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      The globalization of markets due to the improvement of communication and

transportation media has had a significant impact on manufacturing technology in

recent years. The strong international competition forced companies to establish

efficient production facilities ensuring profitability on the long run. The performance

of the most prevalent American manufacturing control mechanism, MRP, was

questioned after the success of the Japanese Kanban control system during the Just-In-

Time era. CONWIP, a generalization of the Kanban control system, was introduced as

a result of extensive research done to understand manufacturing systems with the aim

of improving their efficiency.

      During an extensive simulation study, the performances of Kanban, CONWIP,

and MRP were evaluated for a ten identical machine tandem line with respect to batch

size, setup time, and machine failure. The utilization (throughput) was kept constant

for all control systems. The parameters were introduced to the models one at a time,



xx

thereby increasing the realism and the variability of the manufacturing line. Thus, the

performances of the three control mechanisms were explored on three levels of

complexity. Initially, only the influence of batch size on the performances of the

control systems was investigated. Then, the setup time was taken into consideration in

addition to the batch size. Last, machine failure was introduced to augment the

models’ realism resulting in a higher practical applicability. On each level, the

performances were evaluated for steady-state, assuming the manufacturing line would

run indefinitely. In addition, the response of the performance to machine failure was

observed dynamically while keeping batch size and setup time constant.

     Although the performance differences were found to be minute, Kanban and

CONWIP were outperformed by the traditional control system, MRP, for experiments

with varying batch size and for experiments including both batch size and setup times.

On the highest level of variability, with machine failure introduced, Kanban was

ranked first, closely followed by CONWIP. The two pull systems easily outranked the

push system when evaluated according to average cycle time, maximum cycle time

and the standard deviation of cycle time. Kanban performed best for the dynamic

response to failure as well, where the system performance was measured by the time

taken to recover from failure.
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 CHAPTER 1
INTRODUCTION

 1.1 Motivation

      Primarily due to rapid development of technology in the past thirty years, the

market structure throughout the world has changed considerably. Local markets have

become accessible to foreign investors, who are not only able to perform well in their

newly established territory, but, who are even able to excel because of superior

technology. Successful companies embedded globalization in their expansion

strategies, consistently seeking for new markets abroad. Consequently, manufacturing

companies are facing global competition, forcing them to keep up with new concepts

and even to proactively incorporate improvement into their daily production routine.

      In 1972 the American Production and Inventory Control Society (APICS) strongly

promoted material requirements planning (MRP) in an effort to strengthen the

American manufacturing industry and its standing in the international arena. MRP

was hoisted to the most prevalent production control system on a national level. After

the successes of Just-In-Time (JIT) its dominant appearance in industry was

questioned. The Japanese had introduced their superior products manufactured with

the support of the Kanban control system enhancing their global competitiveness. An

enormous amount of research was directed towards the new system giving rise to a

rich body of literature documenting various concepts.
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      In 1990 another system, striving to maintain a constant work in process

(CONWIP), was presented, able to prove its usefulness in theory and in industry. The

extensive research produced ample knowledge of system’s behavior and good

understanding of the factors involved. The newly evolved science, Factory Physics,

attempts to describe and formalize the characteristics of the extreme probabilistic

systems.

      However, the models analyzing and comparing the different control systems

analytically are based on too many simplifying and unrealistic assumptions. The

results can merely serve as approximations of real systems, a very limiting attribute

for their practical applicability. Simulation has established itself as a very powerful

alternative to the analytical modeling process. With the reduction in computer

hardware prices and the increase of processor speed, simulation has become a popular

tool in recent years. It enables modeling with great precision resulting in a very good

representation of real systems and trustworthy output data. The simulations software

available allows the study of manufacturing systems dynamically, giving the analyst a

feeling for the system in addition to generating realistic results.

      In this research paper the three control systems Kanban, CONWIP, and MRP are

analyzed by means of a comparative simulation study. Ever since the introduction of

Kanban to the world of production, MRP has been discredited as an inferior control

system. However, despite its significant success, Kanban is not flawless. CONWIP is

investigated as a highly praised alternative. An evaluation of their performance with

respect to batch size, setup time and failure should unveil the superior control system

for the chosen manufacturing line.
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 1.2 Thesis Outline

      Chapter 2 highlights the mechanisms and characteristics of the control systems,

Kanban, CONWIP, and MRP. A comparison regarding specific attributes reveals

basic differences that support the existence of all three control systems. Chapter 3

introduces simulation as the alternative to analytical modeling of manufacturing

systems. It denotes the important aspects of a simulation study. Chapter 4 serves as a

reference to both, statistical analysis methods unique to simulation, and methods

common to general data interpretation. In Chapter 5, the influence of batch size on the

performance of the control systems is demonstrated. In Chapter 6, setup time is

included in the investigations. Chapter 7 deals with the manufacturing system with the

highest degree of realism, including batch size, setup time and failure. The response

of the system to failure dependent on time is analyzed as well. Chapter 8, summarizes

calculations performed to ensure a high accuracy of the output data on a 95%

confidence level while Chapter 9 encompasses the conclusions and suggestions for

future work.
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 CHAPTER 2
CONTROL SYSTEMS

      A brief theoretical background on the three manufacturing control systems is

given in this Chapter. The purpose is to primarily elaborate on the characteristics

unique to the individual control systems and their differences and to secondarily

explain their most important mechanisms.

 2.1 Push And Pull Systems

      Spearman and Hopp [HOP96, p.316] give a very describing quote of Taiichi

Ohno, the father of Just-in-Time (JIT), to distinguish the meaning of the two terms,

push and pull:

Manufacturers and workplaces can no longer base production on desktop planning

alone and then distribute, or push, them onto the market. It has become a matter of

course for customers, or users, each with a different value system, to stand in the

frontline of the marketplace and, so to speak, pull the goods they need, in the amount

and at the time they need them [OHN88, xiv].

      This global perspective can be applied to any individual manufacturing system.

The following definition gives a general and thus abstract explanation of the words:

A push system schedules the release of work based on demand, while a pull system

authorizes the release of work based on system status [HOP96, p.317].
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      This means that a push system releases an entity to the line according to the

exogenous master production schedule (MPS). The release time is not modified for a

change in the manufacturing system [see Figure 2-1]. Information flows from the

MPS downstream towards the finished goods inventory.

Figure 2-1: A push manufacturing system.

      A pull system, however, only allows an entity to enter the system when a signal

generated by a change in the line status calls for it. This change results in the most

cases from the departure of an entity from the line [see Figure 2-2]. Information flows

from the finished goods inventory, the customer, upstream towards the raw material

inventory.

Figure 2-2: A pull manufacturing system.
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      The performance of the two systems is dependent on scheduling rules as well.

Here the most prevalent one, fist come first serve (FCFS), will be assumed

throughout. Extensive simulations done by Hum and Lee for JIT systems reveal no

dominant rule. However, the results seem to indicate that FCFS is not necessarily

justified, its weakness becomes most apparent under tight production conditions.

According to them, the user should not arbitrarily adopt a scheduling rule. Instead, the

nature of the scheduling rule and the production environment should be understood

[HUM98].

      As the release of material to the line is initiated by the MPS in MRP, the

manufacturing system is controlled by the release rate of material resulting in a

specific throughput. The pull systems on the other hand only allow material into the

system when a card is liberated, a consequence of a reduction in work in process

(WIP). Thus, they control the system by managing the WIP and putting an upper

boundary on the material present in a line.

      Kanban and CONWIP are the pull systems discussed here. Their performance will

be compared with the performance of MRP, the most prevalent push system.

      Before a comparison of their characteristics can be made, Kanban, CONWIP, and

MRP are discussed as a basis of a practical control system in the following chapters.

 2.2 Kanban

      Mostly the Toyota-style Kanban system is discussed as a pull system and it is

hardly surprising that the term pull is commonly viewed as synonymous with Kanban
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[SCH82]. There is an immense Kanban literature often comparing its performance to

a push system driven by unreliable demand forecasts [BER92].

      In a Kanban system, production is triggered by demand. When a part is removed

from the final inventory point, the last workstation in the line is given authorization to

replace the part. This workstation in turn sends an authorization signal to the upstream

workstation to replace the part it just used. This process continues upstream,

replenishing the downstream void by requesting material from the antecedent

workstation. To control information transfer, the operator requires both parts and an

authorization signal, a card, to work.

2.2.1 The Mechanism

      The Kanban system simulated here makes use of one inventory storage point and

requires only one card per station. The Kanban system developed at Toyota makes use

of a two-card system requiring a production card and a move card per station [see

HOP96, p.163]. Figure 2-3 illustrates the one-card Kanban system.

Figure 2-3: The one-card Kanban system.
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      The operator finds a card in the hold box at workstation J (1). He/she gets material

from the outbound stockpoint of the upstream workstation I (2). The card attached to

the material is removed and placed into the hold box of the upstream workstation (3).

The material enters the manufacturing process and the card in the hold box is attached

to the product placed in the outbound stockpoint (4). The operator at the upstream

workstation I finds the card in his/her holdbox and starts processing (5). The same

cycle is followed for the upstream machines until the raw material inventory is

reached [see Figure 2-2]. A Kanban system can be seen as a closed queuing network

with blocking. Jobs circulate around the network indefinitely. However, unlike the

CONWIP system [see 2.3.1], the Kanban system limits the number of entities per

workstation, since the number of production cards at a station establishes a maximum

WIP level for that station. Each production cards acts exactly like a space in a finite

buffer in front of the workstation. The upstream workstation is blocked when the

buffer is full [HOP96, p.325].

      Berkley shows that a common model of a Kanban system is equivalent to a

traditional tandem production line with finite buffers. His model assumes that kanbans

travel instantly to their destinations when they are detached from a part, and that the

kanbans and parts travel in quantities of one [BER91]. Gstettner and Kuhn describe

and classify different Kanban systems. They analyze the system with respect to

production rate and average work in process [GST96].
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2.2.2 Characteristics

      As the amount of material in the system is limited to the number of cards

assigned, there is a natural upper bound of material in process.

      Due to the presence of the cards the involvement of the operators in controlling

the flow of material is enhanced. This involvement and active participation paired

with a proactive thinking enables continuous improvement not necessarily given for

the push systems.

      A Kanban system suits a stable material flow best. The product mix should be

fairly stable and not too large as the cards are unique to certain products and

expensive in their introduction to a system.

      Kanban is not useful in an environment with expensive items that are rarely

ordered, since it would require at least one of each kind of item to be in inventory at

all times.

      The performance is very sensitive to the number of cards assigned to the system

and their specific allocation. Gstettner and Kuhn show that the distribution of cards

has a significant effect on the performance of Kanban systems. According to them,

the different types of Kanban control mechanisms show equivalent performance data,

if the distribution pattern is adapted accordingly [GST96].

