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In the recent decade, network system and e-commerce models can go to every 

“corner” of our world.  While people enjoy such unprecedented convenience and 

happiness, hackers unceasingly “crack” the security of the network.  In particular, Denial 

of Service (DoS) attacks have become a very concerning issue of network security.  

Research on network intrusion detection systems has been widely undertaken, including 

the development of several feasible systems such as AAFID, EMERALD and GrIDS. 

This thesis seeks to design and implement a host-based and event-based detector, 

which is a part of the intrusion detection system in CONS lab.  The designed detector can 

provide an upper level controller, such as a coordinator, with the capacity to start, stop or 

reconfigure the system.  The detector conducts a fast detection and response based on its 

tree-like data buffer.  An aging policy is applied to increase the durable detection 

capacity and usage time of the fast detection data buffer.  Besides detecting the failure of 

login events by the host, the analysis and detection of successful login events draws the 
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designed detector’s interest.  A combination of two detection results can enhance the 

intrusion detection possibilities and accuracy.  A compressed log file created and 

maintained by the detector makes it possible to recover a detection system and launch a 

post-event polling analysis, if needed.  An object-oriented language makes the detector 

more generic and scalable for further development.
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CHAPTER 1 
INTRODUCTION 

While the world stepped into the new millennium without Y2K complaints, 

people started enjoying a fast growth of network and E-business glory.  However, in early 

February, 2000, a handful of internet sites operated by such respected Internet electronic 

commerce companies as Yahoo, CNN.com, eBay, E-Trade, Buy.com, Amazon.com and 

ZDNET.com were shut down one by one for several hours.  The attacks, which are so-

called denial-of-service (DoS) attacks, may have directly cost these organizations tens of 

millions of dollars in lost sales.  The damage to reputations and credibility may be more 

difficult to gauge [1]. Consequentially, a big question mark always keeps returning to 

people:  “Is the web secure?” 

1.1 Denial of Service Attacks 

The Internet is rapidly evolving as the “Information Super Highway” as academic, 

business and government organizations as well as individual users deploy a proliferation 

of local area networks (LANs) and wide area networks (WANs).  However, this 

increasing popularity of the Internet comes with inherent security risks [2].  Ideally, every 

computer system should be completely secure.  Unfortunately, it is not possible in 

today’s environment.  The 1998 Computer Crime and Security Survey conducted by the 

Computer Security Institute (CSI) and Federal Bureau of Investigation (FBI) reports a 

continuing growth in U.S. computer incidents [3].  Intrusion activities seek to 

compromise integrity, security, confidentiality and availability of a computer system, 



 

 

2 

including illegally accessing internal information, breaking into computers externally, 

inserting erroneous information into files and flooding the network thereby reducing its 

effective channel capacity. 

A major well-known type of attack is the denial-of-service (DoS) attack, which is 

characterized by an explicit attempt to prevent legitimate users of a service from using 

that service.  In a typical connection, the user sends a message asking the server to 

authenticate it.  The server returns the authentication approval to the user.  The user 

acknowledges this approval and then is allowed to use the services of the server.  In a 

denial of service attack, the attacker sends several authentication requests to the server, 

filling it up.  All requests have false return addresses, so the server cannot find the user 

when it tries to send the authentication approval.  The server waits, sometimes more than 

one minute, before closing the connection.  When it does close the connection, the 

attacker sends a new batch of forged requests, and the process begins again--tying up the 

service indefinitely [4].  Therefore, the server cannot provide the service to the one who 

truly needs it. 

Denial of service attacks come in a variety of forms and aim at a variety of 

services. There are three basic types of attack: consumption of scarce, limited or non-

renewable resources; destruction or alteration of configuration information; physical 

destruction or alteration of network components [5]. 

Distributed DoS (DDoS) attacks are a new variation on the theme of denial of 

service, and they pose a serious threat to any Internet-based enterprise, regardless of 

infrastructure redundancy or robustness.  The first DDoS attack in the wild was reported 

in the middle of 1999.  During the week of February 7th through 11th, 2000, it emerged 
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as a new major category of attack on the Internet.  Their danger stems from their 

simplicity: the tools that are necessary to set up and initiate the attack are easy to obtain 

and implement, and the victim can experience hours or even days of service interruptions.  

Therefore, any organization that uses the Internet must take immediate actions.  Unlike 

DoS removing a given resource from service, such as a server or network, without 

permission, DDoS attacks--in which multiple systems generate the attack on a single 

target--are the next logical step.  Distributing the workload across hundreds or even 

thousands of systems is one of the best ways to accomplish an intensive DDoS attack.  It 

not only increases the impact, but also makes stopping the attack--much less identifying 

the attacker's true source--much more difficult [6]. 

The study of security in computer networks is a rapidly growing area of interest 

since late 1980s.  Controlling access to a computing system is the first choice to reduce 

the risk of penetration threats.  Several intrusion prevention techniques can be applied to 

enforce network security.  Authentication can be used to verify the identity of a user.  

Different access control policies limit different classes of users’ rights to access to data 

and resources.  Security policies are intended to preserve the privacy and integrity of 

every user.  Firewalls and cryptography can be used to block and avoid illegitimate 

accesses.  Good software specification, coding and testing policies can reduce 

introduction of intrusion holes during development [7].  With all the above techniques, it 

is still not possible to prevent completely security threats in open data networks.  

Monitoring and recording activities of users and networks will be necessary.  
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1.2 Intrusion Detection Systems 

Intrusion detection is defined as “the problem of identifying individuals who are 

using a computer system without authorization and those who have legitimate access to 

the system but are abusing their privileges. (i.e. the ‘insider threat’)” [8].  An intrusion 

detection system is a computer system (possibly a combination of software and hardware) 

that performs intrusion detection.  Most intrusion detection systems try to perform their 

task in real time [9].  

Desirable characteristics of an intrusion detection system include the following 

[9]: 

1. Continuous running: An Intrusion detection system should run under  
minimal human supervision.  

2. Fault tolerance: When the system crashes, the intrusion detection system  
must have the capability to resume its operation and with no need to  
rebuild its knowledge base.   

3. Resist subversion: An intrusion detection system must have the capability  
to monitor itself and prevent itself from being attacked by intruders. 

4. Minimal overhead: A well-designed intrusion detection system should  
ensure a minimal system load.  

5. Configurable: An intrusion detection system should be configurable.  
Therefore, it can be deployed on different hosts.  

6. Adaptable: An intrusion detection system should be able to adapt to  
changes in both global and local activities.       

As the number of systems to be monitored increases and the chances of attacks 

increase we also consider the following characteristics as desirable [9]: 

1. Scalable: An intrusion detection system should have the ability to increase  
the number of hosts it monitors by adding new components without any  
other modification. 

2. Graceful degradation of service: If some components of the intrusion  
detection system stop working for any reason, the rest of them should be  
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affected as little as possible.  

3. Dynamic reconfiguration: Changes in intrusion detection configuration  
should be done independently and invisibly to other components. They  
should not require restarting the whole intrusion detection system.  

