they

consist of only keyboard and mouse messages, and display updates), the bandwidth

required for communication can be as low as that provided via a modem. For instance,

Citrix's ICA Client can function in bandwidths as low as 20kb [2].

Disadvantages

The main disadvantages of thin clients stem from the fact that constant network

connection is required for functioning. The most obvious of these is that thin clients are

not designed to operate in the disconnected mode. Also, thin clients perform poorly in

networks with extreme delays and latencies; display of animation and of user’s typing

and mouse activities may not be done in a time period that keeps the user comfortable

and satisfied with the system. This degradation in performance is highly probable when

the communication is via wireless networks with high latency.

5

Mobile Computing and Thin Clients

Relevance of Thin Clients in Mobile Computing

As more and more computer users realize the advantages of mobile computing

and embrace it, needs arise for designing efficient and effective mobile computing

systems. Power, machine resources, and network connectivity, the three factors we have

taken for granted in the context of fixed machines, assume completely different roles in

mobile computing; they are limited, precious, but at the same time, indispensable.

Designing efficient mobile computing systems requires total recognition of the

importance of these factors.

Power requires most attention since mobile machines are getting smaller and

more compact and are fitted with smaller batteries with shorter life. And it is this battery

that powers not only the operating system and the applications but also the

communication device! It is natural that computing resources like hard disk space, RAM,

and CPU speed reduce with the size of the battery. Mobile computing systems need to be

developed in cognizance of this factor too.

With the exponential growth in the need for information, Internet connectivity

will play a major role in mobile computing. People would like to read and send email,

check the scores of their favorite sports, finish office work, etc, while on the move. Also,

business consultants might want to connect to the network at the headquarters while

working on-site. This need for Internet connection brings in new problems, not only for

mobile machines, but also for mobile networks. As for the machine, battery that is

already being exhausted on running the application (email client, the web browser, or the

word processor) will now have to power the communication system also. This means

expending additional power for running the wireless device (like PC-cards, wireless

6

modems) and for sending messages through these devices! As regards to mobile

networks, a need arises for building efficient protocols that deliver messages to the right

machines, do it with as little latency as possible, and, most importantly, extract as little

energy from the mobile machines battery when the machine sends or receives a message.

The next two sections describe the advantages and disadvantages of using thin clients for

mobile computing in the context of the three factors discussed above.

Benefits of Thins Client for Mobile Computing

Thin clients, like Citrix's ICA Client, can be employed for mobile computing to

execute applications on a remote machine while the mobile machine manages just the

display. The amount of RAM required to execute the application is effectively the

amount required for the display. The processing power required for these applications is

effectively the amount required for running the display. Also, these applications need not

be installed locally and this saves hard disk space.

With the decreasing use of the CPU, the RAM, and the hard disk, the battery

power required to use the three resources also reduces. This effectively enables the

mobile user to increase the life of the battery and work longer before a recharge. These

benefits can also be exploited to build mobile machines specifically for use with thin

clients. The resulting design can be extremely compact with the CPU size, hard disk

space, and RAM just about enough to run the thin client.

The amount of communication usage is also kept to a minimum with thin clients.

Even though the client host needs constant connectivity, the messages sent are short and

represent only of keyboard, mouse, and display update data.

7

Drawbacks of Thins Client for Mobile Computing

The drawbacks of mobile thin clients stem from the fact that constant network

connectivity is required for functioning. First, wireless communication is at its embryonic

stage: wireless protocols are still under development and service providers are able to

charge high amounts per packet communicated. Two, wireless communication is

inherently slow and the bandwidth available in most commercial wireless Wide Area

Network connections is extremely low compared to Ethernet. And given that any mouse

or keyboard activity results in a message being sent to the server, running thin client

applications involving high volume of user activity might be expensive in two ways. The

power supply is continuously drained while sending and receiving messages and the

wireless network bill of the user will shoot up!

Real World Scenarios

The following scenarios exemplify the pros and cons of using thin clients for

mobile computing:

Ø Execution of a web browser as a thin client as opposed to a local process

Benefits. The burden of using expensive protocols to communicate with the web server is

now shifted to the thin client server and the server sends the thin client only the display

and not the data downloaded.

Drawbacks. Network connectivity is required even while browsing "off-line" and high

latencies can slow down the display of updates.

Ø Execution of a word processor as a thin client instead of a local process

Benefits. The documents created by the user need not reside locally; this increases

universal access to documents and saves hard disk space on the mobile machine

8

Drawbacks. Network communication is needed for a process that is typically Internet

isolated! Every keyboard or mouse action, the former of which is relatively high for word

processors, results in a message being sent to the server with a reply coming back for the

refreshed display. This not only induces needless increases in the users wireless network

bill but also eats up the valuable battery supply. Also, speed of work is affected when

latency slows down display of keyboard and mouse activity.

Common Benefits. The benefits of thin clients in both scenarios include:

Ø The previously discussed advantages of thin clients, such as centrally deploying and

updating applications

Ø The application's executable need not reside on the client machine and it does not

execute locally.

Ø Eventually, hard disk space is saved, RAM requirements and utilization reduce, and

universal access to documents increases

Need for Optimization

For reasons related to cost and loss of performance in slow connections, thin

clients are certainly not the perfect system for mobile computing. Assuming that the cost

of wireless communication is a secondary issue, a question arises on how thin clients can

adapt to perform better under high latency. Low bandwidth's effects can be mitigated

based on the thin client architecture; thin clients can be designed to optimize data

exchange between client and server. For instance Citrix's ICA Client sends only

keyboard and mouse data to the server and the server replies with the new display and

this system can perform in connections as low as 20 KBPS. However, no thin client

9

system can be designed to counter latency's ill effects; latency can delay handling of

activities like displaying typing and mouse movements and thus reduce performance

levels. The satisfaction experienced by thin client users in networks characterized by high

latency and delay may be low. For example, a user working on a document using MS

Word on a thin client may not see the display of characters typed within a reasonable

amount of time. This slows down the user and as a result increases the thin client session

duration! Another example would be when the user downloads web pages with animation

or video but finds the thin client too slow in displaying the animation smoothly. These

events may lead to the user getting uncomfortable and frustrated with the system. In order

to remedy this, mechanisms would need to be developed to counter the ill effects of

latency.

One remedy is to localize events that may get affected by various degrees of

latency. For instance, no matter how fast the network is, displaying video by processing

each and every frame at the server and then sending the updated display to the client will

not produce good quality video. But if video is processed and displayed locally, like

Citrix's VideoFrame enhancement to the ICA Client, the performance would certainly be

much better. While video is an example of a process that should be localized for networks

with low delays, even simple events like typing can become tasks to localize in high

latency networks. In addition, localization of activities can reduce the amount of

communication between the client and the server. With the high cost of wireless

connections, this may be highly desirable for mobile users!

As one might have observed by now, localization of events does go against the

definition of thin clients. With localization, the thin clients get fatter, which means that

10

more burdens will now be placed on local resources than before. The client machine that

was previously acting only as a display will now have to utilize more CPU and memory

to help localization. A localization process needs to be deployed in the thin client and this

may not need different versions in order to localize typing on all applications. Problems

regarding version updates and control may arise with this installation. These factors can

trigger off an argument that thin clients performing localization may not only unsuitable

for mobile computing but also kill some of the benefits of true thin clients. However, this

may be valid little if the benefits obtained via localization outweigh the drawbacks and

the increase in user satisfaction compensates for the loss of thin client benefits. In

summary, genuine thin clients are useful since they place very little burden on client

machine's resource but their performance can get affected by latency, a common

characteristic of most wireless networks. Mobile machines that work as stand-alone PCs

rely very little on communication but require more processing and memory resources and

application management. In between these two ends of the spectrum is the thin client

with a lean localization system that succeeds in maintaining the thin client benefits even

while restricting the burden on local resources.

Scope of Thesis

The scope of this thesis is restricted to building a foundation for localization of

keyboard activity in wireless thin clients. Given that this subject of research is at the

rudimentary stages, only word processing applications will be targeted due to their

suitability towards localization. The system developed will be tested with various

benchmarks and network latencies and the measurements will be analyzed. The next

11

chapter is a survey of literature in the subject of mobile computing and chapter 3

describes the problem definition and thought process undergone in its refinement. While

chapter 4 provides a brief description of the thin client prototype and the tools used for

creating the localization system, chapter 5 is an in depth discussion of the localization

system implementation. Before concluding with chapter 7, chapter 6 elaborates on

methods developed to experiment with the localization system and to evaluate it.

12

CHAPTER 2
CLIENT SERVER MODELS FOR MOBILE COMPUTING

Developing software systems that are motivated by mobile computing must be

founded on a survey of its literature. This chapter describes client server models for

mobile computing that have been strongly influenced by two factors that characterize

mobile computing: one, the mobility of the user and the machine; two, the resource

constraints such as limited battery life and limited bandwidth [1]. Client server models

with adaptations will be discussed first followed by the extended client server models.

The chapter will conclude with a brief introduction to thin clients and a case study of

InfoPad, a thin client system from University of California at Berkeley. Citrix's ICA

Client is not discussed here since Chapter 4 is devoted to describing it.

Client Server Models with Mobile Aware Adaptations

Mobility increases the tension between interdependence and autonomy that is a

part of all distributed systems [4]. One can argue that mobile machines should rely on

robust servers since they are resource poor. However, the argument for independence also

becomes strong since bandwidth available for communication is limited! Given that the

physical conditions of mobile computing will never be static, client-server computing

must adapt and reassign client and server functionality for better performance. This

adaptability can be made without any system support, can be left entirely to the system,

or anywhere in the spectrum formed by these two extremes.

13

Application-Transparent Adaptation

Application transparent adaptations are aimed at making applications work in the

mobile environment without modifications. The system is entrusted with the

responsibility to take required measures to counteract environmental changes like

location and connection. A typical adaptation of this kind is the introduction of a third

party that adds mobility awareness between the client and the server. This entity, called a

proxy, can be viewed as a client to the server and as a mobility aware server to the client.

The designer of this model should decide whether to place the proxy in the server, the

client, both the client and the server, or the network. A couple of applications that are

based on this model are Coda and WebExpress.

Coda

Coda is a file system for a large-scale distributed computing environment

composed of Unix workstations. It provides resiliency to server and network failures

through the use of two distinct but complementary mechanisms, namely server

replication and disconnected operation [5]. Server replication involves storing copies of

files at multiple servers – the replication is usually aggregates of files called volumes.

Disconnected operation is a mode of execution in which a caching site temporarily

assumes the role of a replication site. The client a cache built based on the user profile. A

file system proxy called Venus emulates the file system services in order to hide mobile

issues from the mobile computer. It pre-fetches the files when it senses disconnection

(data hoarding), logs the client’s requests during disconnected mode (server emulation),

and synchronizes the local cache with server (reintegration).

14

In the process of hoarding a file, the proxy inquires all the available servers about

the file and receives the most recent version. After modification, the file is stored at all

server replication sites that are currently accessible. To achieve good performance, Coda

exploits the parallelism in network protocols; for instance, parallel RPC mechanisms are

used to simultaneously transmit files to multiple sites.

Consistency, availability and performance tend to be mutually contradictory goals

in a distributed system. Two principles guide the design of consistency mechanisms in

Coda. First, the most recently updated copy of a file that is physically accessible is

always used. Second, inconsistency must be rare and always detected by the system (even

though it is tolerable). Coda uses atomic transactions at servers to ensure that the version

vector and data of files are mutually consistent at all times.

 In order to overcome the data inconsistency problem resulting from partitioned

sharing, Coda employs isolation-only transactions (IOT). IOT is a consistency model that

uses serializability constraints to automatically detect read/write conflicts. It provides a

set of options for automatic and manual conflict resolution, and to incorporate application

specific knowledge to detect and resolve conflicts. The IOT mechanism is provided as an

optional file system to preserve upward Unix compatibility; it allows any Unix

application to be executed as an IOT with its flexible interfaces being an added

advantage. Unlike traditional transactions, it does not guarantee failure atomicity and

guarantees permanence only conditionally.

WebExpress

Web proxies are employed to enhance web browsing over wireless links without

compelling server or browser changes. Web proxy can be used to pre-fetch and cache

15

Web pages to the mobile client’s machine, compress and transform image pages for

transmission over low-bandwidth links, and support disconnected and asynchronous

browsing operations [1].

WebExpress is a system based on this approach. WebExpress controls the

wireless communication and optimizes the protocol in order to reduce traffic volume and

latency respectively. It achieves this by employing two processes: one is the Client Side

Intercept (CSI) that runs on the same mobile device as the client and the other called the

Server Side Intercept (SSI) that runs within the fixed network. The idea is that the CSI

would intercept HTTP requests, perform optimizations with the SSI, and reduce data

transmissions. The whole process of handling an HTTP request is done as follows. The

browser communicates with the local Web proxy, the CSI, over a local TCP connection

using the HTTP protocol (the browser has the address of the CSI). The CSI, using a TCP

connection, communicates with the SSI using a reduced version of the HTTP. The SSI

reconstitutes the HTML data stream and sends it to the CSI, which then forwards it to the

Web browser through the local connection.

Some of the optimization methods used by WebExpress involves caching

graphics and HTML objects by the SSI and the CSI, protocol reduction in terms of

decreased connection establishments, and header reductions with respect to maintaining

client information at the SSI throughout the connection. Since WebExpress provides

transparency to both the browser and the server, it can be used with any browser. The

CSI/SSI protocols facilitate highly effective data reduction and protocol optimization

without limiting any of the Web browser functionality or interoperability [1].

16

Application-Aware Adaptation

Application-aware adaptation enables applications to react to changes in the

mobile computing environment via collaboration between systems and individual

applications. While the system monitors and notifies resource levels and allocates them

accordingly, the applications decide how to adapt when notified of changes. This division

of responsibility allows for diversity and concurrency; each application decides how to

present data based on resources allocation and at the same time the system monitors

resources and decides on allocation. And instead of treating data generically and

forwarding them to the applications, support for type-specific operations at the system

level may be required to optimize performance. For instance, it may be desirable that the

system knows that data from an NFS server differ considerably in consistency

requirement from data of relational database records. A couple of systems that

incorporate application aware adaptation are Odyssey and the Rover Toolkit.