      In most Kanban systems the number of cards assigned to specific workstations is

fixed resulting in blockages or starvation. Blocking occurs when all the cards are

attached to full containers in the outbound stockpoint, while starvation occurs when at

least one production Kanban is in the hold box waiting for a container from the

upstream workstation while the machine at that station is idle. Gupta and Al-Turki
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have developed an algorithm to implement a flexible Kanban system adjusting the

number of cards to stochastic processing times and a variable demand environment

[GUP97].

      Mascolo et al. show that the performance of a multi-stage Kanban system can be

derived from evaluating a set of subsystems. The subsystems result from a

decomposition of the original line, where each set is being associated with a particular

stage. Numerical results show that the method is fairly accurate [MAS96].

 2.3 CONWIP

      The CONWIP (CONstant Work In Process) control system strives to maintain a

constant work in process. It was first introduced by Spearman et al. in 1990 and can

thus be classified as a very new control concept [SPE90].

2.3.1 The Mechanism

      CONWIP can be considered a special case of Kanban, where the entire line

constitutes one workstation. Departing jobs send production cards back to the

beginning of the line to authorize release of new jobs.
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Figure 2-4: A CONWIP production line.

      The finished product is taken out of the inventory that is fed by workstation L (1).

The production card is sent back to workstation A to authorize the release of a new

job (2). The operator at the upstream workstation A finds the card, gets the raw

material from the inventory and starts processing the unit (3). In a Kanban system,

each card is used to signal production of a specific part. CONWIP production cards

are assigned to the production line and are not part number specific. Part numbers are

assigned to the cards at the beginning of the production line. The numbers are

matched with the cards by referencing a backlog list. When work is needed for the

first process center in the production line [see Figure 2-4, (3)], the card is removed

from the queue and marked with the first part number in the backlog number for

which raw materials are present [SPE90].

      Here, the following simplifying assumptions are made for CONWIP:

1. The production line consists of a single routing, along which all parts flow, and

2. WIP can be measured in units (i.e., number of jobs or parts in the line).
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      Spearman and Hopp [HOP96, p.324] remark that a CONWIP system resembles a

closed queuing network, in which entities never leave the system, but instead circulate

around the network indefinitely. In reality, the entering jobs are different from the

departing jobs. Assuming that all jobs are identical, this difference does not matter for

modeling purposes. Gstettner and Kuhn mention that the model developed by

Spearman et al. [SPE90] can be refined and adapted to different production

environments as done by Duenyas and Hopp [DUE92] and Duenyas et al. [DUE93]

[GST96]. Huang and Wang show by means of simulation that the CONWIP

production control system is very efficient for the production and inventory control of

semi-continuous manufacturing, such as that found in a steel rolling plant [HUA97].

2.3.2 Characteristics

      As does Kanban, CONWIP controls the total amount of work in process in the

system. The WIP is limited to the number of cards assigned to the entire line instead

of to the individual machines.

      If a machine fails in a CONWIP line, the amount of material downstream of it will

eventually be flushed out of the system by the demand process. These demand events

will cause the release of new entities to the system. If the machine fails for a long

period of time, these entities and the entities already in the system upstream of the

failed machine will accumulate in the buffer immediately upstream of the failed

machine. The release of the new jobs to the system stops once no more cards are

released from entities departing the system [BON97].
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      There is no blocking in CONWIP lines since buffers are assumed big enough to

hold all parts that circulate in the line [GST96].

      In CONWIP systems information about demand is sent directly from the last to

the first station. The entity goes through all the workstations in the line carrying the

information about necessary production.

 2.4 MRP

      The promotion of material requirements planning (MRP) by the American

Production and Inventory Control Society (APICS) in 1972 boosted this production

control paradigm to the most prevalent system today. Only after the successes of JIT

and Kanban its dominant appearance in industry was questioned.

2.4.1 The Mechanism

      As can be derived from its name, MRP plans material requirements. It deals with

the two dimensions of production control: quantities and timing. The system must

determine appropriate production quantities of all types of items, from final products

that are sold, to components used to build final products, to inputs purchased as raw

materials. It must also determine production timing that facilitates meeting order due

dates.
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Figure 2-5: Simplified schematic of MRP.

      The data from the bill of material (BOM) and the master production schedule

(MPS), as the source of demand for MRP, is processed in several steps to produce the

planned order releases and notices such as change notices and exception notices [see

Figure 2-5]. The BOM describes the relationship between end items and lower level

items while the MPS gives the quantity and due dates for all parts to obtain the gross

requirements. The schematic is presented to illustrate that all the information needed

for the entire manufacturing system originates from the MPS.
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Figure 2-6: A MRP production line.

      The order is released at the raw material post (1) as planned with the help of the

MPS [see Figure 2-6]. As the entity is released independent of the amount of the

material in the buffer preceding Workstation A, the buffer size may not be limited to a

specific amount of entities. Mostly constraints are given by physical space on the

manufacturing floor. When workstation A is finished with processing the entity, it

pushes it on to the next workstation, B (2). This process continues downstream until

the entity departs the system at the finished goods post.

      To be able to address the huge problem of coordinating thousands of orders with

hundreds of tools for thousands of end items made up of additional thousands of

components manufacturing resources planning (MRP II) was developed [HOP96,

p.143]. It provides a general control structure that breaks the production control

problem into a hierarchy based on time scale and product aggregation, thus, primarily

taking the capacity of the manufacturing system into account. MRP II brings together

many functions to generate a truly integrated manufacturing management system
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including demand management, forecasting, capacity planning, rough-cut capacity

planning, dispatching and input/output control.

2.4.2 Characteristics

      MRP provides a simple method for ordering materials based on needs, as

established by a master production schedule and bills of material. As such, it is well

suited for use in controlling the purchasing of components. However, in the control of

production MRP shows deficiencies [HOP96, p.143]. This is especially true for

manufacturing systems that require proper exploitation of capacity resources by

taking bottlenecks into consideration.

      According to Spearman and Hopp the real reason for MRP’s inability to perform

well is the faulty underlying model. The key calculation is performed by using fixed

lead times to derive releases from due dates. These lead times are functions of the part

number only. They are not affected by the status of the plant. More importantly, the

lead times do not consider the loading of the manufacturing system. An MRP system

assumes that the time for a part to travel through the plant is the same whether the

plant is empty or overflowing with work, which is only true for infinite capacity.

Furthermore, to ensure the coordination of parts at assembly, there is a strong

incentive to increase the lead times to provide a buffer against unforeseen

obstructions. However, as inflating lead times introduces more material into the

system, it increases congestion and consequently the cycle times. Instead of delivering

on time, the products are delayed even more [HOP96, p.175].
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      As quoted by the APICS literature, MRP’s bad performance in industry was

blamed on inaccurate data, including bills of material and inventory records. MRP

requires a high standard of data integrity to function properly [LAT81].

 2.5 Comparison of CONWIP with MRP

      As mentioned previously [see 2.1], a push system controls throughput and

observes WIP, while a pull system controls WIP and observes throughput. WIP is

directly observable, while throughput can only be determined indirectly. The jobs on a

shopfloor can be physically counted and maintained according to the WIP cap. In

contrast, the release rate for MRP must be set with respect to capacity. If the rate is

chosen too high, the system will be congested with material resulting in high cost due

to insufficient throughput and high WIP. As estimating capacity is very difficult,

optimizing a push system is much more intricate [HOP96, p.325].

      Concerning the efficiency, Spearman and Hopp state the following law:

For a given level of throughput, a push system will have more WIP on average than

an equivalent CONWIP system [HOP96, p.327].

      The law is supported by a calculation for a simple example of a five machine

tandem line and exponentially distributed process times with mean one hour.

      According to Spearman and Hopp MRP systems have more variable cycle times

than equivalent CONWIP systems [HOP96, p.327]. As the total amount of WIP in a

line is fixed, the WIP level at the individual stations are negatively correlated. As the

WIP level increases at one station, it decreases at all the other stations, which tends to

dampen the fluctuations in cycle time. In contrast, WIP levels at the individual
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stations are independent of one another for MRP. The WIP level at one station reveals

no information about the WIP levels at the other stations. The overall WIP level may

become extremely high or even low, resulting in great variability of the cycle times

that are directly dependent on the WIP level.

      Spearman and Hopp state another law to express the robustness of the two

systems:

A CONWIP system is more robust to errors in WIP level than MRP is to errors in

release rate.

      The law is verified with the help of a simple profit function dependent on the

throughput and the WIP level expressed in terms of percent error. The coefficients are

calculated from empirical data, revealing the functions given in Figure 2-7 [HOP96,

p.329].

Figure 2-7 Relative robustness of CONWIP and MRP.
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the release rate is chosen at a level below the optimum and falls off sharply when the

release rate is set even slightly above the optimum level.

 2.6 Comparison of CONWIP with Kanban

      Both CONWIP and Kanban are pull systems since new order releases are

triggered by external demand. As both systems control the WIP and limit the level by

an upper bound, they show similar performance relative to the push system, MRP.

      Gstettner and Kuhn reveal in their comparisons between Kanban and CONWIP

that Kanban is more flexible with respect to a certain objective than CONWIP. Not

only does the absolute number of cards matter, but, the card distribution is another

parameter that influences performance. Selecting a favorable card distribution showed

that in a Kanban system a given production rate is reached with less WIP than in a

CONWIP system [GST96]. However, Spearman et al. point out that by allowing WIP

to collect in front of the bottleneck, CONWIP can function with lower WIP than

Kanban [SPE90].

      As there is no blocking in CONWIP lines it can easily be understood that a

CONWIP system with n cards will have a higher production rate than a Kanban

system with n cards [SPE92].

      According to Spearman and Hopp the most obvious difference is that Kanban

requires setting more parameters than does CONWIP [HOP96, p.330]. In a one-card

system a card count must be established for every workstation, in a two-card system

twice as many. In a CONWIP system the amount of cards is set for the entire line,

which needs to be established only once. Coming up with the optimal card count
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requires a combination of analysis and continual adjustment, making it a great deal

easier to find the right configuration for the CONWIP system.

      Cards are part number specific in a Kanban system and only line specific in a

CONWIP system. Instead of being matched to a specific part at the upstream

workstation, the cards are matched against a backlog [see 2.3.1], which gives the

sequence of parts to be introduced into the line. Thus, in its pure form, a Kanban

system must include standard containers of WIP for every active part number in the

line to which the cards can be matched. For a high number of parts, although only

occasionally produced, this implies a very high overall WIP level swamping the

manufacturing system [HOP96, p.330]. Gstettner and Kuhn elaborate on this

difference as well, neglecting special release mechanisms in the CONWIP system

which are based on a MPS [GST96]. In a paper Spearman et al. mention that although

the backlog affords the opportunity for control, it also provides a tremendous

challenge. The backlog sequence is the key to assuring adequate capacity when there

are significant setups and to optimizing synchronization of production of part

components [SPE90].