Intrusion detection systems usually include three components: sensors, analyzers 

and a user interface.  Sensors are responsible for collecting data. The input of a sensor 

may be network packets, log files and system call traces.  Sensors collect and forward 

this information to an analyzer. The analyzer receives input from sensors or its peer 

analyzers. It determines if an intrusion has occurred and generates an alarm when an 

intrusion occurs. The analyzer may provide guidance about what actions to take as a 

result of the intrusion. The user interface allows a user to view the output from the system 

or to control the behavior of the system.  A generic requirement is summarized in the 

IETF  (as shown in Figure 1.1) [10]. 

Intrusion detection systems can be classified by a variety of characteristics.  

Based on the way their components distributed, the intrusion detection can be 

distinguished as centralized or distributed intrusion detection systems.  When the data 

analysis is performed in a fixed number of independent locations and the location of the 

collection components are not considered, the system is recognized as centralized 

intrusion detection systems, e.g. IDES, IDIOT, NADIR and NSM. When the data 

analysis is performed in a number of locations proportional to the number of hosts that 

are being monitored and only the locations and number of the data analysis components 

need to be considered, the system is recognized as distributed intrusion detection systems, 

e.g. DIDS, GrIDS, EMERALD and AAFID [9]. 



 

 

6 

 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 

Figure 1.1 The IETF model [10] 

The different characteristics of analyzers divide intrusion detection systems into 
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energetic actions in response to the attacks. Depending on the audit source location, 

intrusion detection systems can be classified as host- and network-based intrusion 

detection systems.  Usage frequency distinguishes among intrusion detection systems 
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1.3 Knowledge-based versus Behavior-based Intrusion Detection 

Intrusion detection systems have different strategies for the interaction with the 

input information. There are two trends in intrusion detection: knowledge-based and 

behavior-based. Knowledge-based intrusion detection is based on accumulation of 

signatures from specific attacks and system vulnerabilities and is referred to as misuse 

detection or detection by appearance.  Once it detects any attempt to exploit a known 

vulnerability, an alarm is triggered.  Activities not explicitly recognized as attacks are 

considered acceptable.  Knowledge-based techniques have good detection accuracy 

because of their low false alarm rates.  However, their detection completeness is affected 

by the difficulty of collecting the necessary information on the known attacks and 

updating them with new vulnerabilities and environments.  Expert systems, signature 

analysis, Petri-nets and state-transition analysis can be used to implement knowledge-

based intrusion detection [11, 12]. 

Behavior-based intrusion detection is implemented by detecting the behavior that 

deviates from normal or expected behavior of the system or the user.  It is also known as 

anomaly detection or detection by behavior [11].  The current activities are compared 

with a reference mode.  If any significant deviation is observed, an alarm is generated.  

Therefore, its good detection completeness can contribute to automatic discovery of new 

attacks.  However, it may cause a relatively high false alarm rate, which reduces its 

detection accuracy.  Implementation of behavior-based intrusion detection includes 

expert systems, neural networks, user intention identification and computer immunology 

[11, 13]. 
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1.4 Host-based versus network-based intrusion detection 

There are two kinds of intrusion detection models, network-based and host-based, 

which recognize attacks.  In either case, these systems check for attack signatures and 

specific patterns that usually indicate malicious or suspicious intention.   

The primary difference between host-based and network-based intrusion detection 

is the data source from which the system derives the information used to conclude the 

occurrence of an attack.  Host-based intrusion detection is the first area that was explored 

in intrusion detection, and it involves loading a piece or pieces of software on each server 

that needs to be monitored.  The loaded software uses log files, process accounting 

information, user behaviors or output data from application-based intrusion detection 

systems operating on the host. Network-based intrusion detection monitors the raw 

network packets on its network segment.  It does not require software to be loaded and 

managed on a variety of hosts [14]. 

Since host-based intrusion detection involves looking at the logs containing 

events that have actually occurred, it can measure whether an attack is successful or not 

with more detail and accuracy than a network-based intrusion detection system.  It can 

monitor all user log activities as well as what each user does during the time that he 

connects to the network.  Host-based intrusion detection may also check the integrity of 

the system files and watch for suspicious processes, such as file accesses and attempts to 

install executables or access-privilege service.  Host-based intrusion detection systems 

reside on each host to monitor the activities that occur at the user level, much of which 

can not be detected by a network-based system.  For example, attacks from the keyboard 

or rlogin within a LAN do not cross the network and, therefore, cannot be detected by 

network-based intrusion detection.  In switched environments, it is difficult to achieve 
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sufficient network coverage by network-based intrusion detection systems.  Host-based 

intrusion detection provides better performance due to residing on as many critical hosts 

as need.  Furthermore, encrypted network traffic can be hardly handled by a network-

based system.  When the incoming traffic comes to an operating system, it has been de-

encrypted.  A host-based system is able to monitor such events easily.  Finally, a host-

based intrusion detection system does not need any additional hardware and is cost-

effective.  These are the reasons why host-based intrusion detection system has been 

deployed first [14, 15]. 

Network-based intrusion detection systems operate at the network level without 

regard to the type of operating system.  They monitor all packet headers and can 

investigate payload contents that may slip by a host-based system. In addition, a network-

based system examines live packets in real-time so that any attempt to remove or hide 

evidence of an intrusion is impossible.  By monitoring network traffic, network-based 

intrusion detection systems can detect malicious attacks. Real-time detection and 

response is one advantage of network-based detection. In host-based intrusion detection, 

events have already happened before a host-based intrusion detection system can observe 

them in log files. In addition, network-based detection can also detect unsuccessful 

attacks. If placed outside a firewall, a network-based system can identify an activity 

targeted at resources behind the firewall, even if the firewall rejects the attempts. This 

unsuccessful attack information can be used to evaluate and refine the security policy. 

Accordingly, it re-enforces the system to ensure that newer attacks will not pass through 

[14, 16, 17]. 
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Both network- and host-based intrusion detection system solutions have unique 

strengths and benefits that complement each other.   Integrating network- and host-based 

approaches is the choice of most advanced intrusion detection systems.  Network-based 

detectors monitor network activity, while host-based detectors sit on various hosts, and 

both report back to a single management center/administrator.  A center may have a view 

of the network at all levels so that the enforcement of security policy is ensured and a 

great flexibility in deployment options is provided. 

1.5 Organization of the Thesis 

This thesis begins with the introduction of problems in network security and 

intrusion detection systems.  In Chapter 2, four distributed intrusion detection system 

architectures, AAFID, EMERALD, GrIDS and GIDEM, are introduced. Chapter 3 

presents a host-based and event-based detector architecture and the detector’s 

implementation is described in Chapter 4.  Chapter 5 will state the detector’s performance 

results and Chapter 6 gives a conclusion and possible future directions. 
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CHAPTER 2 
BACKGROUND AND PREVIOUS WORK 

There are hundreds of distributed systems available that perform intrusion 

detection, intrusion prevention and system security checking. Among those, AAFID, 

EMERALD and GrIDS are representative. At the end of this Chapter, the intrusion 

detection model (GIEDM) in the CONS lab is introduced. 