Odyssey

Odyssey is a system designed with the motivation to successfully adapt to

mobility, and application concurrency and diversity [1]. It is an application-aware

adaptation, which includes a set of extensions to the NetBSD file system, and allows

mobile clients to access data from fixed servers. There are a number of factors upon

which Odyssey’s design is based. First, it is a realistic possibility that mobile clients can

only accept data that are degraded due to dwindling resources; Odyssey defines fidelity

as the degree to which the data presented to the client match the server’s copy. Second,

concurrency of operations can provide more benefit to the user, as in the case of stock

17

market watching programs running in the background and alerting the user when needed.

This implies that a centralized mechanism of managing the machine’s scarce resources

would be ideal. Third, successful adaptation requires quick detection of and response to

changes in the mobile environment that is bound to happen; Odyssey defines this

property of the system as agility [6].

Odyssey’s approach to adaptation is application-aware and applications decide

how best to adapt to changes in resource levels that are reported and notified by the

system. The system considers data generically and applications would handle different

data types. However, the disparity in logical and physical properties of data types asks for

some type-awareness in the system. This requires that Odyssey not only include type

specific knowledge in order to perform correct resource management but also awareness

of shared data access by concurrent applications in order to handle resources effectively.

Thus Odyssey employs two entities: a Warden that supports a particular data type and, its

superior, the type-independent Viceroy that centrally manages resources. The relationship

between the Warden and the Viceroy is data-centric and fidelity levels influence data

management.

Operations on Odyssey objects are performed the following way: Wardens run

along with the Viceroy in user space and the unit executes in a single address space via

user threads. Operations on Odyssey objects are routed to the Viceroy through an

interceptor module in the kernel. The Viceroy and the Wardens communicate via shared

data structures and procedure calls. The Wardens are entirely responsible for contacting

the server for data as and when needed – the applications never access the server directly.

Applications use the request call to communicate resource expectations with

Odyssey. A resource descriptor identifying a particular resource and a window of

18

tolerance on its availability can be specified as arguments in this call. If the request can

be handled, the Viceroy registers it and returns a request identifier. This identifier can be

used by the Viceroy to notify the application that the resource has left the requested

bounds, and by the application to cancel the request [6]. An error code along with the

current resource levels is returned if the request cannot be handled and the application is

expected to try again with a different window of tolerance.

When resource levels stray beyond the specified window, the Viceroy uses an

upcall to inform the application, based on which the application issues a fresh request

with a revised tolerance window. The request identifier, the requested window of

tolerance, and the available level of tolerance are provided as parameters in the upcall. In

order to change fidelity, type-specific-operations (TSOP) are used as general purpose

escape mechanisms [6]; these calls take as arguments an Odyssey object and the opcode

of a type specific operation to be performed on that object.

Rover Toolkit

Based of the flexible client server architecture and the mobile object model,

Rover provides a framework to construct mobile applications using two approaches,

Relocatable Dynamic Objects (RDO) and Queued Remote Procedure Calls (QRPC) [1].

This system can support both application-aware and application-transparent adaptations

and is particularly beneficial in the disconnected mode.

In the traditional client-server model, an object resident in a server that needs

modification requires the client exchanging messages with the server and the server

modifying the object. In the Rover system, the object is imported from the server using a

fetch-request, modified the client, and eventually returned to the server. Upon receipt, the

19

server must resolve conflicts with its version of the same object and then make permanent

changes to it. Rover refers to such objects as RDOs.

In the connected mode, the above process can be accomplished using Remote

Procedure Calls (RPC). In the disconnected mode, however, it is necessary to use a

mechanism that allows for asynchronous importing and exporting of objects. Rover

enables this by providing the QRPC mechanism that is a lazy and non-blocking RPC.

Here, communication that takes place in the disconnected mode is queued in a stable log

at the client. The queued information (objects or requests) is cleared from the log and

forwarded to the server upon reconnection. At the server side, every incoming request

and outgoing response is logged and maintained by the Rover Access Manager. This

enables the server to handle multiple object requests and to redeliver logged responses

that were not sent due to disconnection. Additionally, the Access Manager also

maintains an object cache, which enables the Access Manager to intercept object requests

and handle them locally if possible.

Extended Client-Server Model

Apart from the two adaptations discussed above, another modification to the

classical client-server model is the extended client-server model. Here, the static

partitioning of the client and server that suit the fixed environment is changed to suit the

mobile environment. A server will be able to perform as a client since certain client

operations may need to be performed in resource rich servers. Also, the client can

become a server if needed to counter the vagaries of mobile connectivity. Mobile

computing architectures that are based on this model are thin-clients, full-clients, and

dynamic client-server systems.

20

Full Client Architecture

Since mobile environments are characterized by frequent disconnection, the

disconnected operation model or the full client model is utilized to enable continued

functioning. The approach here is to place an entity in the mobile platform along with the

client that emulates the functioning of the server during the disconnected mode. Upon

reconnection, the requests handled during that period are synchronized with the home

server using two means. One, a lightweight server is placed on the mobile platform with a

replica of the data. During disconnection, this server handles requests on behalf of the

main server and resolves data conflicts with it on reconnection. Two, a mobility agent

may be employed to buffer requests during disconnection mode and to notify the home

server upon reconnection. While Coda and Oracle Lite implement the former, Oracle

Mobile Agents implement the latter [1].

Dynamic Client-Server Architecture

Here, the strict definitions of the client and the server are relaxed in terms of

location in order to improve performance and availability. Servers or their thin versions

dynamically relocate between mobile and fixed hosts. In addition, proxies can be

dynamically created and relocated as part of this architecture. This model generalizes

both the thin-client and full client architectures [1] and there exits a spectrum of

adaptation and design possibilities within it.

21

Mobile Objects

Mobile Objects are programmable entities that can freely roam the network and

allow clients to download the server code for execution. These objects can maintain state

information that enables them to suspend execution at any arbitrary point and migrate to

another location and resume execution. This information along with awareness of the

mobile environment gives the object ability to make intelligent decisions regarding which

host to migrate to (especially during network partitions) and what functions to perform at

each host. The intention of this approach is to overcome the problems of weak connection

and frequent disconnection. The Rover Toolkit, which employs Relocatable Dynamic

Objects (RDO), is an example of such a model [1].

Collaborative Groups

In Collaborative Groups, disconnected mobile clients can form a group of servers

and clients, collaborate, and exchange information through an ad-hoc network. The

adaptation to the classical client-server model is that clients with data can become servers

to disconnected clients who need the same data. The functionality of client and server is

redefined: any machine that holds the data is a server and any machine that needs the data

and can communicate with the server and access the data is a client [1]. The Bayou

system is an example of this architecture.

Consistency and availability are two contradictory requirements in any distributed

system. The more the number of replicas, the more difficult it is to reach an eventual

consistency. The Bayou System is a platform of replicated, highly available, and weakly

consistent mobile databases on which collaborative applications can be built [7]. A server

22

in Bayou is any machine that holds a database and a client is any machine that is capable

of contacting the server and accessing the information controlled by the server.

One of the prime features of Bayou is its application-specific conflict detection

and resolution mechanism; every write operation is accompanied with dependency

checks and merge procedures. A dependency check consists of a query and the expected

results to that query submitted to the server. Before committing the write operation, the

server must check whether the result of the query and the expected result match; a

tentative commit of the write operation is made if they match, else a conflict is detected

and the dependency check is said to have ‘failed’. The merge procedures submitted with

every write are executed in the event of a dependency check failure. The merge

procedures may be an alternate set of updates that are apt for the current database state.

Merge procedures resemble mobile agents since they are downloaded from the client to

the server and are executed in the server [7].

Bayou manages replicated copies of the database and thus arises a need to

maintain consistency among the replicas. Servers propagate their writes to other servers

using an anti-entropy protocol, which is a synchronization process of updating the

replicas. Peer-to-peer anti-entropy sessions lead to eventual consistency among all the

replicas. Version vectors or timestamps are used to detect write-write conflicts.

Virtual Mobility of Servers

This approach is based on the notion that servers located closer to mobile clients

can be accessed easier as the latency for remote operations will reduce. Relocation of the

server in response to client movement may be desired hence. In this model, the relocation

of the server is virtual and the server code does not move with the distributed information

23

system. The client, who is aware of the existence of multiple servers but not necessarily

their location, needs to determine the nearest server when visiting new domains. This is

accomplished as follows: the client requests a near by machine to provide the services it

requires; a consenting machine, referred to as the coordinator, will provide the service

using the data in a near-by or local site. This process continues as the client ventures into

new sites.

An obvious disadvantage of such a model is the overhead in synchronizing the

multiple servers that may be widely spread. As a client roams and interacts with new

servers, the interaction among these servers in turn will grow causing the overhead of

global communication to sharply increase [1].

Thin Clients

The thin client architecture is developed mainly for dumb terminals or small PDA

applications [1]. Except for the display, the model offloads functionality from the client

to the stationary hosts completely. Citrix's ICA technology converts any lean or fat client

to a thin client and its MetaFrame server provides Microsoft's Terminal Services through

it. Other thin client systems include X-Terminals and Berkeley's InfoPad.

InfoPad is a current project in the Electrical Engineering and Computer Science

Department at the University of California, Berkeley [8]. The project’s goal is to provide

multimedia support in a mobile environment through a portable terminal called the Pad.

The architecture is based on the thin-client model and all computations to make the Pad

functional are done on a fixed network, thereby placing no computational resources on

the Pad. A number of Pads are grouped into cells and each cell has a base station that is

connected by wire to the fixed network and through a radio frequency to each Pad in its

24

cell. All data packets are sent from the backbone network and routed to the destination

Pad via the base station. It is interesting to note here that the system does not give too

much emphasis on security and that it assumes that the environment is trusted [8].

Software systems that are developed for the InfoPad system must have the above

topology and should also guarantee other features like:

Ø Transparency to enable use of standard desktop applications

Ø Scalability to support more users and applications

Ø High frequency of cell locations and optimal allocation of power

Ø Mobility of the Pad to ensure transparent, smooth cell transition

InfoNet is a software system that has been built satisfying the above requirements

of InfoPad. It is composed of six groups of software elements [8]:

Ø The Application, like speech recognition and video playback, that provides data

streams to the Pad

Ø A Pad server that controls access to the Pad and allocates resources and bandwidth

among applications

Ø A Cell Server, associated with each cell, that allocates resources to the Pads and

interacts with other servers if needed

Ø A Gateway, which is associated with cell, that connects the cell’s wireless network to

the backbone network, such as Ethernet or Asynchronous Transfer Mode (ATM)

Ø The Network Controller, which enables creation of connections among the other

InfoNet entities

Ø The Pad, a simple multimedia display device whose computations and processing is

done remotely

25

Some of the basic activities the system must support are related to the following

situations:

Ø Activation of a new Pad: the system must provide means for users to login, request

services, suspend operations, and resume previously suspended work. In order to

activate the Pad, a new Pad server or an existing one must be connected to the Pad.

Ø Application initialization: upon execution, the application should create a connection

to the Pad with a specified Quality of Service (QOS). In order to do this, connections

need to be created among the Application, the Pad Server, and the Gateway.

Ø Mobility: when Pads move from one cell to another, the transition from the current

cell’s Gateway to the next cell’s Gateway, referred to as handoff, must be handled

smoothly.

26

CHAPTER 3
PROBLEM DEFINITION

Latency in the communication channel used in running a thin client can affect

performance in a number of ways. Keyboard events may not be refreshed promptly,

mouse movements may be jagged and delayed, and graphics and animations may not

appear as smooth as they would be in a faster network. Given that high latency is

inevitable in wireless networks, the activities causing the above blemishes become

potential targets for localization. While my colleague Cumhur Aksoey chose to perform

his research on localizing animated GIF files, my work is restricted to localization of

keyboard activity. This chapter defines the problem this thesis attempts to solve and

explains the thought process undergone in refining it.

Localization of Keyboard Activity

Optimizing a thin client though localization of activities should approximately

balance the exhaustion of the mobile machine’s energy with the increased performance

experienced. Since user experiences are subjective, it would be appropriate that

localizations require little processing and memory resources. One of the localizations that

can be performed to enhance performance is handling a phenomenon termed Keyboard

Blitz (KB Blitz). A simple definition of a KB Blitz is when the thin client user types in

such a speed that display of the characters is delayed for reasons such as a slow network

27

or a slow server. As part my work, I intend processing keyboard activities locally

whenever the network speed does not enable the prompt display of keys pressed. The

motivation is that the user will experience better response to her typing and, as we will

see during experimentation, the burden on the communication channel will reduce

considerably. As a note, future work on this optimization should widen the definition of

the KB Blitz to include server overloading and other relevant factors.

The simple problem definition above makes the problem domain too general and

expansive for research. Since this is one of the first attempts at localization for thin

clients, the target scenario for localization needs refinement. The main goal of this project

is not only to display typing activity promptly but to also keep the overheads at the

minimum, keeping in focus the theme of thin clients. This goal will be used as the

foundation for designing the various features of the localization system.

Fundamental Requirements of Keyboard Localization

The following have been identified as the fundamental features of keyboard

localization:

Ø Except for subtle differences, the display of the localized typing activity must

resemble the corresponding display when handled by the thin client server

Ø Transition from normal mode to local mode, and vice-versa, must have minimal

interference on user’s activity. The user may be given cues during this period to

indicate transition

Ø The user should be made aware localization through subtle features. This is important

since there will be some degradation in terms of typing activity display and some

keyboard events will be handled differently than during normal mode

28

Ø The localization system should strive to implement as much of the processing as

possible at the server side. Only those functions that cannot be done so should be left

to the client machine. This is necessary since most mobile machines are resource poor

Ø All typing activity that can be handled locally shall be done so. Key events that

require special processing, like function keys and control combination keys, must

result in a refresh and return to normal mode. These key events must be handled by

the localization system as much as possible; that is, the refreshing event should take

place without entailing the user to type the keys again.

Ø The frequency of shifting between local and normal modes should be controlled; it

must not reach a level where user productivity actually starts decreasing and the client

is slower than in normal mode

Ø When localization terminates, all typing activity handled locally must be refreshed

with the server before the user continues using the client

Target Applications for Localization

Given these building blocks, a quick observation of typing behavior on

heterogeneous applications would give us more principles to abide by. Typing in word

processing applications, or what I have termed “typing applications,” is most suited

towards localization. There is little editing, multiple lines of text are typed using the enter

key, and there is little logic involved in processing a key press. For instance, an enter key

pressed in a web browser may result in a download or a movement to an arbitrary

location on the page. An enter key pressed in a typing application like MS Word in most

cases would result in a move to the next line and the resulting display can be handled

reasonably accurately even in local mode. The key point is that the chances of frequently

29

shifting between local and remote modes are less with typing applications; most keys

pressed in typing applications actually get displayed and those that need logical

processing are few, can easily be enumerated, and the mechanisms to handle them during

localization can be designed.