      Hall points out, that Kanban is applicable only in repetitive manufacturing

environments [HAL83]. Spearman and Hopp explain repetitive manufacturing by

systems where material flows in fixed paths at steady rates [HOP96, p.331]. They

mention that large variations in either volume or product mix destroy this flow, at

least when parts are viewed individually, and hence seriously undermine Kanban. In

another publication Spearman et al. mention that the JIT environment provided by

CONWIP can accommodate a changing product mix as it is suitable for short runs of
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small lots. Furthermore, they find this environment to be more predictable than its

pendant provided by Kanban [SPE89]. A CONWIP system is more robust due to the

planning capability introduced by the process of generating a work backlog.

      Spearman and Hopp mention prevalent employee issues differentiating CONWIP

and Kanban. The pull mechanism at every workstation results in great operator stress

as described by Klein [KLN89]. When the operator receives a card having to wait for

the material to start processing, the void has to be replenished as quickly as possible

upon arrival of this material. This is only true for the first workstation in a CONWIP

system. The other station function according to a push system where the operators are

subjected to less pacing stress [HOP96, pp.332-333].

      The previous comparisons illustrate the advantages of CONWIP over MRP and

Kanban. Most fundamentally, the differences between the pull and the push systems

can be utilized as an advantage to building a manufacturing system that encompasses

the positive attributes of the different mechanisms. The result is an integration of the

systems to compensate for the weaknesses on both sides. According to Titone

integration of various functions into a total comprehensive manufacturing strategy

leads to world-class manufacturing and profits. Using MRP II for planning and JIT for

the execution combines two powerful tools into an efficient manufacturing system

[TIT94]. Wang et al. introduce an experimental push/pull production planning and

control software system which is designed as an alternative to a MRP II system for

mass manufacturing enterprises in China [WAN96].

      Bonvik et al. compare a two-boundary hybrid system to conventional systems.

The system is a hybrid of basestock and Kanban control. Basestock control limits the
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amount of inventory between each production stage and the demand process. Each

machine tries to maintain a certain amount of material in its output buffer, subtracting

backlogged finished goods demand, if any [KIB88]. For the hybrid system demand

information is propagated directly as in basestock control and inventory at the

individual workstations is limited as in Kanban control. The hybrid control policy

demonstrated superior performance in achieving a high service level target with

minimal inventories [BON97].

      The three control mechanisms were evaluated by means of simulation as the

analytical methods available serve as approximations limited to special cases not

applicable to more complex systems.
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 CHAPTER 3
SIMULATION

      Simulation refers to a broad collection of methods and applications to mimic the

behavior of real systems, usually on a computer with appropriate software. Since

computers and software have evolved tremendously in recent time, simulation has

become very powerful and popular [KEL98, p.3]. Simulation, like most analysis

methods, involves systems and their models. A system is a facility or process, either

actual or planned. It is a collection of elements that cooperate to accomplish some

stated objectives. A model is a collection of symbols and ideas that approximately

represent the functional relationship of the elements in a system [BAI98, p.2]. The

system is studied to measure its performance, improve its operation or to determine an

optimal design. As sometimes the primary goal is to focus attention on understanding

how a system works, the results after the modeling process may become irrelevant.

Often, simulation analysts find that the process of defining how a system works,

which must be done before developing a model, provides great insight into the

mechanisms of the system.

      From a practical viewpoint, simulation is the process of designing and creating a

computerized model of a real or proposed system for the purpose of conducting

numerical experiments to improve the understanding of the behavior of that system

for a given set of conditions [KEL98, p.7].



24

      Here, the purpose of the simulation was to evaluate the behavior of the system

under different sets of conditions by using the models to carry out groups of

experiments. The simulations primarily provided estimates of the statistics of system

performance. The systems, Kanban, CONWIP, and MRP, were modeled by a ten

identical machine tandem line and exponential distributed process time with mean 20

seconds. Indeed, the modeling process gave great insight into the mechanisms of the

systems creating a feeling for their behavior.

      Yavuz and Satir reviewed selected published research on Kanban-based

operational planning and control in assembly and flow lines. Their article focuses on

simulation models and distinguishes between explorative and comparative type

research. Operational and experimental design features are summarized in tabular

format giving a good overview of work done in this area [YAV95].

 3.1 The Software

      Two simulation tools were used to conduct the experiments: EFML and Arena.

3.1.1 EFML

      The Emulated Flexible Manufacturing Laboratory (EFML) was developed in the

Department of Industrial & Systems Engineering at the University of Florida. The

originating concept was to develop a hands-on environment where students and

companies could test and study manufacturing operations in a factory setting, giving
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students and managers the ability to test the performance of a manufacturing facility,

which could be distributed over several computers.

      The EFML is composed of a network of personal computers linked together

through the Virtual Manufacturing Software, which enables the communication of the

computers via the TCP/IP protocol and the internet. The software is written with

Borland’s Delphi Developers Toolkit based on an object oriented architecture. The

objects machine, dispatch/raw material inventory storage, repair and maintenance

facility, transportation, assembly line, and finished goods inventory storage can be

assigned to different computers to construct a complete factory. The object

architecture is illustrated in

Figure 3-1.

Figure 3-1: The object architecture for the EFML.
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      As the dispatch object releases material to the shop floor, based on predetermined

release times, the behavior of each factory component can be observed in real time.

According to Mijon the advantage of the EFML over traditional simulation software

is the visual interface providing meaningful output. This output lets the viewer see

where the problem is arising and potentially the reason for its occurrence [MIJ97, p.

3].

      The EFML is an evolving system which is continuously improved, adding more

features to increase the realism of the system and to enhance user friendliness even at

the time of writing this thesis.

3.1.2 Arena

      Arena combines the ease of use found in high-level simulators with the flexibility

of simulation languages down to general-purpose procedural languages like the

Microsoft Visual Basic programming system, FORTRAN, or C. It does this by

providing alternative and interchangeable templates of graphical simulation modeling-

and-analysis models that one can combine to build a fairly wide variety of simulation

models. For ease of display and organization, modules are typically grouped into

panels to compose a template. By switching templates one can gain access to a whole

different set of simulation modeling constructs and capabilities. In many cases,

modules from different panels and templates can be mixed together in the same

model. The modules in Arena templates are composed of SIMAN components. Arena

maintains its modeling flexibility by being fully hierarchical, as depicted in Figure

3-2.
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Figure 3-2: Arena’s hierarchical Structure.

      Arena includes dynamic animation in the same work environment. It also provides

integrated support, including graphics, for some of the statistical design and analysis

issues that are part of a good simulation study [KEL98, p.13].

      The models for Kanban, CONWIP, and MRP were created with the Blocks and

Elements Panels to utilize all the flexibility of the SIMAN simulation language.

      EFML and Arena served as the framework for the simulation study, which is

introduced next.
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 3.2 The Simulation Study

      Issues related to design and analysis and representing the model in the software

certainly are essential to a successful simulation study. However, there are more

aspects that should be taken into consideration. Following the flowchart in Figure 3-3

should improve the chances of conducting a successful study.
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Figure 3-3: Flowchart of a simulation study.

      The simulation study does not necessarily have to exactly follow the given

flowchart, there is no general formula to guarantee success. It rather gives a rough

path to follow. Here, the identification of a problem can be omitted directly

proceeding to the second step, stating the objective.
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3.2.1 State Objective

      The objective is to compare the performance of the three manufacturing control

systems: Kanban, CONWIP, and MRP. The comparison should involve three main

parameters influencing the performance of a manufacturing system:

• Batch size,

• Setup time, and

• Machine failure.

      To observe the influence of the individual parameters without any blurring

interaction between one another, the central parameter of this study, batch size, is

introduced first. The complexity of the models is increased steadily by adding setup

time and failure in two further steps. This process allows to build new investigations

on the knowledge gained during prior steps improving the realism with the increasing

number of parameters.

      After determining the objective of this study, the focus had to be directed on the

input data.

3.2.2 Collect/Prepare Data

      The data is produced by the random number generator provided by the software

packages. The Arena random number generator was tested by applying the chi-square

test of uniformity to the numbers generated. The null hypothesis of uniformity was

not rejected at level 10.0=α  revealing that the numbers generated didn’t behave in a
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way significantly different from the expectations for truly independent and identically

distributed random variables [BAI98, p.60]. Similar behavior was expected from

EFML. As previously mentioned, the exponential distribution function was chosen as

the input distribution function. This distribution function is commonly used for

simulations on manufacturing systems as it has the remarkable memoryless property,

where the past history of a random variable, that is distributed exponentially, plays no

role in predicting its future [KLE75, p. 66]. Unlike most other probability

distributions, the shape of the exponential distribution is governed by a single

quantity. Further, it is a distribution with the property that its mean equals its standard

deviation [MCC94, p.250].

3.2.3 Formulate Models

      The models of the systems were built according to the descriptions previously

given. Figures 1-3, 1-4, and 1-6 depict the graphical models of Kanban, CONWIP,

and MRP respectively. For each control system 4 models were created to enable

simulations on the 4 levels including the following parameters:

• Batch size,

• Batch size and setup time,

• Batch size, setup time, and failure (dynamic response), and

• Batch size, setup time, and failure (in steady state).

      A few assumptions were made to simplify the simulation process, unfortunately

resulting in a less realistic system. The most important assumptions were the

following:
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• The 10 stages are in series, i.e., each stage has only one supplier and one

consumer,

• There is an infinite supply of raw parts at the input of the production system,

• The systems are saturated, there are always demands for finished parts,

• Information is transmitted instantly,

• Transportation within and between workstations is instantaneous,

• The system produces a single part type,

• Kanbans are associated with batches and not with individual entities, and

• Any kanban detached at the output of a stage is immediately available for the

upstream stage, there is no return delay.

More assumptions may result implicitly from those given above.

3.2.4 Verification of the Models

      The three basic models were verified with the EFML output. EFML was verified

formally. However, the output data has not been verified before with another

simulation software, therefore making this verification process an especially

interesting task.

      For both Kanban and CONWIP 25 replications were run on Arena and EFML. For

MRP 30 replications were carried out. The configurations are given in Table 3-1. The

interarrival time corresponds to batch interarrival times.
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Table 3-1: Configuration for Kanban, CONWIP, and MRP to verify correctness of the
models.

Control System Process Time Batch Size Number of Cards Interarrival Time
Kanban 20 4 20 -

CONWIP 20 4 20 -
MRP 20 5 - 105

      A paired t-test [see 4.2.3] was performed on the output data to test the following

hypothesis:

H0 : True mean of average cycle time differences is equal to 0, and

Ha : True mean of average cycle time differences is not equal to 0,

to calculate the 95% confidence interval. The statistics are given in Table 3-2.

Table 3-2: Statistics on t-test to verify concurrence of output between EFML and
Arena for Kanban, CONWIP, and MRP.