2.1 AAFID (Autonomous Agent for Intrusion Detection) 

AAFID is a distributed monitoring system with an orientation towards intrusion 

detection developed at the CERIAS, Purdue University. It is an agent-based intrusion 

detection system that uses many autonomous agents [18] working independently and 

collectively to perform distributed intrusion detection.  

AAFID architecture has four components which are referred to as entities: agents, 

filters, transceivers and monitors. The AAFID system is designed as a hierarchy of 

components with agents at the lowest level performing the most basic functions, and 

monitors and transceivers at the top-level overseeing the operation of agents and filters 

on a per-host and per-host set basis. Figure 2.1 [9] shows the physical layout of the 

components in an AAFID system. Figure 2.2 [9] shows the corresponding logical 

organization of the same system [9]. 

An AAFID system can be distributed over arbitrary number of hosts, each of 

which may contain any number of independent agents working simultaneously to monitor 

certain aspects of a system and reporting anomalous behaviors or occurrences of specific 

events [19]. Some agents may perform network monitoring functions, while others may 
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perform host monitoring functions. The results produced by the agents are collected on a 

per-machine level. In this way, the system may find correlated events that are reported by 

different agents, such as ones caused by the same attack. Furthermore, detection of 

attacks involving several different hosts is feasible since the reports produced by each   

 

 

 

 

 

 

 

 

 

Figure 2.1 Physical layout of an AAFID system [9] 

 

 

 

 

 

 

 

Figure 2.2 Logical representation of the same AAFID system [9] 
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machine are aggregated at a per-network level. Agents in an AAFID system can be 

added, started, stopped or removed without altering other components. Additionally, 

agents may employ mechanisms of reconfiguration and update at run-time without the 

need to restart the whole system [20]. 

Agents may use the data collected by filters that are started by transceivers. There 

is one filter for each data source that provides a subscription-based service to multiple 

agents. When an agent subscribes to a filter, it specifies the data it needs, and the filter 

only sends the agent the data that it wants. This is the data selection function that the 

filter performs. The other function that performed by filters is data abstraction. Filters 

implement all the architecture- and system-dependent mechanisms for obtaining the data 

that agents request. Therefore, the same agent can run under different architectures 

simply by connecting to the appropriate filter [9]. 

AAFID agents report their findings to one or more transceivers instead of 

communicating directly with each other. Transceivers are per-host entities exerting 

control, such as start and stop, over the locally running agents, and they perform analysis 

and reduction processing on the data received from the agents. Transceivers on different 

hosts may transmit data to each other. By combining the reports from different agents, 

transceivers oversee the status of their host. If any suspicious activity takes place, it is 

reported up the hierarchy to one or more monitors [9]. 

Monitors are the highest-level entities in the AAFID architecture. They analyze 

the data received from transceivers to detect intrusions in the network and can do higher-

level correlation to detect an event that involves multiple machines. Furthermore, 

monitors have the ability to detect intrusions that may escape the transceivers. A monitor 

may report information to a higher-level monitor. They can control transceivers and other 
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monitors. Monitors can access network-wide data, therefore they have a global picture of 

the status of the network they are monitoring. In the AAFID architecture, the user 

interface is separated from the data collection and processing entities. Monitors provide 

the access point for the user interface to obtain information and send commands [9].  

The desirable feature in AAFID is flexibility and scalability. However, it has 

several limitations. For example, it may be useful to allow more communication between 

entities in the AAFID architecture, that is, to allow one agent to communicate directly 

with another agent.  

2.2 EMERALD (Event Monitoring Enabling Responses to Anomalous Live 
Disturbances) 

EMERALD is a distributed scalable intrusion detection project undertaken in SRI 

International's System Design Laboratory. It addresses detection of malicious activity 

through and across large and complex networks.  

The EMERALD architecture is composed of a collection of independently tunable 

service monitors deployed in hosts and performing monitoring functions. EMERALD 

monitors can be used to prevent DOS (denials of service) and loss of availability. They 

work independently with application logs and network services to detect and respond to 

malicious activity at the operating system and network layers, and can interoperate to 

form an analysis hierarchy. Hierarchical data processing helps scalability to large 

networking applications.  

The EMERALD monitor architecture is illustrated in Figure 2.3 [21]. The 

EMERALD architecture employs three analysis units: a signature engine, a statistical 

profile engine and a resolver within the monitor. These three types of units surround the 

target-specific resource objects. 
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Figure 2.3 EMERALD monitor architecture [22] 
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analysis and the integration of an expert system also improve the correlation capabilities 

[21].  

EMERALD monitors demonstrate a streamlined, distributed intrusion detection 

system providing localized real-time analysis of multiple network services (e.g., FTP, 

SMTP, HTTP) and infrastucture (e.g., routers or gateways). An EMERALD monitor may 

interact with its environment either passively or actively. Monitors provide a well-defined 

application programming interface (API) to interoperate with other third-party intrusion-

detection tool suites, such as deriving and receiving event data and analytical results 

among other third-party security services [21]. 

Each monitor also contains a resource object that provides a reconfigurable 

library of information to customize the monitor to the target analysis. The monitor code 

base is analysis target independent. Therefore, the EMERALD monitor is scalable with 

no modification to anything except the content of the resource object [22]. 

EMERALD presently includes several eXpert components that use P-BEST rule 

based inference. The EMERALD eXpert is a signature-analysis engine based on the 

expert system shell P-BEST. P-BEST is an expert system shell with a set of rules that 

enable it to identify or suspect an anomalous activity in the system. P-BEST-based 

eXperts may be independently distributed to analyze the activity of multiple network 

services or network elements [22,23].  

EMERALD builds multiple local monitoring capabilities coordinating the 

distribution of analyses to detect both local attacks and coordinated attacks such as 

distributed DoS. It can interoperate with other analysis platforms within its own scope. 

Providing global rather than local analysis is an important issue that further research 

should address. 
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2.3 GrIDS (Graph-Based Intrusion Detection System) 

GrIDS is intended to detect large-scale automated attacks on networked systems 

and was designed at UC Davis. It is a hierarchical system, which puts together results of 

localized host-based and network-based intrusion detection systems into graphs and is 

able to aggregate those graphs into simpler forms at higher levels of the hierarchy. The 

whole GrIDS hierarchy requires an Organizational Hierarchy Server (OHS) to oversee 

the operations and to provide global view of the hierarchy [24]. 

GrIDS employs data source modules running in each host to report incidents and 

network traffic to graph engines that build a causal structure of activity in the network 

called an activity graph. The activity graph allows automated attacks to be detected in 

near real-time. For scalability to large networks, these graphs are constructed locally and 

passed upward in the hierarchy where a parent engine maintains a graph of coarser 

resolution. Tracking of a worm is an example of building such an activity graph which is 

shown in Figure 2.4 [24]. The nodes of an activity graph correspond to hosts in a system, 

while the edges in the graph correspond to network activity between those hosts. In 

addition to forming graphs from network communications, GrIDS allows the nodes and 

edges to be annotated with attributes that supply additional information about the events.    