At this point in the discussion, I would like to point out that keyboard activity in

all applications could be localized. The localization can be restricted to displaying text at

approximately the “correct” place with even key events such as enter, tab, etc resulting in

a refresh. But this rigid enforcement of keyboard localization can actually hinder rather

than aid performance. For instance, if the user types in a ten character URL in a web

browser application and this typing is localized, the amount of time and resource

overhead needed to start and end localization might not make localization worthwhile

even during high latency. With these additional observations, the fundamentals are

further refined as follows:

Ø Only typing applications shall be targeted for localization and even extensive typing

on other applications will be ignored

Ø The localization system must observe typing behavior of the user and should begin

localization only if the behavior matches a KB Blitz (to be defined later)

Ø The localization display can be multiple lines, with the width of the window being the

width of a local line and the height of the window being the number of lines that can

be locally typed without a need for a refresh. The width of the localization area is the

width of the application window and the height is the part of the window from the

typing position at the start of localization to the bottom of the window. This rule will

30

help reducing the number of transitions between modes, which may be high when the

localization is restricted to one line of typing

Ø Moving the caret within the localization area using the keyboard or the mouse is

permitted

Ø If the user moves the caret to any portion of the application that is not in the localized

area, a refresh should occur and the eventual display must reflect the user action. Any

mouse click that is not within the localized area should also result in a refresh

Heuristics: The Definition of a KB Blitz

This section describes the heuristic issues involved in defining the KB Blitz, a

term very important to the localization system. In order to deem the keyboard activity in

typing applications as a KB Blitz, samples of the keyboard activity will undergo two

tests. One, the type of keys in the sample must provide a good indication that

forthcoming typing can be effectively localized. Two, the speed at which the user types in

the keys must be compared to the network latency to determine if localization is

necessary for prompt display. The first rule is substantiated by the fact that certain keys

cannot be locally handled, and by the principle that frequent transitions between local and

normal modes must be avoided. The second rule is to determine if the typing speed

requires localization at all! Samples will be put to the second test only if they pass the

first one

31

Keyboard Activity Samples

The main trade-off in testing the typing behavior for a KB Blitz is between the

amount of time spent in monitoring the typing behavior and the amount of typing activity

that is not localized because of monitoring. In order to make the KB Blitz test efficient

and successful, the typing sample used will be the fifteen most recent keys typed by the

user. While these keys give a good representation of the user's current typing mood, the

sample length is also ideal for testing. It is long enough to ensure the speed of typing and

the consistency in the types of keys pressed, and it is short enough to start localization as

quickly as possible. It is worth noting that no sample length can make the tests fail-safe

since only the user knows when she will shift from a KB Blitz mood to some other

behavior!

Key Types and KB Blitz

A typing sample represents a KB Blitz only if it consists of keys that can be

processed with this simple rule: the characters they represent can be displayed at the

location where the user wants them to be displayed and there is no other logical

processing. For most typing applications, these characters are the letters in the alphabet,

special characters, numbers, and white spaces. The sample cannot be a KB Blitz if any

other key event is interspersed in it. The heuristic is that samples that pass this test give a

good hint that the user will continue with the same typing pattern. Thus, once localization

starts and the user continues with this pattern, it will end only when the user reaches the

end of the localization area. Any sample that fails this test is not a KB Blitz: the user's

typing will continue to be monitored and the next sample will be put through the same

test.

32

Mouse events within the typing applications may also be included in the list of

events that disqualify a typing sample from being a KB Blitz. This will bring the current

definition of a KB Blitz more in accordance to the principle that only suitable typing

activity will be displayed locally.

Latency and KB Blitz

Latency in the communication channel that is below a certain threshold may not

require localization of keyboard activity. Simple tests have shown that any latency of 200

ms and below is enough for the thin client to display typing reasonably quickly. While

there is a short time lag between the key press and the display, latency of 200 ms seems

to be a good upper limit for the "comfort zone." The localization system will follow this

rule and not attempt localization when latency is below 200 ms. However, even if the

network latency is above this threshold, localization may not be required if the user's

typing speed does not warrant it. For this purpose, the average round trip time for a

packet from the client to the server is calculated; this value is deemed to be the response

time of the server and half of it is assumed to be the approximate network latency. Since

latencies vary constantly in wireless networks, this process may be repeated periodically

to keep the response time and latency values updated.

As for the test itself, only samples that pass the key types test will undergo it. The

time frame of the sample is compared to the product of the response time and the length

of the sample. If the sample's time frame is lesser, the sample passes the test and the

user's typing behavior is deemed a KB Blitz. This test is also heuristic since the response

time measurement process involves uncontrollable variables that can cause flaws. For

instance, the actual response time may be lesser if the party at the server that participates

33

in the response time measurement is slow to respond to the Pings used in the process. On

the contrary, it is also possible that the actual response time of the typing application is

higher than the response time calculated.

Experiments and Evaluations

With the principles and rules defined above, the localization system can now be

developed as software. There remains one final problem whose solution is undefined and

it involves the scheme used to evaluate the localization system. The motivation of the

thesis will be unsatisfied if means are not devised to measure the viability of the

localization scheme. Experiments would have to be performed and their results will be

compared to show the utility of the localization under various conditions. This process

requires:

Ø Creation of an automated process that generates various keyboard behaviors including

KB Blitzes. These will be the experiment benchmarks and two basic keystroke

patterns would be generated. One would contain continuous typing without any

events that might end localization. The other would contain events in frequent

intervals that either postpone localization or result in an end to localization. The

frequency of these events can be set to reflect various levels of KB Blitzes. Also, the

speed of typing simulated should reflect the response time when the client is in

normal mode and be a pre-defined speed ("maximum typing speed") in local mode

Ø The running time of a benchmark is the amount of time taken to generate all the key

events in the specified pattern. The running time of the benchmarks would be

34

recorded for various levels of client latency and these values will provide information

regarding improvements the user might experience in terms of client performance

Ø The amount of communication between the client and the server will be recorded

during each experiment and this will show how much communication localization

saves

Ø The amount of local resources eaten up by the localization scheme during the

experiments will be recorded and this should provide information regarding the cost

of localization

The data collected from experiments may be combined to produce a composite

value that reflects the overall utility of the localization scheme. In point 2, it is mentioned

that the benchmarks would run on various latencies. This can be achieved via a simple

“Network Emulator” that can artificially alter the latency in the communication channel

between the client and server machines. A detailed description of this emulator will be

provided in the chapter about experiments.

35

CHAPTER 4
THIN CLIENT PROTOTYPE AND TOOLS

This chapter describes the thin client prototype and tools used for designing and

evaluating the proposed keyboard localization system for thin clients. The first topic for

discussion is the components that form the thin client prototype, which include

Microsoft's Terminal Server, and Citrix's ICA Technology and MetaFrame server.

Following that will be an elaboration of the Citrix Virtual Channel SDK and its relevance

to the localization system development. The chapter will conclude with a brief

description of the development environment.

Microsoft's Terminal Server

Microsoft's Windows NT Server, Terminal Server Edition (now an integral part of

the Windows 2000 Server) can deliver windows desktop and applications to any

computing device even if it does not run Windows [9]. The goal is to take advantage of

the resources provided by a distributed computing environment. All applications/desktops

that run on client machines execute completely on the server; the client sends keyboard

and mouse data to the server and receives display updates. Each user sees only her

individual session that is managed transparently by the server and independent of other

sessions. Terminal Servers help in achieving centralized deployment and management of

windows-based applications and providing usage for outdates machines that can act as

36

client sites. Microsoft's RDP (Remote Desktop Protocol) and Citrix's ICA technology are

a couple of means by which Terminal Services can be provided to clients.

Citrix's MetaFrame and ICA Technology

Citrix's ICA technology provides the foundation for turning any client device

(thin or fat) into the ultimate thin client [2]. The ICA protocol sends only keystrokes,

mouse clicks, screen updates, and audio across the communication channel. While client

machines need only a processor as powerful as an Intel 286 and 640KB of RAM, the

communication consumes only about 20KB of bandwidth. ICA can work with any Win16

or Win32 application and is inherently platform independent.

Citrix's MetaFrame server runs on top of Microsoft's Terminal Server and

provides Microsoft's Terminal Services to ICA based clients. The following are some of

the main benefits Citrix's MetaFrame [10]:

Enterprise-class management, End-to-End command and control related to:

Ø Systems: management tools for enterprise-wide scalability, reliability, and security.

Examples: Load Balancing services, SecureICA services, Data encryption

Ø Applications: Rapid deployment and management of applications from a single point

for optimum performance and uptime. Examples: Application publishing, Automatic

ICA Client update

Ø Users: Users control desktop. Examples: Program Neighborhood, Client printer

management, Local/remote clipboard, VideoFrame

Web application publishing:

37

Ø Integration: Integrate applications into standard web browsers. Example: Nfuse

application portal technology, Web Portal Wizard

Ø Personalization: Personalize the applications a user receives. Example: adding scripts

and graphics, embed applications within web pages or launch application windows

Flexible Application access on demand:

Ø Access all Windows based applications

Ø Access from any Windows or non-Windows based device or appliance. Examples:

Java, Netscape Navigator, Unix workstations/Linux

Ø Connections: Access with any connection, LAN, WAN, Internet, and Wireless.

Examples: Novell Netware LANs, TCP/IP, IPX, SPX, NetBEUI protocols, high-

speed analog modems

Citrix Virtual Channel Software Development Kit

This section is a summary of the Citrix Virtual Channel Software Development Kit

documentation provided by Citrix along with the SDK [11].

Citrix Virtual Channels are bi-directional error-free connections used for

exchange of packet data between a Citrix server and an ICA 3.0 compliant client. They

can be used to enhance the functionality of ICA Clients; for example, additional virtual

channels can be created to support audio and video data streams.

Virtual Channels (VCs) use the Independent Computing Architecture (ICA)

protocol. Since ICA is a presentation level protocol that runs over several different

transports (like TCP/IP, IPX, etc) protocols for VCs can be developed independent of the

underlying transport. ICA VCs are packet-based; if one side writes a certain amount of

38

data, the other side receives the same data when it performs a read. There is no need for

protocols to parse messages and message boundaries, unlike TCP for instance. System

software that is part of the ICA Client and the MetaFrame server manage the ICA stream

and VC packets are encapsulated in this stream. ICA also provides for error correction;

this ensures that data are received in the order in which it was sent. VCs provide different

flow control options to enable developers to structure the VCs; for instance, a limit can be

set on the amount of data that can be handled at any one time.

Developers determine the contents of VC packets but their size is restricted to

2KB or 2048 bytes. With 4 of these bytes used for the VC name, the user if left with 2044

bytes. This restriction affects the WFVirtualChannelread() and WFVirtualChannelWrite()

functions on the server-side and the OutBufReserve() function on the client side.

VCs support 3 downstream flow controls:

Ø None: any control has to be part of VC protocol

Ø Delay: Client VD specified; delay occurs in server-side

Ø Ack: VD specifies buffer size and sends an acknowledgement based on how many

bytes in a packet from the server were processed

VC names are ASCII names with at most 7 characters that can be only letters and

numbers. While the first three characters form the OEM identifier, the rest is left to the

discretion of the user.

VCs are implemented through a client-side VC Driver (VD) and a server-side VC

application. All data are sent from a VD to the server via the WinStation Driver (WD) on

the client-side. The VD is actually a Dynamic Link Library (DLL) whose functions are

called by the WD. Thus, it cannot initiate data transfers but can only wait for the WD

39

driver to poll it for data and this is done frequently. When data are polled, the WD sends

it to the server, where it is queued until the corresponding VC application reads it - there

is no way to alert the application upon receipt of messages. All messages sent on a VC

from the server side application to the WD are demultiplexed and the data are sent to the

corresponding VD. The interaction between the WD and client VDs will be discussed

next.

Figure 1: ICA Client at run time

 VDs are Win32 DLLs created using the VC API. The developer uses the

interface to define what happens when a function from this DLL is called. When the ICA

Client starts, the client engine reads the module.ini file to determine which modules to

load and how to configure the various VDs. For each VD, the WD calls DriverOpen()

and important information is exchanged during this function call: the VD gets addresses

40

of output buffer functions while the WD gets address of the VD’s ICADataArrival()

function. Since the client runtime is single- threaded, VD developers are directed to not to

use any blocking calls in the code definition: a blocking call in a function called by the

WD will delay the entire client.

Figure 2: Interaction between WinStation Driver and Virtual Drivers

Once the VC is opened, the communication through it may begin. Data sent from

the server application are handled by the driver through the code definition for

ICADataArrival(). If the client wants to send data, it has to wait for next call to

DriverPoll(). In the code definition for this function, the VD must use helper functions to

send data--it should reserve output buffer, fill it with data, and write the buffer.

The list of VDs to load when the client is started can be provided in the

module.ini. This file stores settings for determining VDs to load and the name of the

corresponding DLL. The file can also store parameters for the VDs, which the VD can

41

obtain by making the appropriate API calls. A distributed module.ini file will permit

clients to write on to it.

Figure 3: Excerpts from module.ini file

Table 1: Server side SDK functions
WFVirtualChannelOpen() Obtain and open a VC handle

WFVirtualChannelClose() Close an open VC handle

WFVirtualChannelRead() Read data from a VC

WFVirtualChannelWrite() write data to a VC

WFVirtualChannelPurgeInput() purge all data sent to server

WFVirtualChannelQuery()
Query information related to a
VC

42

Table 2: Virtual Driver API functions
DriverOpen() called when the client loads the VD
DriverClose() called before unloading a VD
DriverInfo() gives module info about VD

DriverPoll() called periodically to check for data
to write

DriverQueryInformation() queries specific info about client
DriverSetInformation() used to send information to the VD
DriverGetLastError() returns the last error set by the VD

ICADataArrival() called when data arrive on the VC

Utility of the VC SDK

Utilizing the VC SDK in designing the keyboard localization system will provide

the following benefits:

Ø Since VCs run on top of the ICA stream used by the thin client, there is no need for

creating additional communication channels between the client and the server for the

localization system. Also, VCs guarantee reliable communication thus eliminating

any need to monitor for possible packet losses.