System t-value df p-value Interval Estimate of
mean of diff.

Average
Cycle Time

Kanban 0.4048 24 0.6892 (-3.6486; 5.4292) 0.8903 1608.517
CONWIP 0.2335 24 0.8174 (-2.2046; 2.7671) 0.2812 1848.7355

MRP -0.164 29 0.8709 (-115.2965; 98.1806) -8.5580 4166.046

      All of the intervals include the value 0 resulting in the failure of rejecting the null

hypothesis. The 95% confidence intervals indicate a small deviation of the average

cycle times for Kanban and CONWIP.

      For MRP the interval calculated is considerably bigger, even evaluated relative to

the average cycle time. Here CONWIP presents a very small deviation. The reason for

the strong deviation of MRP is the varying average cycle time, even after a big

amount of entities have passed through the system. The half-width for the confidence

interval indicated [see Table 8-4], that 10,000 entities would result in an accurate
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estimation of the cycle time. Although Figure 3-4 reveals that the average cycle time

for 10,000 entities produced has approached a fairly stable value, it is still varying for

bigger numbers.

Figure 3-4: The cycle time per entity and the cumulative average cycle time
dependent on the number of processed entities for MRP with Arena.

      Even after 20,000 entities processed the average is moving, indicating that the

random generator has an influence on the output for Arena. The same behavior is

expected for EFML, as both simulation tools don’t generate true random numbers.

This fact could explain great deviations even for a high number of replications

completed [see Figure 3-6].

      To get an impression of how the systems would behave for different
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The difference was measured as the percentage deviation in average cycle time,

cyclet∆ :










 −
=∆

EFML
cycle

Arena
cycle

EFML
cycle

cycle t

tt
t  100 ,

where EFML
cyclet is the average cycle time for EFML and Arena

cyclet  is the average cycle time

for Arena.

As not enough replications were run to evaluate the output data statistically, scatter

diagrams were constructed to visualize the results.

Figure 3-5: The deviation of the average cycle time between EFML and Arena for
different configurations for CONWIP.
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Figure 3-6: The deviation of the average cycle time between EFML and Arena for
different configurations for Kanban.

Figure 3-7: The deviation of the average cycle time between EFML and Arena for
different configurations for MRP.
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calculations done earlier reveal no significant difference between the outputs for batch

size four and 20 cards assigned. Faulty input data would probably result in a bigger

difference than 2%. The shift may again be attributed to the random generators.

3.2.5 Validation

      The models under consideration were representing systems existing in theory

only. Too many parameters were omitted to enable the simulation of a real system,

making validation impossible. Yavuz and Satir mention, that the modeling of real-life

manufacturing environment and usage of empirical data would provide a practical

means of validation for the simulation models developed. The validation was missing

in most of the articles reviewed. Validation would unravel intricacies of

manufacturing that are demystified through mostly gross assumptions [YAV95].

3.2.6 Simulation Experiment Design

      Experiments are performed by investigators in virtually all fields of inquiry,

usually to discover something about a particular process or system. Literally, an

experiment is a test. A designed experiment is a test or series of tests in which

purposeful changes are made to the input variables of a process or system to observe

and identify the reasons for changes in the output response [MON91, p.1].

      The progression of choice of factors and levels included in the experiments is

discussed at the beginning of the chapters covering the different stages of simulation:

• batch size,
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• batch size and setup time,

• and batch size, setup time and failure.

The discussions comprise the following factors, henceforth called system parameters:

• Total number of cards assigned to the entire line, c [see 5.1.3],

• Batch size, b [see 5.1.2],

• The ratio of setup time to process time, sr  [see 6.1.1],

• Time between failures (interfailure time), intfailt  [see 7.1], and

• Repair duration, repairt [see 7.1].

      The levels were determined according to practical applicability, primarily

concerning average machine utilization. First, a high and a low level per factor was

established. Then, the interval [low, high] was divided into segments with a certain

amount of intermediate levels. As the average run time of one replication was

approximately two minutes, the amount of levels was held high, mostly equal to ten.

      The total cost could be selected as the primary response variable as the cost affects

the basic goal of a company: making profit. The optimization of manufacturing

resources can reduce costs considerably resulting in a higher profit margin or even a

higher revenue as other market segments are conquered, in turn increasing the overall

market share. This elevates cost to one of the most important indicators if not the most

important indicator for the efficiency of a manufacturing system.

      One characteristic makes cost even more useful. It can serve as an overall

indicator, that takes different aspects into consideration, consolidating all the

indicators. However, when several indicators are accumulated to be represented by

one quantifier, the question, how to weigh the individual components, arises. The
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weights are most diverging for different industries. Even within one industry, they

may differ considerably, representing the company’s unique environment.

      A wide variety of functions is available enabling a controller to construct a model

perfectly fitting the needs. Unfortunately, often weights contain error terms and other

parameters that are determined by subjective estimation, making a cost analysis at this

point questionable.

      Constructing functions for different scenarios would certainly give more insight

into the problem [AFY98]. But, the gain in investigating other factors was classified

as more important. Furthermore, the regression models can be transformed into cost

functions without greater effort. The construction of more complex models would

certainly be an interesting topic for another thesis that would probably be most

rewarding when written in cooperation with industry.

      Consequently, the performance measures were selected as the response variables.

The control systems were evaluated on several criteria utilizing the following

performance indicators:

• Work in process, WIP,

• Throughput, Th,

• Average utilization, u  [see 5.2.1],

• Average cycle time, cyclet ,

• Time spent in the system (analysis of dynamic response), systemt  [see 7.2.1

Indicators, Time Spent in System], and

• Recovery time (analysis of dynamic response), recovert  [see 7.2.1 Indicators,

Recovery Time].
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      The relationship,

cyclet

WIP
Th = ,

is known as Little’s Law and is often referred to in manufacturing literature, being

originally derived for a basic queuing system. It was found to be independent upon

any specific assumptions regarding the arrival distribution, the service time

distribution, the number of servers in the system or upon the particular queuing

discipline within the system [KLE75, p. 17]. The formula existed as a “folk theorem”

for many years before Little established its validity in a formal way [LIT61]. The

formula is a useful tool as it can be used to calculate the third unknown indicator

when two indicators are known, independent of system configurations.

      The three basic principles of experimental design,

1. randomization,

2. blocking, and

3. replication

were taken into consideration in the following manner:

1. As the system variables and statistics were reinitiated after every replication and

the random number generators were assumed to produce numbers confidently,

behaving like numbers following a true random distribution, the order of the runs

was not randomized.

2. The simulation software and the computer hardware provided an identical

environment for every experiment performed, making experiment blocking

[MON91, p. 9], unnecessary.
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3. As most of the simulations were performed for non-terminating systems [see

3.2.7] a large number of entities was produced rather than completing several

replications of the same configuration [see 4.2.2]. Only the analysis done on the

dynamic behavior to failure involved a terminating system [see 4.2.1]. Here, the

number of replications was established prior to the bulk of experiments [see

8.4.1].

3.2.7 Simulation Execution

      Depending on the starting and stopping conditions, terminating or non-terminating

simulations can be executed as a natural reflection of how the target system actually

operates. The terminating simulation ends according to some model-specific rule or

condition. For instance, a manufacturing line operates as long as it takes to produce

500 completed assemblies specified by order. According to Kelton et al. the key

notion is that the time frame of the simulation has a well-defined and natural end, as

well as a clearly defined way to start up. A steady-state of non-terminating simulation,

on the other hand, is one in which the quantities to be estimated are defined in the

long run, i.e., over a theoretically infinite time frame [KEL98, p. 177]. For a

manufacturing line that never stops or restarts, a non-terminating simulation is

appropriate.

      After initial reflections on parameter settings and several model modifications,

preliminary calculations of the confidence intervals [see 4.2 and CHAPTER 8] were

conducted. These computations were done to ensure high accuracy on the estimation

of the performance indicators. After the completion of the simulations on each of the
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levels, the confidence on the indicators was reevaluated. All the calculations carried

out on the confidence were aggregated and documented in a separate chapter not to

disrupt the analysis of the data.

3.2.8 Output Analysis and Interpretation of the Results

      The output analysis and interpretation forms the major part of this documentation.

Since simulation was the modeling tool in question, statistical output analyses were

considered in a comprehensive manner. Yavuz and Satir, and Chu and Shih found

these issues to be treated rather lightly in many studies reviewed [YAV95] [CHU92].

3.2.9 Conclusions and Implementation

      At the end of the three chapters encompassing the discussions on the stepwise

introduction of batch size, setup time, and machine failure the conclusions drawn

from prior investigations are presented. Conclusions presented within the chapters, are

clearly marked by a heading.

      Unfortunately, a few additional factors have to be taken into consideration to

enable simulations of an authentic manufacturing line. However, some findings may

be translated into implementations able to improve productivity and efficiency of a

real production system.

      Before proceeding to the actual discussions of the simulations, a fairly

comprehensive but short theoretical background on the statistical analysis methods

used is given in the next chapter. The summary of the statistical theory in one chapter
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can serve as a review for some readers, but should primarily serve as the source of

reference making explanations within the chapters redundant. Thus, several

clarifications are reduced to one only, and the obstruction of narration is eliminated.
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 CHAPTER 4
STATISTICS

      A simulation is a computer-based statistical sampling experiment [BAI98, p.97].

The results of a simulation have to be analyzed with the appropriate statistical

techniques to reveal their full potential. Statistics cannot prove that a factor has a

particular effect. They only provide guidelines as to the reliability and validity of

results. Properly applied, statistical methods do not allow anything to be proved

experimentally, but, they do allow us to measure the likely error in a conclusion or to

attach a level of confidence to a statement. Thus, the primary advantage of statistical

methods is that they add objectivity to the decision-making process. Unfortunately,

the output processes of virtually all simulations are non-stationary and auto-

correlated. Thus, classical statistical techniques based on identical independent

distributed (IID) observations may not be directly applicable. Sometimes, special

techniques have to be applied to ensure the statistical independence of the output data.

      Let mxxx 11211 ,...,,  be a realization of the random variables mXXX ,...,, 21  resulting

from a simulation run of m replications using the random numbers ,..., 1211 uu . If the

simulation is run with different sets of random numbers ,..., 2221 uu , a different

realization mxxx 22221 ,...,,  of the random variables mXXX ,...,, 21  will be obtained. For

different runs of a simulation, different random numbers are used for each replication.



45

The statistical counters are reset at the beginning of each replication, which uses the

same initial conditions. Suppose that we make n independent runs of length m,

resulting in the observations:

nmnin

mi

mi

xxx

xxx

xxx

��

���

��

��

1

2221

1111

.

      The observations from a particular replication (row) are not IID due to the nature

of the random generators. However, the observations in the ith column are IID

observations of the random variable iX , i=1, 2, …, m. This independence across runs

allows the statistical methods discussed below to be used. The goal it to make use of

the observations to draw inferences about the random variables mXXX ,...,, 21 , the

parameters influencing the performance of the different control systems [BAI98,

p.98].