 

 

 

 

 
 
 

Figure 2.4 The beginning of a worm graph, and a more extensive view of the same worm 
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User-customizable rule sets describe to GrIDS how to build these graphs to find 

certain activity patterns and when to send alerts. These graphs are then compared against 

those patterns of intrusive or malicious activities, and if they look similar an alarm and 

corresponding reactions are generated. The rule set has rules to build the graph and also 

assessment rules to evaluate the graphs and to take appropriate actions. Not all types of 

network behavior are related to each other. GrIDS implements several independent 

graphs representing different types of activities, as specified by the rules. It may be much 

easier to form and to analyze the structures independently than a large single graph 

containing unrelated information [25].  

GrIDS detects large-scale correlated or automated attacks by checking to see if 

the constructed activity graphs at any level have violated some policy as captured in a 

rule set. Policies are compiled into rule sets [26].  

GrIDS provides a scalable design for intrusion detection in large networks. It 

allows specifying finer grain access control policies than firewalls.  It also has some 

limitations. It may not be possible to capture all intrusions as violations of an explicit 

policy. Further, since the system depends on a centralized OHS for hierarchy 

management, it may not be useful in a large dynamic network.  

2.4 GIDEM (Generic Intrusion Detection Model) 

A real-time generic intrusion detection model (GIDEM) is presented in 

Seetharaman Balasubramanian’s thesis [27].  The system consists of coordinators, 

detectors, tranceivers and response agents. The structure of the design is shown as Figure 

2.5.  

The coordinator is the highest level of the system.  The design of the coordinator 

applies an IETF model [10], which is a part of the analyzer and the manager.  It provides 
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the event analysis and detection system control.  When detectors report events to the 

coordinator, the coordinator parses them.  Using a rule-base, the coordinator decides 

whether to trigger an action and issue a specified response to the corresponding response 

agent.  The coordinator also can start, stop and reconfigure the detectors as needed.   

 

 

 

 

 

 

 

 
Figure 2.5 Architecture of GIDEM [27] 

The detectors distribute in the entities of the GIDEM.  Their primary duties are to 

collect data and conduct possible data analysis.  They have the capability to communicate 

with the transceiver and the coordinator.  The idea of the transceiver is similar to that of 

the AAFID architecture. The transceivers provide the external communication interface 

for each host. Basically, the transceivers have the same functions as the coordinator does. 

The only difference between the coordinator and the transceiver is that transceiver only 

controls one or limited number of detectors while the coordinator globally controls all the 

detectors in GIDEM.  The responder is responsible to execute commands from the 

coordinator.  In addition, the user interface is modeled as a response agent. 
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This thesis presents a host-based and event-based detector for GIDEM.  The goal 

of this thesis is to design a near real-time host-based detector, which can analyze raw data 

quickly and efficiently, eliminate the redundancy in the log data and be capable of 

reconfiguration and recovery.  More details are explained in Chapter 3.
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CHAPTER 3 
DESIGN 

The purpose of this thesis is to design a host-based detector that can efficiently 

monitor and analyze routine log activities and report an anomalous intrusion to the 

coordinator.  Its duties are to bring and transfer the log data from the log file in near real-

time, to parse the data and rebuild it to the standard format.  Then it analyzes the routine 

login data and reports any anomalies.  Finally, it compresses the raw data to save space in 

the log file.  In this chapter, the detector design is described in two parts: detector 

components and detector strategy.   

Detector components include four functional units: data collector, data buffer, 

data operator and data container.  After the detector is initialized by loading its 

configuration file and user profile, all of detector components are started based on the 

configuration information.  The detailed design for each component is presented in the 

following sections. 

 

 

 

 

 

 

Figure 3.1 The detector components 
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3.1 Detector Components: Data Collector 

Raw messages are generated by Syslogd, which is a collection mechanism for 

logging various messages generated by the kernel and applications running on the UNIX 

operating system.  Every message collected by Syslogd is associated with a level of 

importance, which consist of the facility – the system component from which the 

message originated.  Combinations of priority and facility specify actions related to the 

message.  The values of both parameters (priority, facility) are described in detail on the 

syslog(3) man page as shown in Table 3.1 [28] (priorities are listed from lowest to 

highest below).  The priority levels between debug and warning is the major concern in 

this design. 

      Table 3.1 Syslogd facility and priority [28] 
Facility Description Priority Description 

Auth 
Used by authorization 
systems (login) 

Debug 
(lowest) 

Normally used for 
debugging 

Cron 
Used for the cron and at 
system 

Info Informational messages 

Daemon System/network daemons Notice 
Conditions that may 
require attention 

Kern 
Produced by kernel 
messages 

Warning Any warnings 

Lpr Printing system Err Any errors 

Mail Mail system Crit 
Critical conditions like 
hardware problems 

Mark 
Internally used for time 
stamps 

Alert 
Any condition that demand 
immediate attention 

News 
Reserved for the news 
system 

Emerg 
(highest) 

Any emergency condition 

User 
Default facility, used for 
any program 

  

Uucp 
Reserved for the uucp 
system 

  

Local0…7 Reserved for local use   
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The function of the data collector is to collect data from the Syslogd daemon, 

multiplex the raw log to the corresponding data buffer and finally pass the formatted log 

messages to data container.  It has three parts: data reader, data parser and data 

compressor.  The responsibility of data reader is to obtain the raw data in real time or 

near real time and pass it to data parser.  The data parser is to parse the raw data string 

that is read from the Syslogd and to multiplex it to the corresponding type of data buffer.  

Another responsibility of the data parser is to assemble the data into the compressed file 

format, which is delivered to the data compressor.  When the data compressor receives 

the log data (which is in standard format), it converts it into a binary format and passes it 

to the data container.   

3.2 Detector Components: Data Buffer 

When data is converted to the standard format by the data collector, the data 

buffer holds the data in memory for fast analysis.  However, holding all this information 

wastes memory and is unnecessary.  The data buffer consists of two basic units, the data 

indexing tree and temporally ordered data indexing list, which has a sliding window.  The 

sliding window plays a major role in dynamically maintaining all log data read from the 

log file.   