Ø For the same reason as above, multiple VC server applications can run

simultaneously on the MetaFrame server and provide the required service to their

respective clients through VCs with the same name; in terms of servers, the VC name

can be related to a server's "well known port."

Ø As VC drivers can be dynamically included to the ICA Client executable, the

localization process built using VC drivers can be easily integrated to the ICA Client

as an additional functionality.

43

Ø Since VC drivers are DLLs, other applications that run completely on the client

machine can be made communicate with the ICA Client by adding exported functions

to the DLL. As we will see in the next chapter, one of the components of localization

is an application that exploits this feature.

Development Environment

For the purpose of development and experiments, two IBM 390 laptops have been

deployed to act as server and client respectively. The laptops each use an Intel Pentium II

233 MHz processor with 64MB of RAM and 4 GB of hard disk space. Both machines use

Netwave's Air-surfer Pro PC cards for wireless communication on the CISE department's

WLAN. In order to remove any interference from other users of the WLAN, the

machines will use the PC cards' built in ad-hoc mode to work in a private network with

an approximate raw bandwidth of 2 Megabits per second and latency below 10ms. Efforts

will be taken to ensure that no other computer is accessing either of these machines

during experiments! On one of the machines, Microsoft's Terminal Server Edition was

installed and on top of it Citrix's MetaFrame Server, version 1.8. During design and

experiments, this machine will be freed of all responsibilities except providing Terminal

Services to the ICA Client. The ICA Client runs on the second laptop that is a Windows

NT Workstation 4.0 system. Theoretically, the client could run on the same machine as

the server; however, measuring the usage of the resources of the thin client machine

during experiments would be more accurate if the machine does not run other

applications and services. Citrix's Program Neighborhood version 4.20 is used to create

44

ICA Clients that run Windows NT desktops. The localization system will be designed

specifically for Win32 ICA Clients.

45

CHAPTER 5
IMPLEMENTATION: THE KB PRO SYSTEM

This chapter describes in depth the three core components of the KB Pro

keyboard localization system. They are the Virtual Channel Driver VdHook, a process on

the client machine, called KBWin, to localize typing activity, and KBServer, a process on

the server side that serves VdHook. Since the localization system is for Win32 ICA

Clients, all these components are Win32 modules.

Relevance of Virtual Channels

The KB Pro system for localizing keyboard activity in the ICA Client befits

implementation of Virtual Channels (VCs). VCs are of extreme use since a private

communication channel between the client and server machines is crucial. Keyboard

activity localized at the client machine can be refreshed with the server through a VC;

also, information about the application to localize and the position of the caret in it can be

sent by the server to client on this channel. In addition, the VC driver on the client side

can be designed to monitoring keyboard activity in the session and detecting a keyboard

blitz. Since VCs are implemented on top of the ICA stream used to run the thin client,

there is no need for creating extra communication channels. And this design also results

in an efficient use of the ICA channel: VC packets for different VCs can be sent together

46

as one whole message. Finally, the localization process can be integrated into the

localization system by defining exported functions in the VD that it can call.

VdHook: the Virtual Channel Driver

 VdHook is the driver that runs the communication mechanism for the Virtual

Channel “ctxhook” on the client side. This Dynamic Link Library (DLL) contains all the

basic functionality required to communicate through a Virtual Channel. In addition, the

DLL provides exported functions that can be called by other applications after explicitly

linking with it. The DLL also contains data in a shared segment in order to let the

WinStation Driver and the localization process (KBWin) share important information.

The Shared Header File

The first subject of discussion should be the header file defined in its context

since it is also used to build KBWin and the KBServer. Some of the information defined

in this header file is:

Ø It defines the name of the Virtual Channel used by the KB Pro system (“ctxhook")

Ø It defines the application that the DLL should call once a keyboard blitz on a typing

application has been detected. This application is the name of the executable for

KBWin

Ø Since VCs are packet based and communicate packets with a size restriction of 2048

bytes, the maximum length of text to refresh is restricted to 2000; this number is

defined here. Note that this number may be increased or decreased based on how

much of the remaining bytes is used

47

Ø A latency threshold is defined for localization (200 ms) – network latency below this

value does not call for localization

Ø A series of values that define the communication protocol for the VC. These are used

for determining purpose of messages received. (ex: #define Refresh 4)

Ø A series of data declarations for inter-component communication.

Ø The average width and height of characters displayed in local mode

Ø The number of times the virtual channel driver Pings the server to determine network

latency

Ø The frequency of detecting the network latency during the session (300 seconds).

The Shared Data Segment and Exported Functions

Moving to the DLL itself, the first feature for discussion is the shared data

segment. This segment is necessary since there are two (three including the benchmark

process described in the next chapter) separate processes using the DLL that need to

share data crucial to the success of the whole system (the two applications are the

WinStation Driver for the client and KBWin). Some of the data defined in this segment

include

Ø Data used by the functions called by KBWin in order to refresh locally typed text.

During refreshing, the same data are used by DriverPoll() the next time it is called by

the WinStation Driver.

Ø Data to maintain the dimensions and position of the ICA Client application to

localize, and the position of the caret in it. These values are obtained from server by

VdHook and then are given to the KBWin application through exported functions.

Ø A number of flags maintaining the various states of the localization system.

48

The next feature of the DLL is the series of definitions of exported functions.

These are called by the KBWin application for reasons such as registering its window

handle, getting the handle of the ICA Client window, getting information about the

application to localize, refreshing with the server text typed during localization, and

registering its exit with VdHook. While the first three are called before localization

begins, the last two are called at culmination. Another function defined just for

experimentation provides information that helps determining if the client is in normal,

local, or transition modes; this is the only function called by the benchmark process

described in the next chapter.

Since one of the principles of localization is taking care of refreshing events

occurring during localization, the exported function used by KBWin to refresh localized

text takes in the refreshing event as one of the arguments. Ideally, refreshing events

should be generated only after the localized typing activity is refreshed. Consider the

situation when the user uses mouse clicks or keyboard shortcuts to save the file during

localization; this event should occur only after the localized text is refreshed with the

server otherwise the text would not be included in the saved file! If the event is a

keyboard event, it is forwarded with the refreshing text to KBServer so that the event can

be generated at the server with the typing application in focus (and only after the text is

refreshed). Mouse events should also take place only after the localized text is refreshed

with the server; but unlike keyboard events they may have to be sent to other windows.

Thus, the mouse event is generated locally and sent to the ICA session. When a mouse

event needs generation, this function uses various global state flags and waits until the

KBServer acknowledges the refresh; only then does it send the appropriate mouse

49

message to the ICA Client window. Handling mouse refresh events may also be pushed

on to the server and this is left as future work.

The sequence of events that occur after spawning KBWin is worth a quick

mention in the context of exported functions. In order to let the user type during transition

periods, keyboard focus should be given to either the ICA Client or to KBWin. However,

it has to be given to the latter since the caret position detection process used by KBServer

requires that no typing take place in the ICA Client! The intuitive solution is to give the

focus to KBWin as soon as it is spawned; however, typing activity might be lost during

the time taken for KBWin to show its window! Thus, the server is contacted for

application information such as position, dimensions and caret position only after KBWin

makes a function call to register its handle. KBWin will later call another function to get

the information provided by the server. During the transition from normal to local mode,

audiovisual cues are provided to the user as signs of initiation of localization. It should be

added that keyboard activity during transition might get lost even when using the above

scheme.

Keyboard Hook and Window Enumeration

The function defined as the “keyboard hook procedure” is next in line for

discussion. The DLL registers a keyboard hook only when KBServer is running and

latency is above 200 ms and provides the keyboard hook procedure to the system. This

function should ideally “work” only when the KB Pro system needs to watch out for a

keyboard blitz on a “typing” application. Since KBServer keeps VdHook updated with the

application the user is working on, the hook function is made to exit immediately if there

is no need to monitor keyboard activity. But if the application in use is a typing

50

application, the function monitors the keyboard activity to check for KB Blitzes. It starts

a stopwatch and ends it when a key does not confirm with the "key types" test of the KB

Blitz or when fifteen keys (defined as KBBlitzValue in the header file) are pressed. If the

case is the latter, the key series has passed the first test of a KB Blitz and is put through

the second test. The time period is compared with KBBlitzValue times the average

roundtrip time for a packet (2 * client latency). Localization is triggered if the series is a

KB Blitz and KBWin is spawned. If the series fails the first or seconds test, the detection

counters are reset and process starts again.

In order to ensure that the keyboard monitoring is done only for the ICA Client, it

is necessary to obtain the process id of the ICA Client. Since the window handle of the

ICA Client session is required and the VC SDK does not provide functions to obtain it, a

simple window enumeration procedure is executed when VdHook's DriverOpen()

function is called, which is at client start time. The scheme used to obtain the handle is

trivial; since ICA Client windows contain the phrase “Citrix ICA Client” in the toolbar,

the function checks if the text of all windows enumerated contains the above phrase as a

sub string! The first handle that passes the test is deemed to be the one for the current

ICA Client and the process id is obtained from it. The glaring drawback to using this

scheme is that only one ICA Client session should be running. However, this

disadvantage can be tolerated at this point of time in research. It is worth mentioning that

the ICA window handle is saved as a shared data that can be passed on to KBWin for its

use.

51

Virtual Channel Communication Functions

The rest of the DLL contains functions typical of all Virtual Channel Drivers.

Some of these, however, perform more that just VC communication tasks. For instance,

the ICADataArrival() function will set values of shared and/or unshared data according to

the type of messages received and the contents of the packet. Some crucial data values set

here are the various flags that represent the state of the KB Pro system process. For

instance, when the DLL is on a watch out for a KB Blitz on a typing application and the

server says that the application in focus has changed, the watch for a blitz is ceased

(again through shared variables) and if needed restarted based on what type application is

in focus. The cease and restart might be needed even when the application in focus

changes its dimensions or its position on the session. Situations may arise for an abrupt

end to localization due to a message sent from the server. VdHook accomplishes this by

sending an appropriate message to KBWin. Since this message is a windows message that

two separate application use for communication, it has to be registered before usage and

this is done in the same function. Apart from setting state values, this function also sets

information of the various data structures for application information, caret information,

etc based on the packet received from the server.

A feature of considerable utility in the KB Pro system is giving users the option to

refresh localized text and immediately return to local mode instead of the default practice

of returning to normal mode. Part of this is implemented in the ICADataArrival function.

One of the messages sent by the KBServer is coded RefreshAndInfo, which means that

KBServer performs a request for refreshing localized text and providing information in

for return to localization. Such a request actually originates at KBWin, and is then sent to

VdHook during the refresh function call, and finally sent to KBServer. When the user

52

exercises this option, KBWin will not exit as normal but would remain in abeyance while

waiting for VdHook to receive the required information to restart localization (the waiting

scheme is described in the KBWin section).

While ICADataArrival() is called by the WinStation driver only when data arrive

on the VC, the DriverPoll() function needs deft handling since it is called in frequent

intervals by the WinStation Driver (see section about the VC SDK). When there is no

need for sending messages to the server, this function is designed to exit immediately.

However, the frequent calls to this function by the WinStation Driver are exploited

during periods of transition! The function helps in providing visual cues to the user by

making the ICA Client window blink once. By the time KB Pro gets out of transition,

DriverPoll() would have been called a number of times and the window would have

blinked accordingly!

Some of the other functionality includes sending pings when the current state of

the KB Pro system is latency detection. The number of times it sends this ping is defined

in the header file. And finally, it is through this function that KB Pro sends information to

the server for refreshing localized typing and for finding information about the target

application for localization.

Latency Detection Scheme

The responsibility of estimating the network latency is given to VdHook and not

KBServer. This is done so since VC drivers can send data only when polled by the

WinStation Driver; any Pings sent by KBServer cannot be sent back immediately and this

may affect the calculation of the average round trip time if done by KBServer.

53

Thus, when VdHook is at the latency detection state, DriverPoll() sends to

KBServer a number of Ping packets containing the Ping number and records the send

time of each Ping in a global structure (the number of Pings is defined in the header file).

When Pings are received from the server in ICADataArrival(), the receive time is

recorded and the Ping number is decoded to get the send time from the global structure.

After all Pings are received, the average of all the round trip times is calculated (response

time) and half of this value is assumed to be the approximate network latency. The timing

of the entire detection process is also recorded in order to initiate another one after a

certain time period elapses (the time period is defined as 300 seconds in the header file).

This measure is taken to ensure that latency fluctuations that are highly probable in

wireless networks are accounted for. The time check, however, is done only when the

client receives a Reset message (non-typing application in focus) from the server. The

heuristic is that the user will not require the services of the KB Pro system when she

moves to a non-typing application, thus making the situation ideal to send Pings and

measure the latency. In case a situation arises that localization is triggered and

information from the server is required, the request is delayed until the latency detection

scheme is complete. Since the probability of this case is low, the occasional delay in

localization can be tolerated.

KBWin: The Localization Process

As mentioned in the previous section, this component of the KB Pro system is

triggered by VdHook in order to localize keyboard activity. KBWin is made a stand-alone

process since I did not attempt adding any additional windows to the ICA Client process,

54

if it can be done at all. This section describes this component in terms of its interaction

with VdHook at entry and exit, and in terms of the mechanism it uses in displaying the

localized keyboard activity.

Interaction with VdHook during Entry

Upon invocation, the process makes a function call to VdHook to get the handle of

the ICA Client localized (remember VdHook maintains this handle as shared data) and

creates its transparent process window with position and dimensions such that it exactly

covers the entire ICA Client window. Covering the entire window is to ensure that no

mouse event will be sent to the ICA window during localization; if the window were to

cover just the localized application, there are chances for the ICA Client processing

messages in the wrong sequence (recall the example regarding saving files using mouse

clicks).

After the window is created, the main() function sends a local message to the

window. The code to handle this message is designed to ensure that no loss in keyboard

activity occurs during transition. Here, a function call is made to VdHook to register the

window and, as mentioned previously, VdHook sends a message to the server for

application info and thrusts keyboard focus onto KBWin. Then, KBWin calls the function

in VdHook trying to obtain the application information. If this call returns with the

information that the server has not responded yet, KBWin waits for a short time period

and makes the call again. If the function returns with the information, the process

continues with its initialization. This design will ensure that all typing activity occurring

during transition will be taken care of; while the part occurring before KBServer sends

the request for application information is handled by the client itself, the other part will

55

be handled by KBWin. And since KBWin waits until it gets the caret position information,

the keyboard messages sent to it will be queued and eventually processed and displayed

at the correct place. Note that processing and correctly displaying keyboard activity is

impossible without application and caret information. Incidentally, KBWin will exit if the

function call to VdHook returns the information that KBServer could not provide the

application information (for instance, if caret position detection fails). At this stage of

development, all the typing activity directed at KBWin will be lost in this case; this can be

remedied by including a mechanism that will process any queued keyboard messages and

immediately refresh with the server. After the refresh, KBWin can exit .