 4.1 Transient and Steady-State Behavior

      For the output stochastic process ,..., 21 XX  let

)()( IxXPIxF ii ≤= , i=1, 2, …,

where x is a real number an I represents the initial conditions. )( IxFi is called the

transient distribution of the output process at time i for initial conditions I.

For fixed x and I, the probabilities ),...(),( 21 IxFIxF are just a sequence of numbers.

If ( )xFIxF i
i  → ∞→)( for all x and all initial conditions I, then F(x) is called the
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steady-state distribution of the output process ,..., 21 XX  . Here, if the distributions are

approximately the same after k steps in time, then steady-state is said to start at time k.

However, steady-state does not mean the random variables ,..., 21 ++ kk XX will take on

the same value in a particular simulation run. It means that they will have

approximately the same distribution [BAI98, p.98].

      As mentioned earlier, statistics can not prove the correctness of a certain

statement. Instead, they allow statements to be made with a certain confidence.

 4.2 Confidence

      The statistical analysis methods differ according to whether simulations are

terminating or non-terminating [see 3.2.7].

4.2.1 Analysis for Terminating Simulations

      The data set is given by n independent replications of a terminating simulation.

Each replication is initiated with the same conditions and a different random generator

seed and terminated by a certain event. Thus, independence of the observations is

achieved by a different string of random numbers.

      Let Xi be the observation of the ith replication, i=1, 2, …, n. It is assumed that the

Xi `s are comparable for different replications. Consequently, the Xi `s can be defined

as identical independently distributed random variables.

      For n data points X1, X2, …, Xn, the sample mean is an unbiased point estimator for

the mean of X represented by the following formula:
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      The 100(1-α)% confidence interval for the mean is given by

( ) ( )
n

ns
tnX n

2

2/1,1 α−−±= ,

where s2(n) is the sample variance given by
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with n-1 degrees of freedom.

Let h be the half-width of the confidence interval of the point estimate,

( )
.

2

2/1,1 n

ns
th n α−−=

      To ensure the desired accuracy of the estimation,

( )nXh γ≤ ,

where γ is a given parameter, 0 < γ < 1, here γ = 0.1 by default.

      After an initial simulation with n replications this condition may not be satisfied.

Additional n2 replications have to be run to reduce the initial half-width h1 to the

desired half-width h2 [BAI98, p.103].

      For moderately large n1, the sample statistics will remain relatively unchanged

with respect to n, thus,

,2/1,12/1,1 21 αα −−−− ≈ nn tt

( ) ( ),2
2

1
2 nsns ≈
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( ) ( ).21 nXnX ≈

Consequently,
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4.2.2 Analysis for Non-Terminating Simulations

      Let Y1 , Y2 , … be an output string from a single replication of a non-terminating

simulation. ( ) ( ) ( ) ( )yFyYPyFyYP i
ii =≤ →=≤ ∞→ ,

where Y is the steady state random variable with distribution F. Due to the initial

conditions, the observations near the beginning of the simulation usually are not

representative of the steady-state behavior. For given observations Y1 , Y2 , …, Ym the

following formula gives a good point estimate of E(Y):

( )
lm

Y
lmY

m

li
i

−
=

∑
+= 1, ,

where l stands for the warm-up period and m for the number of observations. l and m

are determined such that

( ) ( )YElmY ≈, .

      The Method of Batch Means is applied to ensure the accurate calculation of a

point estimate for non-terminating systems.

      A replication results in observations Y1 , Y2 , …, Ym after removing the warm-up

period l. The m observations are divided into n batches of length k, thus, m=nk. Let

( )kYj  be the sample mean of the k observations in the jth batch. Let
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be the grand sample mean. Then ( )knY ,  can be used as the estimate point for E(Y).

      The batch size k can be determined by a correlation analysis. k is set equal to the

lag length resulting in a minimal correlation of the data. Should

k

m
n =

be non-integer, the excess amount of data, e,

n
k

m
me 



−=

can be truncated.

4.2.3 Paired-t Confidence Inte rval

      The following assumptions have to be made:

1. Each system provides an equal amount of data (n replications),

2. Observations are independent within the systems.

      The following descriptions will refer to the two systems as System A and System

B.
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Table 4-1: For the paired-t test, comparing two systems is reduced to estimating a
single parameter, the difference.

Replication System A System B Difference
1 xa1 xb1 d1

2 xa2 xb2 d2

… … … …
n xan xbn dn

      The confidence interval on the quantity δ, which is the expected value of di, will

enable a comparison between the two systems. Thus, the problem of comparing two

systems is reduced to estimating a single parameter, namely di [see Table 4-1]. The

resulting confidence interval is referred to as a paired-t confidence interval.

      This method is particularly appealing as the following assumptions can be

omitted:

1. Variance of xa  = variance of xb (assumption for the two-sample-t method),

2. xai and xbi are independent.

      The confidence interval requires xa1 and xa2 to be independent, but correlations

across rows are permitted. The procedure for computing the confidence interval on δ

is exactly the same as for the single-system case:

,∑=
i

i

n

d
d

( ) ( )∑ −
−

=
i

i

n

dd
ds

1

2

, and

n

ds
ds

)(
)( = .
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      The half-width for a (1-α) confidence interval on δ centered at d is then given by

)(2/1,1 dsth n α−−= .

      The statistic d is an estimate of the difference in the measured performance of the

two systems: if the two systems perform identically, the expected value of d is 0. If

the computed confidence interval contains 0, a difference between System A and

System B can not be reliably stated. However, if the interval does not contain a 0, a

difference between the two systems can be stated with the appropriate confidence

level. If the confidence interval does not contain 0, the two systems differ and the

appropriate system can be selected based on the sign of d .

      The authors elaborate on the fact, that if the interval on the difference between the

systems contains 0, the two systems are not necessarily the same. Additional

replications may be required to discern any difference [PEG95, pp. 177].

      Another powerful tool to analyze data is regression. As regression describes

statistical relations between variables, it also enables estimation and prediction of data

points.

 4.3 Multiple Regression

      A regression model is a formal means of expressing the two essential ingredients

of a statistical relation:

1. A tendency of the dependent variable to vary with the independent variable in a

systematic fashion, and

2. A scattering of points around the curve of statistical relationship [NET90, p. 27].
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      Probabilistic models that include terms involving x2, x3 (or higher-order terms), or

more than one independent variable are called multiple regression models. The

general form of these models is

εββββ +++++= kk xxx ... y 22110 .

      The dependent variable y is written as a function of k independent

variables kxxx ,...,, 21 . kxxx ,...,, 21  can be functions of variables as long as the

functions do not contain unknown parameters. The random error term, ε, is added to

make the model probabilistic rather than deterministic. The value of the coefficient βi

determines the contribution of the independent variable xi, and β0 is the y-intercept.

The coefficients β0, β1, …, βk  are usually unknown because they represent population

parameters

,

rRandomerro
model ofpart  ticDeterminis

22110 ... y εββββ +++++=
����� ������ 
	 kk xxx .

      The Least Squares Approach is used to fit the multiple regression models. The

estimated model

kk xxy βββ ˆ...ˆˆˆ 110 +++=

minimizes

∑ −= 2)ˆ( yySSE ,

where SSE stands for the sum of square errors.

      The sample estimates kβββ ˆ,...,ˆ,ˆ
10  are obtained as a solution to a set of

simultaneous linear equations.
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Model Assumptions:

1. For any given set of values of x1, x2, …, xk, the random error ε has a normal

probability distribution with mean equal to 0 and variance equal to σ2
.

2. The random errors are independent in a probabilistic sense [MCC94, p.744].

      σ2 represents the variance of the random error, ε. Thus it is an important measure

of the usefulness of the model for the estimation of the mean and the prediction of

actual values of y. If σ2 = 0, all the random errors will equal 0 and the predicted

values, ŷ , will be identical to E(y), that is, E(y) will be estimated without error. On

the other hand a large value of σ2 implies large values of ε and larger deviations

between the predicted values, ŷ , and the mean value, E(y). Thus, σ2 plays a major

role in making inferences about β0, β1, …, βk, in estimating E(y), and in predicting y for

specific values of x1, x2, …, xk..

      Since the variance of the random error will rarely be known, the results of the

regression analysis are used to estimate its value with the following formula

)1(

)ˆ( 2
2

+−
−

= ∑
kn

yy
s ii ,

(k+1) indicating the number of β parameters. This will be referred to as the mean

square for error (MSE). To enable a meaningful interpretation, the standard deviation

s is introduced as a measure of variability

)1(

)ˆ( 2

+−
−

= ∑
kn

yy
s ii .
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4.3.1 Estimating and Testing Hypotheses about the β Parameters

      Some of the β parameters have practical significance in the models formulated in

the following chapters. Thus, their values will be estimated and hypotheses will be

tested about them. Considering the model

εβββ +++= 2
210 y xx

the following hypothesis could be performed using a t-test:

null hypothesis H0 : β2 = 0 (No curvature in the response curve.)

against the

alternative hypothesis Ha : β2 < 0 (Concavity exists in the response curve.).

      The t-test utilizes a test statistic analogous to that used to make inferences about

the slope of the straight-line regression model. The t statistic is formed by dividing the

sample estimate, 2β̂ , of the parameter, β2, by the estimated standard deviation of the

sampling distribution of 2β̂ , 
2β̂s :

Test statistic: 
2

ˆ

2
ˆ

β

β
s

t = .

      For relevant estimated model coefficientsiβ̂  the estimated standard deviation

i
sβ̂ and the calculated t values will be given. To find the rejection region for the test

the upper-tail value for t is retrieved from the t-table. This is a tα such that P(-t < -tα)

= α. This value can then be used to construct rejection regions for either one-tailed

[see Figure 4-1] or two-tailed tests.



55

Figure 4-1: Rejection region for a test of β2

      The numbers given in the following chapters list the two-tailed significance levels

for each t value. The null hypothesis, that the parameter equals to zero, would be

rejected in favor of the alternative hypothesis, that the parameter does not equal to

zero, at any α level larger than the given number. A 100(1-α)% confidence interval

for a β parameter is given by

i
sti βαβ ˆ2/

ˆ ±

where tα/2 is based on n-(k+1) degrees of freedom and n observations and (k+1) β

parameters in the model [MCC94, p.746].

4.3.2 Usefulness of a Model: R2 and the Analysis of Variance F-Test

      Conducting t-tests on each β parameter in a model is not a good way to determine

whether a model is contributing information for the prediction of y. When conducting

a series of t-tests to determine whether the independent variables are contributing to

the predictive relationship, it is most likely that an error would be made in deciding

which terms to retain in the model and which to exclude. This may result in including

a large number of insignificant variables and excluding some useful ones. Thus, a

αt

α = 0.05

Rejection Area
t
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global test that encompasses all the β parameters is needed. Furthermore, it would be

useful to find a statistical quantity that measures how well the model fits the given

data. As this statistical quantity R2 , the multiple coefficient of determination, can be

used to calculate the F value. R2 will be introduced first.