Generally, the IP address is composed of four numbers between 0 and 255.  A tree 

structure is selected by the data indexer to maintain an index of all log data.  The depth of 

a detector tree is four.  The main advantage of the tree structure is to provide for faster 

searching performance than a circular list buffer does.  If the frequency of log data 

redundancy is high, saving more space will be another benefit as well.   
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Figure 3.2 Architecture of the data buffer 
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the buffer tree (representing an IP address) has a link with one node in the sliding 

window list (representing timestamped audit event).  When time passes a certain interval, 

an aging policy is applied to the data buffer. That is, the sliding window will move 

backward on the list with a certain size, even if an anomalous intrusion is detected.  All 

out-of-date log data to the left of the window will be removed from the buffer tree and 

the sliding window list.  As stale sliding window list nodes are deleted, the information 

on the corresponding data indexing tree nodes (both leaf and non-leaf) are necessarily 

updated.  Therefore, the capacity of the buffer tree is changing.  Selecting a suitable 

sliding window moving rate will result in increasing the efficiency of the buffer tree.    
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3.3 Detector Components: Data Operator 

Monitoring and updating the data in the data buffer is the major function of the 

data operator.  It contains a series of engines that perform searching, inserting and 

deleting data on the buffer tree that function upon request.  To keep every engine running 

without blocking any other engine, a multi-threaded detection system is selected.  Each 

thread does not have to wait for any other thread to finish.  All the threads proceed 

simultaneously with fair concurrency control.  Properly formed threads can often improve 

the performance of an application and they do not incur significant implementation 

overhead.  They effectively give good performance for the effort expended.   

The searching engine seeks to search the information of a specific or suspected IP 

address.  Usually, the searching starts from the root of the buffer tree.  The insertion 

engine is requested when needed.  When standard log data comes from the data collector, 

it will traverse the buffer tree and update the corresponding node’s information.  If it is a 

non-existing node, the insertion engine creates a new node.  The deletion engine starts to 

work upon being informed that one specific IP needs to be deleted from the buffer tree.  

The deletion request will be needed in either of the following cases: 1) all the sliding 

window list nodes related to that IP address appear to the left of the sliding window; 2) an 

anomalous intrusion is detected and confirmed.  

            Besides its updating function, the data operator is responsible to communicate 

with the upper level coordinator and to report an anomalous intrusion at different warning 

levels.  For example, when an IP reaches one warning level’s threshold, the detector 

needs to report to the coordinator that a warning state is occurring and to consider that IP 

as suspect.  When a suspected IP later reaches the threshold of higher level warning state, 

the detector needs to report that higher state to the coordinator again.   
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Figure 3.3 Architecture of the data operator 
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detector and the coordinator.  When the detector finishes the data analysis of the raw log 
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any detection result to the coordinator and then waiting for the coordinator’s response.  

When the coordinator makes a decision on the reported event, it will send the response 

back to the detector.  Once the response engine obtains the response from the coordinator, 

it will update the configuration of the detector or user profile, if necessary.  Then the 

detector will start to execute detection based on the new configuration.  Therefore, it 

provides the coordinator a facility to control the detectors operation.  In a word, the data 

operator functions by keeping the buffer tree running more flexibly and efficiently.  

3.4 Detector Components: Data Container 

When the data collector delivers the standard format data to the data container, the 

data container then writes the data into the compressed log file.  Three issues force the 

designed detection system to compress the log file.  First is the growth of the log file, 
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second is Unix or Linux log file rotation policy and third is the detection system 

recovery.  Left unaddressed, the first issue will result in a huge log file occupying too 

much storage space.  The second and third issues will cause losing some old data which 

might be useful for slow attack detection.  In the designed detection system, all login data 

needed by the detector is necessarily stored in a compressed file so that two advantages, 

keeping records and saving space, are realized.  Keeping records helps necessary polling 

analysis.  When a polling analysis request is invoked, all of the records can be grouped 

according to the requirement.  Saving space is implemented by converting each log data 

format to a binary format.  The compressed log file’s creation depends on help from the 

data collector.  The compressed data interpreter helps to read data from a compressed file.  

More detail on compressing files is given in Chapter 4.    

3.5 Detection Strategy 

Data analysis is based on two different situations, namely failed login and 

successful login.  Regarding login failures, keeping a count of how many attacks from a 

certain IP address is the most important key for intrusion detection.  A login failure may 

occur from accidental failure or intentional attack.  Occasional failure login occurs when 

one user forgets his password or mistypes it.  Although login failures from same remote 

node may appear for different usernames or passwords, their source IP should be 

identical.  Therefore, only one leaf node in the data buffer can represent all such login 

attempts.  That is, space within the data buffer can be saved by eliminating redundant 

records with the same IP address.  In the process of detection, the occasional login failure 

can easily be discovered because it is not repeated over time.  Once the user recalls the 

correct password or obtains it from the administrator, this type of login failure will not 
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appear again for an indefinite period.  Therefore, its representation in the data buffer will 

not be updated.  With the motion of the sliding window, such login failures will be 

removed from the data buffer when they become out-of-date and appear to the left of the 

window.  As a result, the capacity of the data buffer is made available to hold other 

different IP logins.   

Prevention of intended attack is primary function of the detector.  Such attacks 

have two kinds of format: burst attack and slow attack.  Burst attack implies many login 

failures happen within a short time.  This kind of attack can be from a single source or 

multiple sources.  As for those from a single source, they can be detected by finding the 

counter of the leaf node increasing dramatically.  When the login counter reaches 

detection threshold, it can be detected immediately.  Multi-source attacks have two 

formats: non-targetted attack and targetted attack.  The solution for non-targetted attack is 

the same as that for a single source attack.  Targetted attack indicates that multiple 

sources are attacking the same user account simultaneously.  A polling analysis on that 

account will be necessary.  Checking each user account’s login data within a certain time 

can detect targetted attacks.  Such a polling analysis can be invoked by the data collector 

when it discovers login time has surpassed its reasonable threshold.   

A hacker may attack the system more cautiously and patiently.  He may not try 

each attack continually but keep trying periodically; this is a “slow attack.”  To detect this 

kind of attack, a polling analysis needs to be based on the weekly or monthly log data.  

With a more extensive search, the possibility of detecting such slow attacks is increased.  

For example, if there may be an IP address of a hacker from which many failure login 

actions originate.  However, since the interval time between two adjacent actions is 
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longer than that of the sliding window moving interval time, the hacker’s data is always 

removed from the data buffer and he escapes detection.  Fortunately, this can be 

discovered by weekly or monthly statistical analysis.   

A lucky hacker may get a chance to log onto the system successfully due to 

various reasons, e.g., obtaining a normal user’s information in an inappropriate way.  

Depending on knowledge-based successful login analysis, the chance to catch an 

unauthorized login is enhanced.  If the same “user” logs in from two separate sites at the 

same time or in a short time, that account can be considered to be “infected.”  If a user 

logs in at unusual times, that account can be suspected of being infected.  In order to find 

if there is an intrusion, it is necessary first to confirm the authenticity of the user by 

coordinator.  If coordinator or detector gets negative response from the user, a polling 

searching on previous failure logins from that suspected IP is necessary.    

3.6 Summary 

A host-based detector is designed to deal with data extraction, data analysis, data 

compression and data storage with the Linux Syslogd facility.  The architecture of the 

detector is shown in Figure 3.4.  Real-time data acquisition makes it possible that an 

intrusion detection system can be running in real time or near real time.  Meanwhile, such 

acquisition also reduces the chance that a hacker may remove a record from the log file.  