The information obtained from the DLL is same as the one provided by KBServer.

They are the dimensions and position of the area KBWin should localize and the position

of the caret in KBWin where a caret should be initially shown and text displayed. In

addition, VdHook provides through the same function the handle of the localized

application window in terms of the ICA session. Since the localization area information

provided by KBServer is in terms of the session, KBWin has to translate the position of

the area to suit the display on the client machine. In order to do this, the position provided

by KBServer is normalized with the top-left coordinates of the ICA Client window.

Interaction with VdHook during Exit

Before moving on to the display mechanism, the interaction between KBWin and

VdHook during KBWin’s exit will be discussed briefly. If KBWin refreshes before exit, it

will make function calls to VdHook and give it the text to refresh and the handle of the

application window that it localized. Along with this, the event that resulted in the end to

localization will be sent with pertinent information. The function in VdHook handles the

56

refreshing event as described earlier. Sometimes, the user may stop localization without

requesting a refresh and thus the refreshing function will not be called. Irrespective of

reason for end in localization, KBWin will finally call a function in the DLL to register its

exit. Various state values are set in this function based on whether KBWin refreshed

before exit.

In order to ensure that the user does not interfere with the refresh mechanism

employed on the server side, it is important that KBWin remains as the active window

during this time. For this sake, the refresh function called will wait until KBServer

acknowledges the refresh on the server side. This is done even when the user exercises

the RefreshAndInfo option even though it is not required; it has no affect on KBWin in

this case.

Now is the best time to discuss KBWin's RefreshAndInfo capability. When the

user exercises this option, localization is to continue after a refresh; KBWin calls the

refreshing function as usual and instead of exiting goes back to the logic as followed

during the WM_CREATE message! Keys typed during refresh will continue to be

directed at KBWin while it waits for the application information; they will be handled

once the updated information is retrieved from VdHook.

Localization Mechanism

Now the focus of our discussion shall completely shift to KBWin as a stand-alone

process. While the window covers the entire ICA Client, the localized area is defined as

follows:

57

Ø Its width is the same as the window of the application localized and its height covers

the window from the initial y position of the caret to the bottom of the application

window.

Ø Its x position is the same as the application localized and its y position is the same as

the initial y position of the caret on the application.

Keyboard events that can be localized are handled and displayed as if KBWin was

a regular edit box. More importantly, the position of characters displayed on KBWin

combined with the apt positioning of its window on the ICA Client makes the localized

display look very similar when the characters are typed in the application window! This

capability of the localization process makes it as transparent as possible to the user. The

display cannot be made completely transparent for reasons such as lack of information

regarding font and the number of characters to display on one line. Note that MS Notepad

expects the user to press <enter> before a new line is created, while MS Word has page

size properties. In this regard, KBWin works like MS Word by setting the width of a

typing line the same as the width of the localized area; a new line is created when the

right border is reached. Keys typed are handled as long as the character they represent

can be displayed at the appropriate place. If normal typing results in caret movement

beyond the localized area, KBWin performs a Refresh and exits.

On the contrary, encountering the following keys even when the caret is within

bounds will result in a simple refresh and exit:

Ø syskeys, control keys combinations,

Ø function keys with/without control or shift key combinations,

Ø page up, page down.

58

Ø Attempts to highlight text

The reason is simple: these keys cannot be handled displaying the "character"

they represent. This list may grow or reduce with further research regarding the keys that

can and cannot be handled locally.

As regards to the mouse, only left mouse clicks are allowed inside the localized

area and they are handled by simply moving the caret to the appropriate position.

However, the following mouse activities will result in a simple refresh:

Ø Left mouse clicks outside the localized area

Ø Any right mouse click

Finally, KBWin will perform a simple refresh when it loses focus (either by

keyboard or mouse). No other termination scenarios have been identified at this stage in

research.

KBServer: The Server Side Component

KBServer is the process running on the MetaFrame server that compliments

VdHook in the VC implementation. Ideally, KBServer should begin execution as soon as

the ICA Client is invoked and ideally be an iconic application throughout the session.

Since I do not have the means to link it with the MetaFrame server, this process should be

started manually but not necessarily at the beginning of the session. In fact, it is more

convenient for the sake of experiments that this application can be started and ended

manually. The application can be made iconic but since it is still in the development state,

it maximizes at initiation and is manually minimized during experiments. This section

59

describes the design scheme of KBServer, the services it provides, and the scheme it uses

to detect caret position in typing applications.

Design Scheme

Upon invocation, the process immediately opens the Virtual Channel used by

VdHook and purges any outdated data. After determining the session ID, it goes into a

daemon mode and the sequence of events during each cycle is described below.

A list of processes running in the session is determined and information such as

process id and process name of only typing applications is retained. Then a window

enumeration process is run and the ids of the windows enumerated are matched with

those of the typing applications. This filtering mechanism enables KBServer to get the

handles of windows associated with typing applications and maintains them as

application information. This is done every cycle since the user will most likely not have

the same windows running throughout the session.

Next, the handle of the window in focus is matched with the typing application

window handles. If the window is one of these, a message is immediately send to the

client that a typing window is in focus and that it should keep its eyes open for a KB Blitz

(the handle of the window is also sent) If the window in focus is not associated with a

typing application, the message sent will inform the client accordingly. From the second

cycle onward, the window in focus is compared with the window that had focus during

the previous cycle. If they are different, a message is sent according to which window

received focus. If the window handle is the same but is a typing window, the dimensions

are matched with the information saved in the previous cycle. If anything is different, a

message is sent to the client as if this window just came into focus. These messages may

60

result in any localization or keyboard monitoring at the client side to cease or reset

respectively. This reaction is in harmony with the principle that switching between

windows and changes in windows' dimensions and placement should not occur during a

KB Blitz.

 The next task executed in the cycle is reading on the VC for any

requests/information sent from the client machine. KBServer returns to the top of the

cycle if there are no messages. Received messages could be as simple as a Ping or

something more complicated as a request for application information. The other types of

messages received are “hello” messages and messages with information pertaining to

refreshes.

Services of KBServer

For messages requesting a refresh service, KBServer matches the window handle

in the message with the handle of the window in focus. This is done since refreshing is

actually achieved by copying the text to refresh on to the clipboard and then adding

events to the keyboard queue to simulate a CTRL + v key press, a shortcut for paste. Note

that this is the shortcut for most typing intensive Windows applications. There is a

potential problem to this scheme: the paste message will be sent to the wrong window if

the window handle of the application in focus is not the one in the refresh packet! Since

switching windows during localization is a refreshing event that will be generated after

refresh, the chances of the localized window not being in focus during the paste are few.

However, there is a possibility that the localized application or any other application will

pop up a window to inform the user about problems like fatal errors! However, this

problem is simple and has multiple solutions. Windows API provides a function called

61

SendInput() that can help send keyboard messages even to windows not in focus.

However, this requires a version of Windows NT higher than the one currently used in

the development of KBServer. Also, a display update message could be sent to the ICA

Client for each keyboard input and this is unacceptable. Another solution is maintaining a

buffer that stores the text to refresh for each “typing” window. Remember the size for this

buffer need not be bigger than the designated limit for the size of each refresh--if there is

another refresh for the same application, the window had to be in focus just before the

localization process and at that time the text in the buffer can be pasted on the

application. However, this involves race conditions and the user might have typed

something on the window before the paste is made, resulting in a failure for KB Pro! The

third solution is the simplest and is the one implemented: the localized window is forced

to the foreground. This will not affect transparency even if the refreshing event is a shift

to another window. Recall that KB Pro will generate the refreshing event only after the

text is pasted on the application. If the event is a key event, KBServer will generate it

only after the paste and if it is a mouse event, VdHook will generate it only after

KBServer acknowledges the refresh. In addition, pushing the application window into

focus is done for another reason. The application window is made to give up keyboard

focus to KBServer before localization (see below).

Upon receipt of application information requests (Info messages), KBServer first

matches the handle of the window in the request with the window currently at focus. Note

that the chances of another window being in focus are very little after the client has

detected a KB Blitz. Once the focus is verified, KBServer will make a series of Windows

API calls to get the dimensions and position of the target window. And if the position of

62

the caret is detected successfully (described later), the information is sent across to the

client. If any of these steps fail, the client is sent a message that the information cannot be

provided. A RefreshAndInfo request is serviced by a refresh on the localized application

followed by the same steps as when replying to an Info message. A display issue was

considered when clients localize applications. Since KBWin maintains its own caret,

having the localized application's caret also appear during localization will certainly

reduce transparency and confuse the user. To remedy this, KBServer will force itself to be

the active window before it sends the client application information; since KBServer is an

iconic application, this step will not affect display. In fact, the user may notice its icon

being highlighted and become aware of localization! And as mentioned earlier, focus is

given up when localization ends.

When KB server gets a StartPing message, it is actually a message to get prepared

to answer forthcoming pings in the same cycle; this is done to prevent any delays

between cycles from affecting the latency calculation. After a certain number of Pings are

received and answered (the number of pings is provided in the DLL header file),

KBServer moves to the next cycle.

The other miscellaneous messages are Hello messages and Escape messages. The

former is sent when VdHook opens its VC and is handled by a replying with the same

message. The latter is sent when localization ends without refresh; this is handled by

returning to the localized application keyboard focus that was taken away before

localization began.

63

Caret Position Detection Scheme

Typing applications normally display a caret where the user's typing will be

displayed and it is common knowledge that MS Word and MS Notepad windows display

carets. Note that these applications, like how all Windows applications with carets should

be designed, show the caret only when the window is in focus. However, there are no

API calls available that applications can use to retrieve the position of the caret in

windows other than the ones it owns (itself and its child windows). Thus, KBServer will

have to devise means to detect the position of the caret in the application KB Pro wants to

localize and this scheme is described below.

Once the target application is found to be in focus, KBServer performs a sequence

of complicated bitmap calculations that can be completed within a very short period of

time (below 1000 milliseconds). First the dimensions of the application in focus are

retrieved and a pair of structures to create and store bitmaps bearing the image of the

window is created. Then a snapshot of the application is taken by saving the image of the

application window in a bitmap. After that an event is pushed on to the keyboard queue

and when the application gets the event (which it will since it is in focus), the character

represented by the event is displayed where the caret is positioned. Assuming that this

worked, another snapshot of the application window is taken and the character is deleted

by sending another keyboard event for representing the backspace key. The first snap is

then compared with the second snap via a bit-by-bit comparison; the comparison should

result in a conflict where the character was displayed, and hence where the caret was

positioned. If any of the above steps fail (example the first snap shot), the detection

process is deemed to have failed. I am aware that there could be a conflict even without

the display of a character at the caret position since the caret blinks. However, relying on

64

the caret blinking requires precise timing for the second snap shot, something too

complicated. Also, there is no way to determine if the caret will appear in the first snap

shot and not in the second, and vice versa. In addition, some applications may not have a

blinking caret! Nevertheless, the scheme used by KBServer is not foolproof either since

the bitmap and key insertion steps are not guaranteed to succeed. In such scenarios, the

caret detection procedure is deemed to have failed. The failure to find the caret position

exacerbates to a failure in providing information about the target application for

localization, and eventually to a failure in KB Pro. The experiments on KB Pro have

shown that this possibility exists but only at a low percentage.

Localization that begins with the above information and with the design of KBWin

will remain transparent only when the user is appending text to a file! Since KBWin

displays localized typing on top of the ICA display, localizing typing when the user is

typing between lines will produce a display with localized text overlapping previously

typed text! Such scenarios will certainly reduce the transparency of KB Pro. Localization

can be avoided if there are dependable means available to detect typing between lines of

text. At this point in research, the user will have to accept this drawback and either

continue localization with a faulty display or end it manually.

For such situations, the user may be provided with an option in KBServer to

choose between two modes: append and edit. While the former is the default mode,

KBServer can be designed to choose between two options for the latter: it can inform

VdHook that the typing application is not meant for localization; or, it can artificially

create empty space on the application window using the following algorithm:

Detect the current position of the caret;

65

Generate a key event representing an enter key press and detect caret position again;

/* this should give the approximate amount of vertical space eaten up by one line in

normal mode */

Calculate the difference in the y positions of the two caret positions;

/* obtain the ratio of space eaten up by one line in local and normal modes.

the average width and height of the character display in local mode are defined in

the s hared header file. The average character height is deemed to be the space

eaten up by one line in normal mode */

Compare the difference to the average character height in the header file and determine a

line ratio;

Use the difference in the y caret positions, the ratio, and the dimensions of the application

window and generate enter key events in order to create a specified number of lines for

localization;

Use key events to push the caret back to the original position;

Detect caret position again and send pertinent information to VdHook;

A similar scheme can be adopted to increase the localizable area if the caret

position is found to be so close to the bottom of the window. This idea is in harmony with

the principle of keeping the number of transitions to the minimum and transparency will

not be sacrificed except in edit mode. The amount of space to create can be specified in

the shared header file.

This algorithm was implemented in KBServer but is not guaranteed to create the

required amount of space. Nevertheless, it will be included as one of the features since it

66

is not detrimental to KB Pro even when it fails; this feature will be included during

experiments and some of the longer benchmarks might utilize it.

The caret position detection method will not work correctly if there are any other

moving pixels on the bitmap above the y position of the caret. The result is the same

when the application window is being repainted when the snapshots are taken. It is

virtually impossible to guarantee that the window will be repainted before a snapshot is

taken. The caret position information given to the client might be nowhere near the actual

position of the caret in these cases. Also, as mentioned earlier, a failure in any sub task in

the detection scheme will result in the entire process being deemed a failure. These two

reasons for failure are accepted as unavoidable flaws of the detection scheme and it is for

this reason that KB Pro provides an option for the user to exit localization without a

refresh.