4.3.3 Multiple Coefficient of Determination, R2

      As the name multiple coefficient of determination indicates, R2 is the equivalent

of r2, the coefficient of determination for the straight-line model [see MCC94, p. 697].

It is defined as the following

y variablitTotal

ty variabiliExplained

)(

)ˆ(
1

2

2
2 =

−
−

−=
∑
∑

yy

yy
R ,

where ŷ is the predicted value of y for the model. R2 represents the fraction of the

sample variation of the y values that is explained by the least squares prediction

equation. R2 = 0 implies a complete lack of fit of the model to the data and R2 = 1

implies a perfect fit with the model passing through every data point. Thus, the larger

the value of R2, the better the model fits the data [MCC94, p. 759].

4.3.4 Variance F-Test

      The following test would formally test the global usefulness of the model:

Ho : β1 = β2 = …= βk= 0

(All model terms are unimportant for predicting y.),

Ha : At least one of the coefficients βi is nonzero
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(At least one model term is useful for predicting y).

      The test statistic used to test this hypothesis is an F statistic, which can be

calculated with the following formula:

)]1(/[)1(

/
2

2

+−−
=

knR

kR
F ,

where n is the sample size and k is the number of terms in the model. The formula

indicates that the F statistic is the ratio of the explained variability divided by the

model degrees of freedom to the unexplained variability divided by the error degrees

of freedom. The larger the proportion of the total variability accounted for by the

model, the larger the F statistic.

      To determine when the ratio becomes large enough that the null hypothesis can be

rejected and the model is more useful than no model at all for predicting y, the

calculated F value is compared to a tabled F value:

Rejection region: F > Fα , where F is based on k numerator and n-(k+1)

denominator degrees of freedom.

      McClave et al. caution the reader that a rejection of the null hypothesis leads to

the conclusion, with 100(1-α)% confidence, that the model is useful. However, useful

does not necessarily mean best. Another model may prove even more useful in terms

of providing more reliable estimates and predictions. Thus, this global F-test is

usually regarded as a test that the model must pass to merit further consideration

[MCC94, p.762]. It will only be used in this sense in the following chapters.
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4.3.5 Comparison of two or more Regression Functions

      Instead of fitting separate regressions for separate data sets, only one regression is

fitted. This regression gives rise to the same response functions otherwise obtained.

This has the following advantages:

1. Inferences can be made more precisely by working with one regression model

containing indicator variables since more degrees of freedom will then be

associated with the mean standard error (MSE)[NET90, p.355],

2. One regression run on the computer will yield both fitted regressions, and

3. Tests for comparing the regression functions for the different classes of the

qualitative variable can be clearly seen to be tests of regression coefficients in a

general linear model [NET90, p.358].

      Here the data sets of the different control systems are accumulated to produce one

data set. Indicator variables (or binary variables) that take on the values 0 and 1 are

used to quantitatively identify the classes of the qualitative variables distinguishing

the control systems. To prevent computational difficulties a qualitative variable with c

classes will be represented by (c-1) indicator variables [see NET90, p.351].

      Assuming that a first order model is to be employed it would give rise to the

following function:

εβββ +++= 12110 ixy

where

x1 = independent variable, and





=
20

11
1 temcontrolsys

temcontrolsys
i .



59

      The response function of this regression model is:

( ) 12110 ixyE βββ ++= ,

which can be interpreted as:

( ) ( ) 1120 xyE βββ ++=

for the control system 1, and as:

( ) 110 xyE ββ +=

for the control system 2. Thus, β2  measures the differential effect of the type of

control system. It shows how much higher (lower) the mean response line is for the

class coded 1 than the line for the class coded 0, for any given level of x1.

      This approach is completely general. If three control systems are to be compared,

additional variables are simply added to the model. Furthermore, the differentiation is

not only limited to the y-intercept, but can be introduced to distinguish gradients or

coefficients of variables with higher order.

      However, the following assumption has to be made:

The error term variances in the regression models for the different populations are

equal, otherwise transformations may be used to approximately equalize them.

4.3.6 Transformation

      Simple transformations of either the dependent variable y or the independent

variable x, or of both, are often sufficient to make the simple regression model

appropriate for the transformed data. Unequal error variances and non-normality of

the error terms frequently appear together. To reduce the departure from a simple
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linear regression model a transformation on y is needed, since the shapes and spreads

of the distributions of y need to be changed. Such a transformation on y may help to

linearize a curvilinear regression relation at the same time. At other times, a

simultaneous transformation on x may also be needed to obtain or maintain a linear

regression relation. However, it is very unlikely that such a transformation will be

needed in the following chapters.

      Box and Cox [COX58] have developed a procedure for choosing a transformation

from the family of power transformations on y. This procedure is useful for correcting

unequal error variances. The family of power transformations is of the form:

γyy =′ ,

where γ is a parameter to be determined from the data. The family encompasses the

following and widely used transformation:

yy elog=′ .

      The criterion for determining the appropriate parameter γ of the transformation of

y in the Box-Cox approach is to find the value of γ that minimizes the error sum of

squares SSE for a liner regression based on that transformation.

4.3.7 Residual Analysis

      When regression analysis is applied deviations from the initial assumptions may

result in incorrect reliabilities stated. The departures have to be detected and taken

into account should they be big enough to alter the results. Fortunately, experience

has shown that least squares regression analysis produces reliable statistical tests,
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confidence intervals, and prediction intervals as long as the departures from the

assumptions are not too great [MCC94, p.784].

      As the assumptions [see 3.2.3] concern the random error component, ε, of the

model, a first step is to estimate the random error. Since the actual random error

associated with a particular value of y is the difference between the actual y value and

its unknown mean, the error is estimated by the difference between the actual y value

and the estimated mean. This estimated error is called the regression residual, denoted

by ε̂ .

ε = actual random error

= (actual y value) – (mean of y)

= y – E(y)

= ( )kk xxxy ββββ ++++− ...22110

ε̂ = estimated random error (residual)

= (actual y value) – (estimated mean of y)

= yy ˆ−

= ( )kk xxxy ββββ ˆ...ˆˆˆ
22110 ++++− .

      As the true mean of y (i.e., the true regression model) is not known, the actual

random error can not be calculated. However, because the residual is based on the

estimated mean (the least squares regression model), it can be calculated and used to

estimate the random error and to check the regression assumptions. These checks are

generally referred to as residual analyses [MCC94, p.784].
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4.3.8 Influential Observations

      When using regression, some subset of the observations may be found to be

unusually influential. Sometimes these influential observations are relatively far away

from the vicinity of the rest of the data. Dennis R. Cook developed an excellent

diagnostic, the Cook’s distance. This is a measure of the squared distance between the

usual least squares estimate of β based on all n observations and the estimate obtained

when the ith point is removed, say, iβ̂  [NET90, p. 403].

      The next chapter comprises a discussion of the influence of the batch size on the

performance of the three manufacturing systems. A comparison between the systems

introduces the chapter to give the reader a brief overview of the material. Then, the

two pull systems are discussed in more detail to explain their behavior. The push

system, MRP, is introduced separately due to its different attributes. After dealing

with the material in more detail on a level where the interdependence of factors is

more evident the discussion continues on a higher level by returning to the

comparison of the systems.
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 CHAPTER 5
BATCH SIZE

      Avoiding setups and facilitating material handling are the two primary reasons for

batching jobs together in a manufacturing system. If large lots of similar products are

run in batches, equipment setups are infrequently needed. If setups are long, large lots

result in substantially more effective capacity. Furthermore, for process batches equal

to move batches the material that is moved between workstations in large batches

requires less handling than if it is moved in small lots [HOP96, p. 288].

      The entities arrive at a workstation in a batch. While the first entity of that batch

enters the machine, the remaining entities have to wait to be processed. The batch can

be transported to the next stage in the system, only when the last entity of a batch is

completed. Here, transportation is assumed infinitely fast resulting in zero

transportation time.

      A variety of single stage models and analytical techniques have been reviewed by

Chaudhry and Templeton [CHA83]. The literature covers single stage manufacturing

systems only, not applicable to a ten machine tandem line. Gold investigates

sophisticated batch service systems in push and pull manufacturing environments as

single stage systems by using embedded Markov chain techniques [GOL92]. Kim et

al. focus on production scheduling in semiconductor wafer fabrication taking batch

sizes into account. They use simulation to evaluate new scheduling rules [KIM98].
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Schoening and Kahnt show how to extend the methodology of Mitra and Mitrani

[MIT90] to model a one-card Kanban system with batch servers [SCG95]. However,

in all three cases the batches could be processed simultaneously by batch servers, such

as plating baths, drying facilities, and heat-treating ovens, not quite transferable to the

tandem line with sequentially processing machines.

      The model parameters and their levels are introduced to elaborate on the input

data prior to the discussion of the simulation results.

 5.1 Parameters

      The process time was established at 20 seconds throughout all the simulations

while the following parameters were varied to evaluate the performance of the

manufacturing systems:

• Batch size,

• Total number of cards assigned to the line, and

• The interarrival time for MRP.

The levels of these parameters or factors are discussed briefly.

5.1.1 Process Time

      A workstation which processes a batch size r can be modeled as an r-stage

Erlangian server. In such a system a customer enters the server, proceeds one stage at

a time through the sequence of r stages and departs at the end. Only then, a new

customer enters. The total time that a customer spends in this service facility is the
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sum of r independent identically distributed random variables, each chosen from an

exponential distribution. The probability distribution function of the service time is an

Erlangian distribution [KLE75, pp. 123-124]. Consequently, the process time for a

batch of size r is distributed according to an r-stage Erlangian distribution with a

mean of the individual process time, viz. 20 seconds. The batch size and the mean

process time per entity were given as an input.

5.1.2 Batch Size

      The following batch sizes were selected:

1, 2, …, 10, and 20.

      Initially, neutral experiments were conducted to establish differences of system

behavior for batch size 20. The results were found to be compliant with the results

obtained for batch size 1 to 10. Thus, batch size 20 was omitted for further

experiments.

5.1.3 Number of Cards

      The second design parameter portrays the number of cards assigned to the entire

line. Naturally, this parameter applies to the pull systems only. Its pendant for MRP is

the interarrival time. The parameter merely indicates the total amount of cards in the

system. It does not specify the number of cards assigned to individual machines.

Huang and Wang determine the number of cards in a CONWIP system, θ, by

applying Little’s Law:
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tµθ = ,

where µ is the average throughput of the production line and t is the average time for

a card to pass through the production line. The formula is expanded to approximate

the number of cards in a production line in series containing a bottleneck [HUA98].