A tree-like data buffer enhances data analysis performance, which is most important for 

abrupt attack detection.  Furthermore, with the help of sliding window aging, the data 

buffer can dynamically change its size thus enabling it to continuously monitor login 

actions efficiently. To keep a data buffer of a relatively small size running efficiently 

without losing information, a compressed file acts as a complementary part of the data  
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buffer.  Since all out-of-date as well as current data are recorded in the file, a polling 

analysis then becomes feasible, which is beneficial for slow attack detection.  As a 

supplement, knowledge-based detection is added to detect those anomalous intrusions 

with successful unauthorized login.  As a result, the host-based detector is designed to be 

capable of re-configuration, to run concurrently as a multithreaded system, dynamically 

to detect both login failures and successful unauthorized logins and to be able to do post-

event polling analysis. 
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CHAPTER 4 
IMPLEMENTATION 

The implementation of the detector is described in five parts: initialization of the 

detector, data collection, data buffer creation, successful login detection and system 

controlling.  All parts of the detector are written in C/C++ programming language. 

4.1 Initialization of the Detector 

To be an easy-controlled detector, the designed detection system has implemented 

a configuration and re-configuration policy.  A previously prepared configuration file 

specifies major characters of the detector.  The configuration file must be read when a 

detector starts.  During the detection process, other agents such as coordinators or 

response agents can modify the configuration file.  Each time this file is changed, the 

detector is requested to re-read it and operate on a new configuration.   

As a part of configuration and knowledge-based detection, a user profile is loaded 

at the beginning of detector initialization.  The profile helps the detection system in 

making a judgment whether a successful login is suspicious.  During the process of 

detection, the user profile can be updated to make the detection knowledge system more 

accurate.  

After finishing the configuration procedure, the detector needs to register with a 

remote coordinator, at a location that is present in the detector’s configuration file.  The 

registry process is completed by using UDP datagram socket communication. 
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4.2 Data Collecting in Near Real Time 

Once the detector is initialized, the next step is to obtain the raw log data in real 

time or near real time.  The original message data are created by the syslogd daemon. 

Actions are associated with the syslogd’s combinations of facilities and priorities. Those 

combinations specify what can be done with the actual log messages that match a given 

combination as shown in Table 4.1 [28]. 

                     Table 4.1 Sample actions of syslog.conf [28] 
Action (example) Description 

/dev/console Send messages to devices 

/var/adm/messages Write messages to files 

@ loghost Forward messages to a loghost 

fred, user1 Send messages to users 

* Send messages to all logged-in users 

 
 

Under Linux, syslogd can write a log message into a named pipe (FIFO).  This 

makes it possible for the detector to obtain log messages from the named pipe in real 

time.  In /etc/syslog.conf,  a new line is added like: 

*.*   !/var/log/syslog.pipe 

This means that all log messages are required to write into a named pipe,  

“syslog.pipe.”  When a detector is activated, the named pipe is opened by the detector 

with a “READ_ONLY” flag.  Then one thread is kept blocked and awaits the passage of 

log messages from the opposite side.  Once a new log message is written into the pipe 
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from the other side, the receiving thread can obtain it without any delay.  From time to 

time, obtaining real-time data is implemented by that thread. 

4.3 Implementation of Data Assembly and Compression 

The data in the log file are saved in ASCII text format. Although ASCII format is 

more user-friendly, it is wasteful of disk storage space. If the data is saved in a binary 

encoding, it will dramatically reduce the storage size of the log file. Therefore, it is 

necessary to convert raw data from its text format, such as ASCII, into a binary format. 

For each data entry, there are five significant attributes: timestamp, user id, source IP 

address, login type and flag. One data entry can be formed as shown in Table 4.2. 

                       Table 4.2 The format of data entry 
User id 16-bit  Type 6-bit  Flag 2-bit 

Timestamp 32-bit 

IP address 32-bit 

 
Each entry contains two fields: header and content. The header includes flag bit, type bits 

and user id bits. The flag bits have four different combinations which are listed in Table 

4.3. Those four different combinations result from the comparison between the current 

and the previous data entry. If they have the same IP, the content part of the entry only 

has a timestamp field so that it reserves storage room. Also, because the first bit of the 

flag indicates whether current entry is from another IP, it functions as a delimiter within 

the whole compressed log file. If its first bit is equal to 1, the content field will only have 

a timestamp field. 
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                         Table 4.3 The description for flag bit 
Flag bit Description 

00 Same user from different IP address 

01 Different user from different IP address 

10 Different user from same IP address 

11 Same user from the same IP address 

 
The IP field contains 32 bits which correspond to four numbers within the 0-255 

range. Within the timestamp field, the detection system chooses data type time_t to 

represent calendar time.  When interpreted as an absolute time value, time_t represents 

the number of seconds elapsed since 00:00:00 on January 1, 1970, Coordinated Universal 

Time (UTC).  The login types can be classified in varying formats, namely ssh, ftp, 

rlogin, etc. Type bits can represent a maximum of 64 different login types. Table 4.3 lists 

several kinds of types.  

           Table 4.4 Type bits for different login 
Type Binary code Type Binary code 

Failure ssh 000001 Successful ssh 100001 

Failure ftp 000010 Successful ftp 100010 

Failure rlogin 000011 Successful rlogin 100011 

… … … … 

Unknown failure 000000 Unknown success 111111 
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           Once the raw data is translated into standard format, the data compressor will 

write standard data word by word.  In case that the system crashed, the detection system 

can be recovered with the help of the compressed file. 

4.4 Implementation of Creating the Data Buffer 

After the raw data is tokenized and converted into the standard format, it is ready 

to be added into the data buffer for analysis.  In previous work, data redundancy has been 

a severe problem in the circular list buffer.  Such a buffer is not flexible and efficient for 

modifying, updating or deleting data records.  In this detection system, a tree-structure is 

being applied to solve these conflicts.  Such a tree-structure is based on the idea of 

hierarchy of IP addresses.  It consists of four levels that are related to IP address format.  

The root is the highest level.  The address mapping between levels is aided by a hashing 

function. A hashing chain is used to save memory space and achieve fast searching 

performance.  The relationship between levels is “pseudo double” linked.  The upper 

level node (parent node) has a pointer which points to its hashing chain. Every node 

(child node) in the hashing chain has a pointer which points to its parent node. 

In every node, the information is kept in the following format. 