A question that can be raised here is why doesn’t KBWin use the same scheme

and detect the caret position itself? There are two main reasons for this design: one,

creating and manipulating bitmaps may require considerable amount of memory and

processing resources and these are very precious in mobile machines; two, making the

server do as much of the processing as possible is in harmony with the core principle of

thin clients. Needless to say, MetaFrame servers on fixed networks will be much more

powerful and there is no dearth for memory or processing power. In addition, the event

added to the keyboard queue during caret position detection (to display a character at the

caret position) will be processed faster when it is inserted locally (by KBServer) than

when the client machine does it (KBWin). Still, maintaining the leanness of the thin client

remains the salient reason why the caret position detection is left to the server.

67

Summary

All features of KB Pro have been designed and implemented keeping in mind the

principles enumerated in Chapter 3. The resources of the Windows API have been

exploited to their maximum and, at the same time, its limitations have imposed

restrictions such as excluding font information and adopting a caret position detection

scheme that is not hundred percent guaranteed to succeed.

Figure 4: KB Pro system architecture

68

CHAPTER 6
EXPERIMENTS

The main motivation behind the KB Pro system is that users of thin clients must

be shielded from the harmful effects of high network latency with respect to keyboard

activities. The localization system implemented enables prompt display of user's

keystrokes and produces a reasonably transparent display. And even thought it maintains

the thin client theme, there is unavoidable dependence on the resources of the client

machine: the localization process will require hard disk space for installation and RAM

and CPU power for execution. As scientists, we would like to measure the utility of such

systems by experimenting under heterogeneous scenarios and producing data related to

benefits and drawbacks. This chapter first describes a process called KB Pro Benchmark

developed to produce heterogeneous typing patterns. The next section describes a

Latency Emulator built specifically for the ICA Client. The third section is a brief

description of the Performance Monitor built into the Windows NT system and its utility

in experiments. Then the variables chosen in evaluating the system are enumerated and

the rationale behind their choice is explained. The chapter then elaborates on the

experiment mechanism before concluding with a section devoted to data collected from

experiments and its analysis.

69

KB Pro Benchmark

Any experimentation with the KB Pro system must obviously involve typing as

the main input. However, manually producing key events will not guarantee that the

conditions for all experiments will remain consistent; the production of keyboard activity

must be made consistent and controlled and thus automatic. For this purpose a process

that will produce key events has been designed, called the KBPro Benchmark (we will

refer to it as Bench). Bench does more just insert arbitrary key events! It does it such that

the series of typing events produced emulates various typing behaviors of humans with

awareness of network latency.

Design Scheme

Before further discussing Bench, lets recalls from that a KB Blitz is defined as

fifteen continuous key events involving letters, alphabets, and special characters that can

be processed by simply displaying the characters they represent at the correct place. Also,

the implementation scheme uses this standard to decide if a certain typing behavior

requires localization. In addition, localization stops when a refreshing event (certain key

event or key combination event) occurs; the typing done locally is refreshed with the

server, the refresh event is then generated, and the client returns to normal mode. The

inputs to the experiments must be able to create scenarios for the client to work in

normal, local, and transition modes in order to measure the viability of the KB Pro

system. These input sets, which will be referred to as benchmarks henceforth, will be

produced by Bench using the following design scheme:

Ø At its bare form, Bench will produce a series of key events that will emulate the

typing of a pre-defined sentence (called default): " Welcome to the KBPro

70

Benchmark created for measuring the performance of the KB Pro system." It is worth

noting that this sentence contains 90 characters, though there is nothing special about

the number.

Ø The number of times this sentence is typed can be specified and this will be defined

as the number of cycles. The product of the number of cycles and 90 will be the

length of the benchmark. When the benchmark ends, an event will be produced such

that the client will return to normal mode, even if it happens to be in normal mode.

Ø Running a Benchmark with multiple cycles of default will result in the client going

into local mode and remaining there until the end of the Benchmark. In order to

produce typing behaviors with fewer KB Blitzes, refreshing events can be

interspersed in each cycle of the benchmark. The number of refreshing events per

cycle can be specified.

At this stage of design, Bench will produce benchmarks of various lengths. One

missing feature is that these benchmarks produced do not make typing mistakes or do

editing. This is acceptable since these events only affect the shift from normal mode to

local mode; any of these occurring during localization process can be handled as long as

the user stays within the localization area (as defined in chapter 2). This observation

results in the following design principles for Bench:

Ø Editing and errors are not that important to measuring the utility of KB Pro.

Ø A key event series is not a KB Blitz when a refreshing event is interspersed in the

series. The reaction of KB Pro to this event during normal mode will be the same as

when the user does any editing--localization is postponed.

71

Ø The event used to disqualify a series from being a KB Blitz can also be used as the

refreshing event when the client is in local mode. Thus, the refreshing event can be

made a keyboard event to achieve the dual purpose: disqualify a series from being a

KB Blitz and cease localization. This adds simplicity to Bench.

Refreshing Events

Contrary to the section heading, there is only one type of refreshing event and it

has been designated as:

Ø Press of the alt key

Ø Press of the key representing the character 'f'

Ø Another press of the alt key

On applications like MS Word and Notepad, this will result in the File menu

dropping down and disappearing immediately. However, the event produced by these key

presses may not occur properly if the client is extremely slow. Also, the entire event may

not be seen during experiments if the key presses occur continuously. Therefore, before

steps 2 and 3 Bench waits for a time period equal to the response time of the client. This

is obtained via a function call to the DLL of a Virtual Channel Driver in the Latency

Emulator that measures the network latency of the ICA Client connection. It should be

noted here that Bench would produce benchmarks only if the Latency Emulator is

running. This response time is assumed to be a good representation of the amount of time

needed for the display to change.

The number of times the refreshing event occurs in a cycle can be specified (event

rate). The effect of this event on the client is either the delay in going into local mode or

the end to localization, which is exactly the feature needed to produce heterogeneous

72

typing scenarios for testing KB Pro. However, the position where these events occur

during the cycle should not be fixed since the effects of every cycle on the client would

be constant. Thus, a certain degree of randomness needs to be added to the timing of

these events. This randomness would add reality to the Benchmarks and at the same time

maintain the number of events per cycle. The timing of all refresh events will be

determined prior to the execution of the benchmark and will be based on the event rate

and the number of cycles. For clarification purposes, the timing will actually be the index

of a character on the cycle after which the event should occur.

Keystroke Generation Scheme

Another factor considered while designing Bench involves the transition period

between local and remote modes. Remember that KB Pro handles user activities while

shifting from normal mode to local and not during the transition from local to normal

mode. Thus, Bench needs to be aware of such scenarios and does so by making function

calls to VdHook. This function will tell if KB Pro is in normal, local, or transition mode.

If the client is in transition, Bench delays the next key event until the client gets out of

transition. While this is not required when shifting into local mode, this feature is

implemented anyway in order to simplify Bench. Note that the effect of this waiting time

on the measurements will be negligible.

In order to make the benchmarks more human, the rate of key event generation

was considered. Lag between key events will produce a behavior that may make the

visual appearance of benchmarks more authentic. But the purpose is defeated if there is a

constant lag between each key pressed! A simple observation of common typing behavior

will show that users normally type a set of 4 to 5 keys with very little time lag in between

73

the keys. However, the lag between the 5th key and 1st key of the next set is more - a

distinct pause! The user normally waits for or takes notice of the display of the 5

characters before moving to the next set. Bench produces key events to mimic this

behavior. If the client is in local mode, the time gap may between sets is appropriate to

the response time of the client. During local mode, the gap is a pre-defined value that is

apt for immediate display of characters typed.

In summary, the following describes algorithm implemented by Bench to produce

benchmarks:

If there are events in Benchmark

Randomly determine the timings;

While there are keys to generate{

 If in transition mode

 Wait till mode changes;

Generate the next key event;

Wait for time lag between keys;

If the key pressed is the last of a set of 5

 Wait for time period between sets (time based on client mode);

if a key event should be generated at this time

generate it;

}

The Stopwatch and the GUI

Since the built in logging features of the ICA Client and the Performance Monitor

are utilized for measuring communication and local resource overheads respectively,

74

Bench is designed to provide the starting and ending times of a particular benchmark.

This not only gives the duration of the benchmark (one of the measurements) but also

provides the time bounds of the log file to focus on for obtaining overhead information.

Figure 5: A snapshot of the ICA Client log file

A snap shot of an ICA Client log file is produced above. This file contains

information about all packets exchanged during a session, including the number of

messages and bytes sent and received. Observe that the first and seconds numbers on

each line are the minutes past the hour and the number of seconds past the minute. Since

no session will run for an hour during experiments, the hour of the experiment can be

ignored. If the starting time of the experiment is 28 minutes and 10 seconds and the

ending time is 29 minutes and 32 seconds, all the logging done inside this time period can

be parsed to measure communication overheads. For this purpose, a simple file parser

was developed to parse a log file between the starting and ending times and obtain values

such as number of messages sent, bytes sent, messages received, and bytes received for

that time period.

75

In order to facilitate the specifications of Benchmarks, a simple GUI is provided

for Bench.

Figure 6: A snapshot of the GUI for Bench

This allows for setting the number of events per cycle and the number of cycles to

run. And a reset button is provided in case the Benchmark needs premature termination.

During the run of a Benchmark, the GUI displays information such as the current

character position in the cycle, the current cycle number, the mode of the client, the

latency in the network, and the timing of any events during the cycle.

76

Figure 7: A snapshot of Bench's GUI during a benchmark

Figure 8: A snapshot of Bench's GUI at the conclusion of a benchmark

Network Emulator

The thin client prototype, as described in chapter 3, runs on a wireless private

network with a raw bandwidth of about 2 megabits per second and a ping time

measurement less than 10 milliseconds. In order to simulate the performance of the thin

client in communication channels that are much slower, a network emulator has been

developed. This emulator is implemented using two Virtual Channel Drivers (VDs) that

77

communicate separately with one server side application using two VCs. The server

application provides a GUI to set the network latency to particular values.

Design Scheme

The design scheme of the emulator exploits the single-threaded feature of the ICA

Client. VD developers are warned against including blocking code in the DLLs since the

entire client blocks and thus slows down. This feature along with that of the DriverPoll()

function being called periodically by the WinStation Driver (WD) provides the perfect

framework for artificially slowing down the client. If a VD is made to sleep for a certain

time period inside the DriverPoll() function definition, the entire client waits for that time

period and eventually slows down. This blocking code in one of the VDs delays all other

client functionality, including other VDs and, most importantly, the segment that sends

messages to the server and receives display refreshes. The delays that occur from this

scheme actually occur between the WD and the underlying protocol. While the messages

to and from the client machine are delayed only as much as the network latency, the time

it takes for the WD to write on or read from the connection is delayed; this effectively

increases the latency in communication between the client and the server machines. Since

this emulator is implemented using VCs, it can be utilized irrespective of the underlying

protocol used by the ICA connection.

As assumption made about VCs here is that the WinStation Driver polls all VDs

before sending any kind of packet to the server. The sequence in which the VDs are

called may be the sequence by which they are listed in the module.ini file. Thus, if the

delaying VD's name is listed last, a packet from any other VD is sent only after the

DriverPoll() function of the delaying VD completes execution. A drawback to this

78

scheme is that the client is slow even when there is no communication: however, since

most client activities are based on communication, this factor can be tolerated.

This design scheme cannot be proven correct since the frequency of calls made to

the DriverPoll() function in each DLL cannot be ascertained from the information

provided in the VC SDK documentation. For this purpose, another VD is used in order to

measure latency. The VD sends packets to the server that returns them immediately and

the roundtrip time for the packet is measured, half of which is the approximate latency.

This number is a good representation since the client and the server operate on a private

network and the server is freed of all other duties except than handling the thin client.

And since this emulator is used for experimental purposes, other activities on the client

can be terminated. The numbers generated by this VD after inducing delay in the other

VD consistently showed that the delay scheme produces network latency very close to

the desired value. In addition, it was observed that the response time measured by

VdHook also closely matched the latency specified in the emulator. The abnormal

accuracy in these results may be attributed to two facts:

Ø The clock resolution in the Windows NT operating system is only 10ms

Ø The latency on the ad-hoc mode remains consistently below 5 ms, a latency that is

virtually 0

The result is that normal network latency cannot be accurately calculated since all Pings

would have roundtrip times less than 10ms. Since the roundtrip times for these Pings

would be recorded as 0 due to the clock resolution, the detection scheme would deem

roundtrips of such packets as 10 ms. Therefore, the latency produced after manipulation

is assumed to be a close approximation of the desired network latency.

79

Bandwidth Manipulation: Future Work

During the development of this emulator, an attempt was made to artificially

control bandwidth between the client and the server. The idea was that a tandem of

processes (not VC implementations) working on the client and server side would eat up

the difference in the current bandwidth and the desired bandwidth through a TCP

connection. These processes would continuously exchange a certain number of bytes

every second. However, the accuracy of this scheme could not be confirmed since the

second pair of applications used to measure the controlled bandwidth started eating the

bandwidth used by the bandwidth hogging processes! Thus the bandwidth control feature

was removed from the emulator design; fortunately, the latency control scheme

succeeded in slowing down the client as needed.

Bandwidth manipulation can be a cause for future work on the Latency Emulator.

The bandwidth may be controlled by another VD that writes a certain number of bytes

during every DriverPoll() function call. And unlike the VD for delays, this VD would be

listed first in the module.ini file! However, more information regarding the mechanism of

VDs may be required to make this scheme accurate. For instance, the frequency of calls

to a VD's DriverPoll() should be known; also, the mechanism of how a VC writes may be

required in terms of how the data are sent across the underlying connection. Note that a

server process for the VC can be implemented to eat bandwidth on server to client

communication. Even if this process was implemented and used during experiments, it

would have seriously affected the communication measurements of each benchmark.

Note that the delaying VD never sends data! The complexity of these issues coupled with

time restrictions make bandwidth manipulations beyond the scope of this thesis.