      Optimizing the number of kanbans in a line has been a popular research topic.

According to Bonvik et al. most kanban implementations set the parameters by rules

of thumb or simple formulas [BON97]. Sugimori et al. state Toyota’s formula as an

example:

p

DL
c

)1( α+> ,

where c is the number of cards, D is the demand rate, L the replenishment lead time, α

a safety factor, and p the number of parts in a container [SUG77]. During factory

operation, the kanban numbers are steadily decreased by reducing the safety factor.

According to Bonvik et al. the fact that the formula is based on standard lead times is

less than satisfying, as it does not reflect the lead time consequences of shop floor

congestion and limited machine capacities [BON97].

      Liberopoulos and Dallery use an iterative heuristic to optimize the number of

cards assigned to a conventional single-stage Kanban control system (KCS). They

show that the computational complexity of optimizing a single-stage generalized

Kanban control system (GKCS) is the same as that of optimizing the KCS, which can

be considered a special case of the GKCS [LIB95]. However, the algorithm was

found to be rather complex, making use of an analytically tractable approximation

method or simulation for initialization. Dallery and Liberopoulos introduce the

extended Kanban control system (EKCS) as a KCS accommodating N stages in
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another publication [DAL95], which was recently generalized to assembly structures

by Chaouiya et al. [CHY98]. However, these discussions have a pure comparative

nature, not incorporating the number of cards assigned to the system.

      Unlike CONWIP, the Kanban control system does not only vary with the number

of cards assigned to the entire system, but, its performance is dependent on the

number of cards assigned to the individual machines. To ensure a comparison of an

optimal Kanban with CONWIP and MRP, some card allocation studies had to be

carried out prior to the actual simulations.

5.1.3.1 Card Allocation for Kanban

      Card allocations can not be carried out according to a generally applicable

algorithm. Some rules have been documented, applicable to specific manufacturing

systems. Gsettner and Kuhn make use of a heuristic to determine the optimal

allocation for a given production rate in a Kanban line with m stations. The

production rate is calculated analytically underestimating the true production rate

systematically. The procedure starts with assigning one card to every station. The

number of cards is then increased at each station on a trial basis. The distribution

which shows the best ratio between change in production rate and WIP is finally

accepted (greedy procedure) [GST96].

      The next sub-chapter constitutes an endeavor to specify general allocation rules

relevant to the ten machine tandem line.
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5.1.3.2 Card Allocation Rules

      To visualize the material and to avoid ambiguity, the rules are explained with the

assistance of statics, essential to any engineering education. The ten machine tandem

line [see Figure 5-1] can be modeled as a beam supporting ten weights of equal

distance to one another [see Figure 5-2].

Figure 5-1: The ten machine tandem line.

Figure 5-2: Free body diagram of the ten machine tandem line modeled as a beam.

      The moment of a force is its tendency to produce rotation of the body on which it

acts, about some axis. The measure of a moment is the product of the force and the

perpendicular distance between the axis of rotation and the line of action of the force.

This distance is called the moment arm [see Figure 5-2]. The intersection of the axis

of rotation with the plane of the force and its moment arm is called the center of

moments [JEN83, p. 15]. As it is a point, it is referred to as center point here. All the

forces of a system may be regarded as the component of their resultant force. Hence,

about any point, the moment of the resultant force (total weight) equals the algebraic

1 2 3 4 5 6 7 8 9 10

W2 W3 W4 W5 W6 W7 W8 W9 W10W1

Center Point

Arm +   Moment

+-
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sum of the moments of the separate forces (weights). This principle is known as

Varignon’s Theorem [JEN83, p. 17].

      For the ten machine production line, the weight refers to the number of cards

assigned to a machine. The weight increases with increasing number of cards

allocated. Thus, the balance of the line can be expressed as the moment of the

resultant force, a consequence of a specific card allocation.

      As the rules are not applicable to all manufacturing lines, the following

assumptions were made:

1. Identical machines,

2. All machines comprise the bottleneck,

3. Objective: maximum throughput, and

4. Center point: median of line (between machine 5 and 6).

      Applying the statics analogy to the manufacturing line the following rules result:

1. Increase weight of last machine last,

2. Positive moment preferred to negative moment:

• Increase weight on positive side of center point first,

• Start increasing weight with smaller arm first,

3. Establish balance on line:

• Symmetric structure relative to center point,

• moment close to the absolute minimum (zero): same weight with certain

arm on either side (positive and negative) of center point,



70

• Small difference (one card) in weight between the machines for the entire line,

and

4. Minimize number of consecutive machines with same weight.

      All rules are to be applied simultaneously. However, the importance of the rules

decreases with increasing number. Thus, if the rules contradict one another, the rules

with lower number override the rules with higher number. Initially, all machines get

assigned the same amount of cards. Then, any additional cards are allocated according

to the rules. All the additional cards previously positioned may have to be reallocated

for one more card assigned to the line, thus satisfying an additional rule. For example:

the card remaining from allocating one card to each machine, the 11th card, is

assigned to the 6th machine [see Figure 5-3].

Figure 5-3: Number of cards per machine for 11 cards assigned to a ten machine line.

      However, when a 12th card is assigned, the 11th card previously assigned has to be

reallocated to machine seven while the 12th card is assigned to machine four [see

Figure 5-4].

Figure 5-4: Number of cards per machine for 12 cards assigned to a ten machine line.

1 2 3 4 5 6 7 8 9 10

1 1 1 2 1 1 2 1 1 1

1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 2 1 1 1 1
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      To test the correctness of the rules, some simulations were carried out. For these

simulations batch size, setup time, and failure were not taken into consideration. It

was assumed, that the card allocations were optimal independent of the above

mentioned parameters.

      The rules were found to result in a good approximation of the optimum. However,

an approximation was not good enough to compare Kanban with the other two

systems, both being able to perform at their optimal settings. Consequently, more

simulations were run to establish optimal card allocations for 10 to 70 cards assigned

to the line. Assuming that the performance of the line could not be improved

otherwise, one rule was kept: small difference (one card) in weight between the

machines for the entire line.

      The following number of combinations, m, had to be run for 10 to 19 cards being

assigned:

m = ∑
=






9

0

10

j j
 = 1023.

      As it was found that even the optimal allocations for the interval 10 to 19 cards

could not be applied to the lines with 20 to 70 cards, simulations had to be run for the

following intervals:

1. [10, 19],

2. [20, 29],

3. [30, 39],

4. [40, 49],

5. [50, 59], and

6. [60, 69],
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plus one last replication for 70 cards assigned. This resulted in

n = 6m+1 = 6(1023)+1 = 6139

experiments.

      Thus, 6139 replications were completed resulting in the data to evaluate the rules

quantitatively.

5.1.3.3 Deviation of Rules from Optimum

      The performance of the line for 10 to 70 cards assigned was measured by the

throughput. The percentage increase in throughput, I, for allocating optimally, Tho,

instead of allocating according to the rules, Thr, was calculated according to the

following formula:

%100 




 −
=

r

ro

Th

ThTh
I .

      Figure 5-5 indicates an increase in most of the cases. Only in a few cases the rules

resulted in the optimal allocation. Naturally, there was no increase in throughput for

10, 20, …, 70 as with these numbers only one allocation was possible under the given

assumptions [see p. 68].
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Figure 5-5: Increase in throughput by allocating cards optimally instead of simply
applying the rules.

      To put these percentage increases in a relative context, the maximal increases, i.e.

the increases from the worst possible allocation to the optimal allocation, are

indicated in Figure 5-5 (Max) as well. The graph shows all maximal increases for the

first interval, 10 to 20 cards assigned, and only the maximal increase for 25, 35, …,

65 cards assigned per consecutive allocation interval. These numbers were expected

to show the greatest deviation in throughput as they give rise to the greatest amount of

different possible allocations, a:

252
5

10
=





=a ,

where five additional cards had to be assigned after an equal amount of cards was

allocated to all the machines.

      The graph illustrates the good approximation of the optimum by the rules. This is

especially true for a bigger number of cards assigned. It can clearly be seen that the
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maximal increase decreases with an increasing amount of cards in the system. This

can be ascribed to the following:

• the machines are busy most of the time as enough cards have been allocated to

them,

• the increase of utilization per additional card assigned to the system decreases

with an increasing amount of cards allocated [see Figure 5-6], and

• the ratio,

2

1

c

c
r = ,

where c1  is the smallest number of cards assigned to any machine on the line and

c2  the largest number of cards assigned to a machine, decreases as the

difference, 12 ccd c −= , is kept constant and equal to 1.

Figure 5-6: The average utilization dependent on the number of cards for Kanban.
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      The optimal card allocations for maximum throughput, minimal work in process

and minimal average cycle time were carefully studied.

      The optimal allocations for minimizing WIP and average cycle time were found to

be very close to the rules applied. Note that these rules are different from those given

above, as the primary objective to achieve minimal WIP and minimal average cycle

time is to liberate the system of WIP. This is most efficiently done by placing more

cards towards the end of the line to pull material out of the system. Less cards at the

beginning of the line would result in raw material only being pulled into the system

for processing, not keeping any excess material in the buffers.

      However, trying to achieve maximal throughput resulted in a great variability of

where the additional cards should be placed. Table 5-1 shows an extraction of the list

obtained to illustrate this interesting phenomenon. The systems with the same amount

of additional cards were grouped together. These additional cards were indicated as

ones in their respective rows. Looking at the table unveils no obvious pattern. medianM

and beginningM  are discussed below.
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Table 5-1: Additional cards allocated to the system with ten machines.

# of cards assigned to
the system

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 medianM beginningM

11 0 0 0 0 0 1 0 0 0 0 1 6
21 0 0 0 1 0 0 0 0 0 0 -2 4
31 0 0 0 0 0 0 0 1 0 0 3 8
41 1 0 0 0 0 0 0 0 0 0 -5 1
51 0 0 0 0 0 0 0 0 0 1 5 10
61 0 0 0 0 0 0 0 0 0 1 5 10
12 0 0 0 1 0 0 1 0 0 0 0 11
22 0 0 1 0 0 0 0 0 1 0 1 12
32 0 0 0 0 0 1 1 0 0 0 3 13
42 0 1 0 0 0 0 0 0 1 0 0 11
52 0 0 1 0 0 0 1 0 0 0 -1 10
62 0 0 1 0 0 0 0 0 1 0 1 12
13 0 0 1 0 1 0 1 0 0 0 -2 15
23 0 0 1 0 1 0 1 0 0 0 -2 15
33 0 1 0 0 0 1 0 1 0 0 0 16
43 0 0 1 0 1 0 0 0 1 0 0 17
53 0 0 0 0 1 1 1 0 0 0 2 18
63 0 0 1 0 1 0 0 0 1 0 0 17

      As the research on card allocation was not the main topic of this research paper, a

very limited amount of time was spent trying to find patterns that could explain this

variation. Some calculations were done to express the findings mathematically. The

interest was focused on the balance of the system. medianM  represents the moment of

the line with the center point at the median (between machine 5 and machine 6):

∑
=

=
10

1i
iimedian wlM ,

where wi  stands for the weight of machine i [see 5.1.3, Card Allocation Rules] and l i

stands for the arm of machine i. This was expected to be close to zero at all times,

assuming the correctness of the rules. As can be seen in Table 5-1, this number

greatly varies and sometimes equals to the maximum arm, l5 = 5.

      beginningM  quantifies the moment of the line for additional cards with the center

point at the beginning of the line, such that l i =i:
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∑
=

=
10

1i

c
ibeginning idM ,

where c
id is the difference between the amount of cards of the different machines in

the system [see 5.1.3, Card Allocation Rules]. This formula indicates the position of

weight on the line. For 33 and 43 [see Table 5-1] medianM  is the same and indicates a

balanced line. However, beginningM  shows, that the weight is distributed differently,

viz. more towards the end of the line for 43 cards assigned. Comparing medianM  and

beginningM  for the different allocations, shows no evident pattern. More research could

be conducted to find explanations for this behavior.