Class Node{ 

   int    num_child; 
Node    *ptr_parent;  
time_t    least_ts; 
time_t    latest_ts; 
HashingChain  *ptr_child;  

};. 
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Figure 4.1 Hashing tree of data buffer 

The num_child signifies the total number of its children; ptr_parent is a pointer 

to its parent; ptr_child is a pointer to its children level; least_ts is its oldest timestamp; 

latest_ts is its most recent timestamp.  Because every data entry in the compressed file 

cannot possess a pointer that refers back to the node on the indexing tree, a linked list is 

maintained between the data indexing tree and the compressed file.  The leaf nodes on the 

indexing tree have a one-to-one relationship with the nodes of the linked list.  At each 

node of the list, there are only three attributes that need to be stored: ptr_node, 

num_byte, node_ts and prev_ts.  The ptr_node is a pointer which points to the leaf 

node on the indexing tree.  The num_byte records the beginning location of each data 
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entry in the compressed file. The node_ts denotes the timestamp of the pointing leaf node 

on the indexing tree. The next_ts is a pointer to point to next list node with the same IP 

address, if any.  The indexing list node format is shown below. 

Class ListNode{ 

time_t    node_ts; 
int    num_byte; 

  TreeNode   *ptr_node;  
ListNode  *next_ts; 

};. 

Detection tree initialization starts from the root. It proceeds down each non-leaf 

level and creates the appropriate values for num_child, ptr_parent, ptr_child, least_ts and 

latest_ts. When it reaches the leaf level, it updates its counter, ptr_parent and latest_ts. 

Meanwhile, it updates the ptr_node of the corresponding node in the linked list so that a 

one-to-one relationship is built up.  When the sequential new log data are read, the 

detection tree is updated from the root and goes down each non-leaf to the leaf level. If 

the expected child does not exist, the tree creates a new tree node with appropriate values 

for each of its attributes.  Every time a leaf node is formed, the relationship between the 

indexing tree and linked list is again updated. 

4.5 Implementation of Successful Login Detection 

Even if a successful login occurs, it does not mean that it can be totally trusted. 

Two possible types of unauthorized logins need to be addressed.  One is the same user 

logging in from a different IP address within a very short time; another is a user’s login at 

an unusual time slot.  
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Figure 4.2 Data structure of naming and timing lists 
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its location in the compressed file and a deviation field to record suspect information.  

The value of the deviation field is inherited from the entries with the same user id.  The 

format of the successful buffer node is given below. 

Class SListNode{ 

int  uid;   /* user id */ 
time_t   node_ts;  /* timestamp */ 
int   ip;   /* address ip */ 
int   location;  /* the starting location in the compressed  
          file */ 
SListNode  *ptr_prev_id;  /* pointer to previous different id */ 
SListNode *ptr_next_id;  /* pointer to next different id */ 
SListNode *ptr_next_siblingid;`/* pointer to next same id */ 
SListNode *ptr_prev_ts;    /* pointer to previous timestamp */ 
SListNode *ptr_next_ts;    /* pointer to next timestamp */ 

};. 

When a new entry is added, it first finds its user id in the naming list and then 

appends itself to the list of entries for that user id.  If there is no matching user id, the 

detector will create a new user id node and insert it at the right place within the naming 

list.  After the naming list is updated, the timing list will be adjusted accordingly using 

the head pointer.  After finishing the insertion of the node, data analysis is then 

performed.  In every entry’s deviation field, there are four basic counters to monitor four 

aspects of basic detection: normal login times, login times at an unusual time slot from a 

normal IP domain, login times at the normal time slot but from an unusual IP address and 

login times from an unusual IP address and at an unusual time slot.  In the designed 

system, there are different threshold levels for each category.   

When the checking process starts, the new entry’s timestamp and source IP 

address are first compared with those in the user knowledge table.  If an unusual login 

time slot or source IP is found, its deviation field will record such data.   Then, its 
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timestamp and IP address are compared with the one preceding it in both sub-lists of the 

naming list and timing list. With this kind of checking system, two kinds of anomalous 

behaviors easily can be found.  The comparisons within the naming list can detect an 

anomalous login from two different IP sites within very short time.  Comparisons within 

the timing list can detect a user login at an unexpected time.  

4.6 Implementation of Multi-thread System Manipulation and Concurrency Control  

The designed detection system applies a multi-thread mechanism so that the set of 

global variables and function calls in the data buffer can be fairly shared and accessed by 

every thread.  A simple approach would be to create a thread for each request received.  

In this designed system, pthread in the GNU thread library is used to create a thread. 

There are several situations that will require a thread request.  At the stage of the 

detector initialization, the detector needs to launch two basic threads: a listening thread 

and a deletion thread.  The listening thread functions as a response engine in the data 

operator being designed.  Since the designed detector uses a client/server model in the 

communication between the detector and the coordinator, the listening thread’s 

responsibility is to receive the message from the coordinator.  The listening thread 

prepares to deal with several messages:  

1. When the coordinator requests current detector state, the listening thread 

will create a thread to obtain the current state and send it to the 

coordinator.   

2. When the listening thread receives a reconfiguration request, it will re-

read the configuration file in the assigned location and update the current 

detection configuration. Since all configuration variables are shared global 
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variables, this recent modification will immediately reflect on the current 

detection system.   

3. If the listening thread gets updated user information, it will change the 

appropriate item of that user in the user knowledge table and reset the 

deviation field of the buffer entry for each user.   

4. If the listening thread receives many messages that are not sent by the 

coordinator, it will report to the coordinator that its port has been attacked. 

5. If the coordinator sends a “quit” message, the listening thread will set a 

global variable, “TERMINATION,” as “true” so that every thread will 

terminate its execution and the whole detector quits.  

Another thread created at the initial stage is called the deletion thread.  It 

implements an aging policy in the detection system.  As long as the system is running, the 

log data will keep increasing.  A fixed data buffer can not handle too many data storage 

requests.  It is necessary to delete some out-of-date data.   

A sliding window is selected to continue to update the data on the detection 

buffer, which is moving along the timing linked list of data buffer.  A global variable is 

used to record the moving speed of the sliding window.  It controls the moving speed of 

the sliding window.  As the sliding window moves, some old records on the indexing 

timing list are removed from the data buffer.  The deletion thread directs the pointer 

ptr_node to delete the right node and to update its parent’s information.  Therefore by 

such reduction, the size of the detection buffer can be moderately lessened.  The original 

moving speed is read from the configuration file.  After that, if the thread finds the data 

buffer size is reaching a warning limit, it will increase the moving speed. On the other 
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hand, if the thread finds the current buffer size is far below the warning level, it will 

decrease the moving speed.  Therefore, the implemented aging policy always keeps the 

data buffer of a reasonable size, which effectively utilizes the capacity of the data buffer.   

However, at present, the hackers have become more sophisticated and patient.  

They can use slow attack strategies to avoid being caught by any fixed length data buffer. 

The deletion thread has to deal with those attacks.  The key is to conduct a post-event 

periodic analysis.  The deletion thread launches a temporary thread to scan the monthly 

compressed file and builds a temporary buffer for analysis use.  If any anomalous 

intrusion is found based on the assigned detection threshold, it will report it to the 

coordinator. Once the polling analysis finishes, the temporary thread is terminated and all 

occupied system resources are released.  The detection system can commit the polling 

analysis in the very early morning so that it does not increase the system load too much 

during the daytime.  