80

Implementation

As mentioned earlier, there are three components to the client emulator: VdPoll,

VdEmulLatency, and EmulatorServer (ES) and they too share a header file. VdPoll

communicates with ES over the VC "ctxpoll" and VdEmulLatency uses the VC

"ctxemul" When ES is started, a message is sent to VdPoll to measure the network

latency. VdPoll uses the same scheme as VdHook in this process; it sends a series of

Pings (the number of Pings is specified in the header file) to ES and half of the average of

the roundtrip times is designated as the network latency. This is a very reasonable

estimate since the thin client runs on a private network and the server is free of other

duties. VdPoll then sends a packet to ES with the latency value after which the user is

allowed to specify desired latency values. When a change is requested, ES sends a

message to VDEmulLatency with the time period to sleep during every DriverPoll() call;

this number is the difference between the desired latency and the network latency

detected by VdPoll. When VDEmulLatency gets this message, it decodes it to get the time

period to sleep. Actually, the DriverPoll() function sleeps for a time period double that of

the desired latency since no corresponding delay mechanism can be implemented at the

server; it should be mentioned here that the default sleep value is zero when the client is

allowed to work without any latency manipulations. Once ES communicates this number

to VdEmulLatency, it directs VdPoll to start another series of Pings to measure the new

latency, which should be very close to one requested. If the latency measured is within a

reasonable range from the desired latency, the change is a success. The value of this

range is 10ms, which is not only a tight restriction but also suitable to the clock resolution

on Windows NT. If the change is not a success, the user will have to try again. It is

81

worth noting that the resulting network latency matched the desired latency in a very

large majority of tests.

I acknowledge the fact that this Network Emulator induces only constant delays

into the ICA Client and not variable latencies within a reasonable range of the latency

desired, as may be the real world case in wireless networks. However, the sole purpose of

this Emulator is to delay the client to certain values so that experiments can be performed

even over fast connections.

Figure 9: A snapshot of the Latency Emulator GUI

Performance Monitor

The Windows NT Workstation 4.0 operating system comes with a built-in

performance monitoring tool called the Performance Monitor (we shall call it Monitor for

convenience). This applications runs a GUI by which the user can set counters such as

memory and processor usage to be monitored and the display will produce real-time

graphs, reports, or log files as chosen by the user. When Monitor produces log files, the

data from these files can be used as input for producing graphs and reports. In addition,

82

time periods within the duration of the log file can be specified to produce data for that

period. This feature is exploited during the experiments on KB Pro; since Bench produces

the starting and ending time of a benchmark run, time periods within a log file can be

clearly specified. The result is that processor and memory measurements for that time

period can be extracted and added to the other measurements of that experiment.

However, we should note that these values are for the entire system during the

experiment and not for a particular process. Monitor does provide for specific process

monitoring but with the current implementation of KB Pro, utilizing this feature is

rendered impossible. It should be noted that Monitor does provide for monitoring other

systems counters; but they are ignored them due to lack of knowledge regarding their

with relevance to the evaluation of KB Pro.

Figure 10: A snapshot of the Performance Monitor GUI

83

Experimental Variables

Measuring the utility of the KB Pro should ideally be done by comparing data

collected when the client does and does not use the localization system. While the main

motivation of the KB Pro system is to improve client performance under high latency in

communication, the design of the system is based on two aspects. They are increasing

user satisfaction with the thin client and keeping the burden placed on the resources of

the client machine and the server at a minimum. The choice of data collected from the

experiments should be based on the above two.

Since user satisfaction is subjective, choosing variables that reflect user

satisfaction may produce results that are subjective also. However, when the core issue is

keyboard activity and thin network latency, time can be designated as a measuring scale

for user satisfaction (time is money!). Personal experiences will show that we type faster

in fast telnet connections than in slow ones. When the user immediately sees a set of

characters she typed on the screen, she moves on to the next one; if the display is

delayed, she either waits or types it in again depending on her patience and/or her

knowledge of the delays! Or she might think that the connection has been terminated!

One can argue that confident users who are aware of the delay may not wait or retype but

this may be the case only when the amount of typing done is little. When the user is

typing a document, what she types may require seeing what was typed immediately

before. And for all practical purposes, the lay computer user likes to see what was typed

as soon as possible.

Adopting this principle, the time required to run a benchmark on a client with KB

Pro can be compared to the time required to run the same on a client without KB Pro.

Since Bench is designed in such a way that the typing behavior generated reasonably

84

matches typing instincts of humans, the time measurements will be a good representation

of the time humans would take to type in the same text. And the difference in these

measurements should give us a reasonable index of increase in user satisfaction.

Apart from measurements related to time, measurements on the amount of

communication between the server and the client should also provide evidence to the

benefits of KB Pro. In fact, it can also be used as means to indicate increase in user

satisfaction: if the number of packets exchanged is lower with KB Pro, then the wireless

network bill will reduce and the user's satisfaction will increase! Intuitively, the amount

of communication should decrease when the client is in local mode; each keystroke does

not result in messages being sent back and forth on the connection and all the text typed

locally is refreshed with one message through the Virtual Channel (VC). Even though

there is communication overhead on the VC while starting and ending localization, they

are negligible; the measurements on communication are expected to be in support of

localization. The communication done will be measured using the logging feature built

into the ICA Client that will log all messages received and sent by the client. It is

assumed that the logging includes communication on all VCs since the tutorial of the

Program Neighborhood application states that all packets sent and received by the client

will be logged. Since most wireless networks are packet based, the number of packets

exchanged is more important than the number of bytes exchanged.

In summary, the following will be measured and compared:

Ø Benchmark duration

Ø Number of messages sent

Ø Number of messages received

85

Ø Number of bytes sent

Ø Number of bytes received

The remaining choice of variables will provide information with respect to the

drawbacks of localization. These are burdens placed on the resources of the client and

server machines such as memory and processor usage. The performance monitor built

into the Windows NT Workstation operating system will be used in this measurement

process. Intuitively, these resources should be used more when KB Pro is part of the thin

client system and even more when localization occurs during that benchmark. During

experiments, the specific counters that will be monitored are:

Ø The average percentage CPU time

Ø The average percentage committed bytes in use

Experiment Mechanism

Conducting experiments to evaluate the KBPro involves multiple applications

within and outside the ICA Client. First, Bench needs to be running on the same machine

as the ICA Client and so should the performance monitor, with logging information set.

An ICA Client should be running with the Latency Emulator and, in half of the

experiments, KBPro should be running. Once an experiment ends, measurements have to

be taken and some applications may need to be closed or reset. Having a process that

automates all the above is beyond the scope of this thesis! Simpler means are employed

even while maintaining the control, and thus the authenticity, of the experiments.

The settings for each experiment will be from the following choices:

86

Ø Using KB Pro and without using KB Pro (2 choices): comparison of benchmarks with

the same settings in these two groups will provide proof of KB Pro's utility.

Ø Benchmark lengths of 2,5, or 10 cycles of 90 characters per cycle (3 choices): this

will show how effective KB Pro is with different volumes of typing activity.

Ø Network latency values of 100, 300, or 500 ms (3 choices): 100 ms was chosen to

show the effect of KB Pro's presence without any localization. Since even 500 ms

latency proved cumbersome, higher latencies were avoided.

Ø Refreshing event rates of 0,1, or 2 per cycle (3 choices): a refreshing rate of 0 is

perfect for KB Pro but not too many people work this way! 1 is an ideal setting for

KB Pro to show its "real world" utility. But 2 events per 90 characters will be an

effective setting to evaluate KB Pro for typing behaviors unsuitable for typing.

Thus, a total of 3 * 3 * 3 * 2 = 54 experiments will be performed. The experiments

will be grouped together based on the hierarchy formed by the sequence of the above

settings listing. Experiments are first divided into two basic (a) groups: those that involve

KB Pro and those that do not. For each (a) group, the experiments are divided into sub

groups (b) that use benchmarks of the same length. These (b) groups are further

subdivided into groups (c) that use the same network latency: all (c) groups will consist

of three experiments based on the refresh event rate settings. Logging in the Performance

Monitor is started before the first experiment in a (b) group and is ended when the last

one in this group is completed. Before each experiment in a (c) group, the desired latency

is induced using the Latency Emulator. Following this, KBServer is started and

minimized for experiments involving KB Pro. It is closed after the last experiment in a

(c) group and restarted once the latency is changed to for the next (c) group.

87

The following processes should be running on the client machine before an

experiment begins:

Ø Bench

Ø ICA Client session

Ø MS Word in the client session (MS Word will be the default typing application for

experiments)

Ø Latency Emulator in the client session

Ø The Performance Monitor

The following are done before any experiment starts:

Ø The MS Word window inside the ICA Client will be given keyboard focus.

Ø Values are set in Bench according to the kind of benchmark desired and the

benchmark is started

The following remain constant throughout all benchmarks:

Ø Client window dimensions (in pixels): horizontal resolution: 640 and vertical

resolution: 480

Ø The MS Word window should be a “blank document” with no previously typed text

and it is maximized inside the client display. This provides a maximum localizable

area of dimensions (in pixels): horizontal resolution: 590 and vertical resolution:

306

Ø The user applications that run on the client machine are: ICA Client, Performance

Monitor, Bench, and a MS Excel window to record experiment results

Ø there may be system applications running in the background that are not under user

control.

88

Ø The MetaFrame server services only the ICA Client used in the experiments and no

other applications execute in it during the experiments.

At the conclusion of each experiment, the starting and ending times of the benchmark

are recorded against the settings for the benchmark (number of cycles, event rate, and

latency). At the conclusion of a group of experiments using the same benchmark length,

the following is done:

Ø The client is closed and this will make the ICA log file available for use

Ø Logging is terminated in Monitor.

Ø The time period recorded for each benchmark is used to set time periods in the log

file produce by Monitor; from these time periods, the variables related to processor

time and memory usage are obtained

Ø The same time period is used to parse that section of the ICA Client log file and the

values of the communication variables are obtained.

Ø All these values are recorded against the benchmark settings for that experiment

Experiment Data and Analysis

As mentioned, a total of 54 experiments were performed in order to gather data and

evaluate KB Pro. These data will be presented in two sections. First, tables will be

provided to show the time and communication measurements of all benchmarks. In

addition, pairs of experiments with the same settings, one performed without KB Pro and

one with KB Pro, will be compared. This comparison will give testament to the utility of

the localization system with respect to time and communication savings. The second

section of data presentation will consist of tables containing information about the usage

89

of memory and processor resources during the experiments. And like the previous

section, one-on-one comparisons of experiments with the same settings will be made to

show the utilization of local resources with and without KB Pro. The section will

conclude with a few selective graphs of experiment results.

Time and Communication Data

The first set of data presented here was collected from experiments performed without

KB Pro. The second set was collected from experiments performed with KB Pro

integrated with the client. For the sake of comparison, a third set is presented. Pairs of

benchmarks, one from the first set and the other from the second, with the same settings

are compared against each other with respect to time and communication measurements.

This comparison will show the utility of KB Pro:

Ø First, the decrease in benchmark time will give an indication as to the improvement is

user experience with respect to time saved in typing

Ø Second, the decrease in the amount of communication will give an indication in the

increase user satisfaction with respect to the wireless communication bill.

90

Table 3: Time and communication measurements without KB Pro

Cycles Event Rate
Latency
(in ms)

Duration
(in secs)

Packets
Sent

Packets
Received

Bytes
Sent

Bytes
Received

2 0 100 26 400 115 4008 9048
2 0 300 51 401 82 4012 8310
2 0 500 86 399 85 3990 9972

2 1 100 38 405 133 4050 9192
2 1 300 65 413 102 4120 9248
2 1 500 102 411 101 4110 8604

2 2 100 52 422 156 4220 9810
2 2 300 81 424 122 4340 7574
2 2 500 119 417 118 4170 10353

5 0 100 64 998 300 9984 25470
5 0 300 125 998 207 9980 20652
5 0 500 222 1001 221 10012 21858

5 1 100 97 1028 349 10280 23350
5 1 300 163 1024 258 10240 22318
5 1 500 255 1029 253 10290 25336

5 2 100 129 1058 398 10580 23476
5 2 300 201 1056 298 10560 25548
5 2 500 298 1062 295 10620 29246

10 0 100 127 1993 601 19934 47182
10 0 300 255 1996 422 19962 43786
10 0 500 434 2002 432 20020 46300

10 1 100 193 2055 713 20552 48378
10 1 300 326 2060 508 20600 44502
10 1 500 513 2049 511 20490 50444

10 2 100 257 2115 798 21150 50982
10 2 300 401 2117 611 21170 50432
10 2 500 610 2119 606 21190 57274

91

Table 4: Time and communication measurements with KB Pro

Cycles Event Rate
Latency
(in ms)

Duration
(in secs)

Messages
Sent

Messages
Received

Bytes
Sent

Bytes
Received

2 0 100 25 386 114 3870 10132
2 0 300 31 35 35 368 2704
2 0 500 32 22 31 228 1774

2 1 100 38 402 128 4024 7190
2 1 300 62 114 73 1182 6520
2 1 500 67 89 66 922 7584

2 2 100 51 414 148 4142 7554
2 2 300 85 164 102 1686 11406
2 2 500 116 195 113 2086 14272

5 0 100 63 983 305 9836 25316
5 0 300 68 33 72 346 2154
5 0 500 69 23 67 232 2284

5 1 100 96 1029 358 10292 20818
5 1 300 141 216 176 2232 16042
5 1 500 160 174 155 1814 15750

5 2 100 128 1050 406 10500 24600
5 2 300 215 424 285 4369 33454
5 2 500 244 326 238 3378 29705

10 0 100 126 1990 630 19902 45610
10 0 300 139 72 156 874 12251
10 0 500 146 46 143 508 10728

10 1 100 191 2047 730 20472 48008
10 1 300 277 406 338 4180 34094
10 1 500 315 338 307 3552 37681

10 2 100 256 2112 816 21122 50664
10 2 300 421 434 522 4566 71567
10 2 500 496 658 481 6822 64738

92

Table 5: Comparison of time and communication measurements (1)

Cycles Event Rate
Latency
(in ms)

Duration
(in secs)

Packets
Sent

Packets
Received

Bytes
Sent

Bytes
Received

no KB Pro 2 0 100 26 400 115 4008 9048
with KB Pro 2 0 100 25 386 114 3870 10132
Changes
(increases) 1 4 1 138 1084

no KB Pro 2 0 300 51 401 82 4012 8310
with KB Pro 2 0 300 31 35 35 368 2704
Changes
(increases) 20 366 47 3644 5606

no KB Pro 2 0 500 86 399 85 3990 9972
with KB Pro 2 0 500 32 22 31 228 1774
Changes
(increases) 54 377 54 3762 8198

no KB Pro 2 1 100 38 405 133 4050 9192
with KB Pro 2 1 100 38 402 128 4024 7190
Changes
(increases) 0 3 5 26 2002

no KB Pro 2 1 300 65 413 102 4120 9248
with KB Pro 2 1 300 62 114 73 1182 6520
Changes
(increases) 3 298 29 2938 2728

no KB Pro 2 1 500 102 411 101 4110 8604
with KB Pro 2 1 500 67 89 66 922 7584
Changes
(increases) 35 322 46 3188 1020

no KB Pro 2 2 100 52 422 156 4220 9810
with KB Pro 2 2 100 51 414 148 4142 7554
Changes
(increases) 1 8 8 78 2256

no KB Pro 2 2 300 81 424 122 4340 7574
with KB Pro 2 2 300 85 164 102 1686 11406
Changes
(increases) 4 260 20 2654 3832

no KB Pro 2 2 500 119 417 118 4170 10353
with KB Pro 2 2 500 116 195 113 2086 14272
Changes
(increases) 3 222 5 2084 3919

93

Table 6: Comparison of time and communication measurements (2)

Cycles Event Rate
Latency
(in ms)

Duration
(in secs)

Packets
Sent

Packets
Received

Bytes
Sent

Bytes
Received

no KB Pro 5 0 100 64 998 300 9984 25470
with KB Pro 5 0 100 63 983 305 9836 25316
Changes
(increases) 1 15 5 148 154

no KB Pro 5 0 300 125 998 207 9980 20652
with KB Pro 5 0 300 68 33 72 346 2154
Changes
(increases) 57 965 135 9634 18498

no KB Pro 5 0 500 222 1001 221 10012 21858
with KB Pro 5 0 500 69 23 67 232 2284
Changes
(increases) 153 978 154 9780 19574

no KB Pro 5 1 100 97 1028 349 10280 23350
with KB Pro 5 1 100 96 1029 358 10292 20818
Changes
(increases) 1 1 9 12 2532

no KB Pro 5 1 300 163 1024 258 10240 22318
with KB Pro 5 1 300 141 216 176 2232 16042
Changes
(increases) 22 808 82 8008 6276

no KB Pro 5 1 500 255 1029 253 10290 25336
with KB Pro 5 1 500 160 174 155 1814 15750
Changes
(increases) 95 855 98 8476 9586

no KB Pro 5 2 100 129 1058 398 10580 23476
with KB Pro 5 2 100 128 1050 406 10500 24600
Changes
(increases) 1 8 8 80 1124

no KB Pro 5 2 300 201 1056 298 10560 25548
with KB Pro 5 2 300 215 424 285 4369 33454
Changes
(increases) 14 632 13 6191 7906

no KB Pro 5 2 500 298 1062 295 10620 29246
with KB Pro 5 2 500 244 326 238 3378 29705
Changes
(increases) 54 736 57 7242 459

94

Table 7: Comparison of time and communication measurements (3)

Cycles Event Rate
Latency
(in ms)

Duration
(in secs)

Packets
Sent

Packets
Received

Bytes
Sent

Bytes
Received

no KB Pro 10 0 100 127 1993 601 19934 47182
with KB Pro 10 0 100 126 1990 630 19902 45610
Changes
(increases) 1 3 29 32 1572

no KB Pro 10 0 300 255 1996 422 19962 43786
with KB Pro 10 0 300 139 72 156 874 12251
Changes
(increases) 116 1924 266 19088 31535

no KB Pro 10 0 500 434 2002 432 20020 46300
with KB Pro 10 0 500 146 46 143 508 10728
Changes
(increases) 288 1956 289 19512 35572

no KB Pro 10 1 100 193 2055 713 20552 48378
with KB Pro 10 1 100 191 2047 730 20472 48008
Changes
(increases) 2 8 17 80 378

no KB Pro 10 1 300 326 2060 508 20600 44502
with KB Pro 10 1 300 277 406 338 4180 34094
Changes
(increases) 49 1654 170 16420 10408

no KB Pro 10 1 500 513 2049 511 20490 50444
with KB Pro 10 1 500 315 338 307 3552 37681
Changes
(increases) 198 1711 204 16938 13763

no KB Pro 10 2 100 257 2115 798 21150 50982
with KB Pro 10 2 100 256 2112 816 21122 50664
Changes
(increases) 1 3 18 28 322

no KB Pro 10 2 300 401 2117 611 21170 50432
with KB Pro 10 2 300 421 434 522 4566 71567
Changes
(increases) 20 1683 89 16604 21135

no KB Pro 10 2 500 610 2119 606 21190 57274
with KB Pro 10 2 500 496 658 481 6822 64738
Changes
(increases) 114 1461 125 14368 7464

95

Some of the observations made on the above measurements include the following:

Ø The amount of packets exchanged for benchmarks of the same length are very close

and this is a testament to the control of experiments

Ø Durations of benchmarks with the same lengths and with no refreshing events are

within a very close range, irrespective of latency. This typing behavior is best suited

for localization and latency has little bearing on the amount of time required to

complete the benchmark

Ø The duration ranges clearly increase when refreshing events are introduced

Ø The comparison between benchmarks running with latency below 100 ms shows that

the duration, and packets exchanged are within a close range

Ø There is a consistent decrease in both duration and packets exchanged when latency

and event rates increase

Ø The best results are for benchmarks without refreshing events

Ø Benchmarks with event rates of 1 and latency greater than 200 ms are realistic typing

scenarios when using mobile thin clients for typing applications. The measures for

these benchmarks can be marked as the best means to determining the utility of KB

Pro

Ø For most cases of benchmarks with event rates of 2, the amount of bytes received is

more than when KB Pro is not part of the client. The reason for no decrease could be

due to the following: as refreshing events increase, the number of times KBWin starts

and exits during the benchmark also increases. This means that the ICA Client

window shifts back and forth from keyboard focus, which might require a repaint of

96

the window and eventually more bytes being sent by the server. Note that there is

clear decrease in number of bytes sent in the same benchmarks.

The results of the experiments, except for the observation above, are in harmony with the

anticipated results.

Processor and Memory Measurements

Unlike the communication and time measurements, measuring the processor and

memory utilization during the experiments could not be done precisely. Preliminary

observations have shown that memory and processor utilization logged by the

performance monitor include spikes that sometimes reached 100% processor utilization.

This can be owed to the background processes in the system, automated updates of files,

etc. Few pairs of experiments, one using KB Pro and the other not, were identified

without any spikes in either of them. Still, these give only an indication of how much

resource KB Pro needed and, unlike the measurements on time and communication,

definite trends cannot be observed in the results. The graphs shown in the next section

have been chosen from these experiments and the only conclusion we can arrive is at is

that localization does require some memory and processor resources. While this seems

obvious, the only doubt in my mind was whether the communication saved by

localization offset the processing power required by KBWin. Remember, sending and

receiving messages does require some processing power! Due to the power of the

processor in the client machine, the chances of observing this possibility reduced

considerably.

97

Table 8: Measurements of processor and memory utilization

Cycles
Event
Rate Latency

Without KB Pro
Average %

Processor Time

Without KB Pro
Average %

Committed Bytes in
Use

With KB Pro
Average %

Processor Time

With KB Pro
Average %
Committed

Bytes in Use

2 0 100 3.4 39.66 4 42.49
2 0 300 1.56 39.63 6.07 42.85
2 0 500 1.8 39.53 5.2 42.89

2 1 100 3.103 39.52 2.5 42.49
2 1 300 1.41 39.52 3.81 42.8
2 1 500 1.1 39.52 3.08 42.928

2 2 100 2.26 39.52 54.52 42.48
2 2 300 1.4 39.52 2.31 42.52
2 2 500 1 39.52 52.34 47.75

5 0 100 3.35 39.78 2.86 39.37
5 0 300 24.92 39.78 14.48 39.94
5 0 500 15.165 39.78 7.25 40.09

5 1 100 2.5 39.8 38.79 39.42
5 1 300 1.41 39.78 3.89 39.68
5 1 500 1 39.78 10.22 40.31

5 2 100 2.64 39.8 2.42 39.42
5 2 300 1.56 39.84 3.34 40.06
5 2 500 11.2 39.78 2.64 40.23

10 0 100 4.52 37.08 4.68 44.498
10 0 300 14.03 37.08 7.61 44.64
10 0 500 8.16 39.78 6.07 44.79

10 1 100 18.95 39.85 2.74 44.45
10 1 300 1.63 39.87 12.67 44.717
10 1 500 10.45 42.57 3.08 44.89

10 2 100 2.45 39.85 15.16 44.37
10 2 300 8.83 39.81 10.115 45.1
10 2 500 28.79 42.355 8.61 44.67

98

Selected results of experiments are presented through the following graphs.

Constants
Latency: 500 ms

%
Decrease

in
Duration

Cycles

Eve
nt R

ate
0

20

40

60

80

10 5 2

0

2

Figure 11: Graph showing results of benchmark durations

0
200
400

600
800

1000

1200
1400

300 500
0

1

2

Constants
Cycles: 5

Latency

Eve
nt

 R
at

e

Packets Exchanged

Graph Note: odd blocks along the “Event Rate” axis
represent data from experiments without KB Pro

Figure 12: Graph showing effect of refreshing events in packets exchanged

99

0
10000
20000
30000
40000
50000
60000
70000
80000

2 5 10

300

500

Bytes Exchanged

Cycles

L
atency

Constants
Event Rate: 2

Graph Note: odd blocks along the “Latency” axis
represent data from experiments without KB Pro

Figure 13: Graph showing effect of refreshing events on bytes exchanged

0

2

4

6

8

10

12

14

2 5 10

300

500

Constants
Event Rate: 1

L
atency

Percentage CPU
Utilization

Graph Note: odd blocks along the “Latency” axis
represent data from experiments without KB Pro

Cycles

Figure 14: Graph showing average CPU utilization

100

36

38

40

42

44

46

2 5 10

300

500

Constants
Event Rate: 1

Percentage
Committed Bytes

in Use

Cycles

L
atency

Graph Note: odd blocks along the “Latency” axis
represent data from experiments without KB Pro

Figure 15: Graph showing average memory utilization

101

CHAPTER 7
CONCLUSION

This chapter is a brief overview of the goals this thesis has accomplished. It

concludes with few notions on future work in the subject of keyboard localization for

mobile thin clients.

Goals Accomplished

This thesis has brought into light the potential of thin clients being an ideal

computing tool for mobile users; the balance between the benefits and drawbacks of

using thin clients certainly appear to lean towards the former. The thesis has surveyed

contemporary mobile computing literature with respect to mobile client server computing

and has provided the knowledge background required for building systems motivated by

mobile computing. It identified localization of keyboard activity during high network

latency as a fertile problem for research, especially since high latency is an inherent

characteristic of wireless networks. This problem definition is refined to an extent that a

localization system can be designed even while retaining its core issues. The thesis then

described the thin client prototype, the Win32 Citrix ICA client, and its developmental

tools as the platform on which the localization system could be implemented.

The next chapter in the thesis described in depth the implementation of the

localization system for the Win32 Citrix ICA client, the bottlenecks posed by the Win32

API in the development process, and the flaws in the final product. Then, the scheme for

102

experimenting with the localization system to evaluate its utility is elaborated; the tools

developed and utilized in the experiments are described and the variables to evaluate the

system are enumerated along with the rationale behind their choices. Finally, the

experimental method is described before providing the data collected from experiments

and their analysis.

Future Work

While the KB Pro system exhibits high utility even for its simple design, its

drawbacks provide solid grounds for further research on keyboard activity localization.

The following are few issues one can ponder and make cause for future work:

Ø Can the reliability of the scheme to monitor the keyboard activity of the user be

increased, especially in improving the chances of lengthening the localization period?

Ø Can the capability of the localization process increase in order to reduce the

scenarios that end localization? Should the versatility of the system increase with

respect to heterogeneous applications or should only typing applications be targeted?

Ø How transparent must the system be to the user? Should the thin client system have

complete control of when and how to localize? Or should an interface be provided for

the user to exercise these options? Should the control be shared?

Ø Can more powerful experiments be designed to evaluate the viability of localization?

Ø Can a reliable mechanism be designed to detect the position of the caret in an

application?

Ø Is there a mechanism for the server side to refresh the text without paste and without

sending more than one display update?

103

Ø Finally, can KB Pro’s components be integrated into the ICA client at the client and

server sides?

104

LIST OF REFERENCES

[1] J. Jing, A. Helal, A. Elmagarmid, “Client Server Computing in Mobile
Environments,” ACM Computing Surveys, volume 31, number 2, June 1999

[2] Citrix’s ICA Technology, www.citrix.com/products/ica.asp, May 2000

[3] Citrix’s Server Based Computing White Paper, www.citrix.com, May 2000

[4] M. Ebling, M. Satyanarayanan, “On the Importance of Translucence for

Mobile Computing,” First Workshop on Human Computer Interaction with
Mobile Devices, May 1998, Glasgow, UK

[5] Carnegie Mellon University’s Coda Project, www.coda.cs.cmu.edu, April

1999

[6] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton, J. Flinn, K. Walker,

“Agile Application Aware Adaptation for Mobility,” Proceedings of the 16th
ACM Symposium on Operating Systems, October 1997, Saint-Malo, France

[7] Xerox PARC's Bayou Project, http://www.parc.xerox.com/csl/projects/bayou,

April 1999

[8] M. Le, S. Seshan, F. Burghardt, J. Rabaey, "Software Architecture of the
InfoPad System," MOBIDATA Conference, Oct 1994, Rutgers University,
New Jersey

[9] Microsoft’s Introduction to Terminal Services,

www.microsoft.com/windows2000/guide/server/solutions/terminal.asp, May
2000

[10] Citrix MetaFrame for Windows 2000 Services Fact Sheet, www.citrix.com

April 2000

[11] Citrix Virtual Channel Software Development Kit Documentation, Version

2.0, Citrix Systems, Inc., May 1999

http://www.citrix.com/products/ica.asp
http://www.citrix.com
http://www.coda.cs.cmu.edu
http://www.parc.xerox.com/csl/projects/bayou
http://www.microsoft.com/windows2000/guide/server/solutions/terminal.asp
http://www.citrix.com

105

BIOGRAPHICAL SKETCH

Sivasundar is a native of Chennai, India. Born on October 9, 1976, he attended

P.S. Senior Secondary School and graduated with his high school diploma in 1994. After

completing his freshman year in India, he was granted academic and golf scholarships to

continue his college education in the United States. In Fall 1998, Siva graduated with

high honors from Eckerd College in St. Petersburg, Florida, and earned a bachelor's

degree in computer science. He immediately went on to pursue a master's degree in

computer engineering at the University of Florida in Gainesville, Florida. Upon

completing his master’s degree, Siva will join Hewlett Packard in Cupertino, California.

A sports fanatic, his passions include golf, American football, and tennis.