In the process of data analysis, two threads are needed.  First, when the insertion 

engine of the data operator encounters the leaf node of the indexing tree, it finds that the 

counter of the leaf node has reached a certain warning level’s threshold.  It needs to 

launch a communication thread to send the message to the coordinator.  Secondly, when 

the system needs information on a specific IP address, a searching engine thread is 

created.  It traverses the data indexing tree and writes the requested information to a file 

or sends a message to the requesting coordinator.  

Although a multi-thread system enhances the detection system’s performance, it 

also brings up an important concern--concurrency control.  Because there are shared 

variables and memory addresses among the threads previously referred to, it is necessary 
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to create basic synchronization objects to implement concurrency control.  The simplest 

synchronization object is the mutex semaphore, which is used to allow only one thread to 

access to a resource at a time. 

In this thesis work, a simple mutex object is applied to control the concurrent 

accesses in the multi-thread system because insertion and deletion of the data buffer will 

occur mostly during detection.  As a result, the critical section, data buffer, can be 

accessed by only one thread so that there will be no data inconsistency or erroneous 

results. 

4.7 Summary 

This detector is devised as the design required. The use of named pipe makes 

intrusion detection close to real time so that its use prevents the log message from being 

modified by an intruder before defection takes place. Also, the detector enhances 

surveillance and response performance.  The configuration file and user profile facilitate 

configuration and adaptation to the system and users.  Reconfiguration is possible as 

well. The relatively small size of the data buffer ensures a minimal system overhead.  Its 

sliding window's aging policy enhances data buffer utilization.  If the detection system 

crashes, the data in the compressed file can rebuild the detection system from the 

breakpoint.  Successful login detection, bolstered by user profiles, makes the detector 

more knowledgeable.  Finally, with the help of a multi-threaded system and a 

client/server model, the designed detection system can run continuously without 

supervision.  Meanwhile, the coordinator can control this detection system by using a 

message passing mechanism. 



 

45 

CHAPTER 5 
TESTING 

How efficiently the data buffer performs will determine the overall detection and 

response performance, the testing is mainly focused on the data buffer testing.  

Testing on the data buffer is accomplished on the host of 128.227.170.36 

(tiger.cons.cise.ufl.edu) , whose system configuration is RedHat Linux 7.0 on Pentium II 

266 processor with 96 MB RAM.  A sample log file containing 300k log data with fair 

redundancy is created as an input sample.  The performance test is conducted by inserting 

10k, 30k, 50k, 100k and 300k bytes data into the data buffer respectively.  Then, the 

deletion and searching testing is applied to those data as well.  Since the minimum time 

scale is one second, a looping testing code is applied to increase the total running time so 

that the testing time is much longer than the minimum time scale.  As a result, the system 

errors are reduced as much as possible.  Beside the total amount of test data, the value of 

hashing key in data buffer tree is chosen as another important variant on the detection 

performance testing.   

Fast searching and deletion performance: the testing results on the performance of 

the deletion and searching are shown in Figure 5.1 and 5.2. 
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Figure 5.1 Performance of the deletion of the data buffer 

Figure 5.2 Performance of the searching on data buffer 

Both of the results indicate that a larger hashing key improves the performance. 

However, it is found that when the hashing key is bigger than three, the enhancement of 

the performance is no longer significant.  A fast searching ability is helpful to collect the 

information on a specific IP address and a fast deletion ability is good for performing the 

sliding window efficiently.  Because the shared data part is accessed by many threads, a 

quick deletion or searching action will not block others to access the data buffer too long. 
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Fair fast insertion: There is a trade off between the performance of inserting and 

searching/deletion.  A more complicated data structure will be favorable to a better 

searching/deletion performance. However, the original initialization and insertion will 

pay for that.  Figure 5.3 illustrates the result on insertion performance.  The results 

indicate that a larger hashing key is very beneficial for insertion performance because it 

reduces the time of searching while inserted, especially when the total number of nodes 

in the buffer is large.  Actually, when the hashing key is equal to 1, it is similar to a 

linked list.  This proves that a tree-like buffer has a better performance than a circular list 

buffer.  Since the insertion time is directly related to the detection response, choosing a 

hashing key is one of the most important factors. 

Figure 5.3 Performance of the insertion on data buffer 

Memory Utilization: Another trade off in the data buffer is between hashing key 

selection and memory utilization.  Figure 5.4 depicts the memory utilization under 

different hashing keys and different total amount of data.  The data in Figure 5.4 has  
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been normalized to utilization with D = 1.  As the total number of nodes increases in the 

buffer, the utilization becomes better.  However, with the growth of the hashing key, the 

utilization decreases linearly.  For the first phenomenon, a larger number of data 

increases the chance of data redundancy. Consequentially, each node in buffer can 

represents several different events with the same source IP address. As for the second 

one, it is because more hashing buckets occupy more memory space.  Therefore, the 

utilization percentage is lowered in that case. 

Figure 5.4 Memory Utilization 

Based on the testing results, it indicates that the detector detection and response 

time is in a desired range.  Overall detection performance of the tree-like data buffer is 

better than that of a circular list buffer, though it has a little higher memory usage.  When 

the data has a high redundancy frequency, like in the case of login failure, its memory 

utilization will be comparable with the circular list buffer.  An important decision is 

choice of a fair hashing key.  A range between three and seven will be good enough, 
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because a bigger one will cause a lower utilization of memory and a smaller one will 

cause inefficient performance.  
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CHAPTER 6 
CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

This thesis implements a near real time host-based and event-based intrusion 

detector.  It satisfies the desirable characters of an intrusion detection system. The 

detector configuration file allows the coordinator easily to reconfigure the detector so that 

the coordinator can run the detector as needed.  The use of the user profile contributes a 

knowledge system to the detector.  After a period of “learning,” the detector can obtain 

more accurate knowledge of local users.   

The relatively small size of the data analysis buffer not only ensures a small 

system overhead but also provides quick detection and response.  The aging policy 

implemented by the sliding window enhances the efficiency of the data analysis buffer 

and the capability of its continued running.  The compressed file makes periodic polling 

analysis and system recovery possible.   

A multi-threaded system allows the detector to perform different tasks 

concurrently. A distributed detection system is feasible by using a client/server model.  

Finally, an object-oriented programming technique can more easily extend the current 

data structures for further development. 

6.2 Future Work 

Future work can be in following fields: 
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The basic data structure can be made to be reusable and flexible.  Vectors of 

counters in the data indexing tree can be built in the tree.  Each vector has different 

threshold and alarm function.  The key of tree node, hashing function and the depth of the 

tree can be varied.  For the successful login data structure, the key of each entry can be 

parameterized so that the data structure can be configurable. 

The designed detector has good scalability and adaptability.  Multi-level analysis 

based on the data buffer and the compressed file is possible.  Any future specific 

searching request can be conducted as a thread to access the existing data analysis buffer. 

Machine learning and artificial intelligence research can enhance the detection on 

local users’ abuse attacks. Accordingly, the user profile could be built more accurately. 
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