5.1.4 Interarrival Time

      This parameter stands for the time interval between two consecutive batch

arrivals. Its inverse is the arrival rate. The interarrival time was favored to the arrival

rate as it is understood more intuitively. Furthermore, it served as a direct input value

for the software applied.

      The selected levels resulted from setting the utilization interval ],[ maxmin uu  for

MRP equal to the utilizations for the pull systems. The levels selected divided the

intervals into nine partitions.

      As the average cycle time represents one of the primary indicators of the

performance of a manufacturing line, its response to a change in batch size is

discussed first.
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 5.2 Average Cycle Time

      The following graph shows the influence of the batch size and the number of cards

allocated to the system on the average cycle time for the three control systems:

Kanban (1), CONWIP (2), and MRP (3) [see Figure 5-7].

Figure 5-7: The average cycle time dependent on the batch size and number of cards
allocated to the line for the three control systems: Kanban (1), CONWIP (2), and
MRP (3).

      The average cycle time increases with increasing batch size. For the vertically

aligned data points, the number of cards assigned increases from bottom to top. As the

material is pulled into the system in batches the last member of each batch has to wait
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until all the other members are processed. As the batch size increases, this waiting

time increases.

      The lowest values of the average cycle time per batch size were obtained for the

least number of cards assigned to the system, viz. ten. Ten cards theoretically enable

all the machines to be busy simultaneously. Furthermore, Kanban requires this

minimal amount to function. For the upper bound at most 200 entities were chosen:

maxWip = bc = (10)(20) = 200,

where b is the batch size and c is the number of cards assigned to the system.

      However, another constraint enforces even stronger limitations on the systems: the

average utilization of the machines.

5.2.1 The Average Machine U tilization

      Little’s Law relates the three parameters: throughput, cycle time, and work in

process. This interdependence has proven practically to be the only stable observation

for the turbulent stochastic manufacturing systems. Thus, it can easily be used to

make conclusions about one of the parameters when one is kept constant and the other

one is known.

      The three parameters constitute ideal indicators of performance for a production

system. The production engineers are most definitely interested in reducing work in

process to decrease cycle time and increase the throughput of the line. Thus, these

parameters serve as quantitative indicators enabling state of the art process control.
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      From these indicators other indicators can be derived. One of these indicators

would be the machine utilization. The utilization, u, can be determined independently

of the throughput, but, they are directly related:

theory

average

Th

Th
u = ,

where averageTh  is the average throughput derived from the systems under study, and

theoryTh  is the theoretical throughput, which can be determined by the following

formula:

process

theory t
Th

1= ,

where processt  is the process time of the bottle neck machine in minutes. Here, the

machines are identical and can all be considered bottle neck machines with a process

time of 20 seconds or 
3

1
 minute resulting in the following:

3

3

1
1 ==theoryTh

entities per minute.

      The utilization gives a relative performance of a machine and can be calculated

for the entire line. The average utilization, u , of the line can be calculated by the

following formula:

10

10

1
∑

== i
iu

u ,
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where iu  is the utilization of machine i. For the simulations completed in this study,

the utilization of a machine was determined by sampling the system in 20 second

intervals. The sampling interval was set arbitrarily equal to the machine process time.

      The average throughput averageTh  was computed at the end of each simulation

replication using Little’s Law:

cycle

average
average t

WIP
Th = ,

where cyclet  is the average cycle time and

10

10

1
∑

== i
i

average

WIP
WIP

is the average work in process calculated from the work in process per machine i

sampled in 20 second intervals.

      The average cycle time was computed by the following formula:

n

t

t

n

j

cycle
j

cycle

∑
== 1 ,

where cycle
jt  is the cycle time of entity j, j=1, …, n, here n=10,000. Calculating the

average utilization either way results in the same value. For the simulations completed

the values differ in the third decimal after the comma, an insignificant difference.

      The utilization serves as an ideal indicator for the practical applicability of the

simulation data. A rule of thumb states that utilizations above 0.9 are unrealistic in

industry. Utilizations below 0.65 are uneconomical. To make the observations and
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conclusions transferable to real life problems, all configurations were chosen to

produce utilization within the interval [0.65, 0.9].

      As the utilization was one of the constraints kept throughout all simulations, it

unveiled itself as an ideal parameter to serve as a common factor for comparisons

between the three control systems.

      To enable a comparison between the systems the utilization interval was kept

constant for all three of them [see Figure 5-8].

Figure 5-8: Utilization dependent on batch size and number of cards for Kanban (1),
CONWIP (2), and MRP (3).
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      This utilization interval was created by controlling the number of cards assigned

to the line for the pull systems and by adjusting the interarrival time for the push

system, MRP.

5.2.2 Kanban and CONWIP

      As the average WIP differs for Kanban and CONWIP for a certain amount of

cards [see 2.6], the minimal amount of cards for Kanban could only be determined by

additional replications. The data with utilization below the lower bound of the interval

[0.65, 0.9] was dropped. In CONWIP all the cards are used at all times resulting in the

same amount of WIP as number of cards in the system. In Kanban the amount of

cards represents an upper limit of WIP in the system. Here, the cards are bound to a

machine. Assuming that a machine at the beginning of the line has an exceptionally

long processing time for a particular entity, the machines down the line, at least those

close to the momentary bottleneck, are idle. These machines don’t carry WIP, leaving

the system with less WIP than cards assigned. Figure 5-9 shows that the data points

are clearly below the 45 degrees line.
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Figure 5-9: Average WIP dependent on the number of cards assigned to a Kanban
system.

      Figure 5-7 also shows that with an increasing number of cards assigned, average

work in process increases and, consequently, the average cycle time increases as well

[see 3.2.6]. The data points are aligned vertically, the number of cards assigned

increases from bottom to top. The waiting time for a unit to be processed increases not

only within the batches, but, it increases throughout the line as more material is

caught in the system. Figure 5-10 illustrates this dependence for CONWIP.
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Figure 5-10: The average cycle time dependent on the number of cards assigned to the
system for CONWIP.

      The straight lines formed by the data points without any outliers make the linear

dependency most evident and indicate that Little’s Law holds: as the number of cards

increases, the WIP increases, and the average cycle time increases. Naturally, Kanban

shows the same behavior, although the lines are not quite as smooth [see Figure 5-11].

Figure 5-7 reveals this fact, too. The circles are not as evenly spread for Kanban as for

CONWIP for specific batch sizes. Especially the higher batch sizes show a higher

concentration of circles at certain average cycle times.
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Figure 5-11: The average cycle time dependent on the number of cards assigned to the
system for Kanban.

      To find out how well the data fits the linear dependency assumption a multiple

regression analysis was performed on both systems. As expected, the regression

model for CONWIP proves the linear behavior of the dependent variable. The high

value of the multiple coefficient of determination, R2 = 0.9999 [see Row 24, Table

5-2], shows the perfect fit of the model. To give the reader an idea of the data output

given by the software, it is tabulated below.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80

Number of Cards

A
ve

ra
ge

 C
yc

le
 T

im
e 

[s
] Batchsize1

Batchsize2

Batchsize3

Batchsize4

Batchsize5

Batchsize6

Batchsize7

Batchsize8

Batchsize9

Batchsize10



87

Table 5-2: Multiple regression output for CONWIP with the average cycle time
(Avgct) dependent on the number of cards (Ccards).

Formula
Cavgct ~ Ccards + Ci2 + Ci3 + Ci4 + Ci5 + Ci6 + Ci7 + Ci8 + Ci9 + Ci10 +
Ccardsci2 + Ccardsci3 + Ccardsci4 + Ccardsci5 + Ccardsci6 + Ccardsci7 +
Ccardsci8 + Ccardsci9 + Ccardsci10

1

Residuals
Min 1Q Median 3Q Max

-19.75 -5.095 -0.4204 4.093 28.57 2
Coefficients

Parameter Value Std.Error t-value Pr(>|t|)
(Intercept) 178.9593 3.8587 46.3780 0.0000 3

Ccards 20.0774 0.1136 176.7149 0.0000 4
Ci2 73.5170 6.6358 11.0788 0.0000 5
Ci3 156.7482 9.6439 16.2536 0.0000 6
Ci4 242.2489 13.2812 18.2400 0.0000 7
Ci5 375.3362 24.0987 15.5750 0.0000 8
Ci6 408.7711 20.5851 19.8576 0.0000 9
Ci7 465.8402 18.0067 25.8704 0.0000 10
Ci8 519.8010 20.5851 25.2513 0.0000 11
Ci9 569.4994 20.5851 27.6656 0.0000 12
Ci10 636.8179 20.5851 30.9359 0.0000 13

Ccardsci2 18.3685 0.2409 76.2555 0.0000 14
Ccardsci3 35.1863 0.4872 72.2192 0.0000 15
Ccardsci4 51.1600 0.8083 63.2931 0.0000 16
Ccardsci5 62.7219 1.8121 34.6125 0.0000 17
Ccardsci6 81.7514 1.4810 55.1986 0.0000 18
Ccardsci7 99.1862 1.2407 79.9445 0.0000 19
Ccardsci8 115.7481 1.4810 78.1533 0.0000 20
Ccardsci9 133.1146 1.4810 89.8792 0.0000 21
Ccardsci10 149.4230 1.4810 100.8906 0.0000 22

Residual standard error
9.57 on 130 degrees of freedom 23

Multiple R-Squared
0.9999 24

F-statistic
50270 on 19 and 130 degrees of freedom, the p-value is 0 25

      The formula [see row 1] describes the linear dependence of the response variable

to the nineteen independent variables that have a main effect on the model. It contains

9 indicator variables, Cij, j=2, 3, …, 10, to fit the y-intercepts for the ten curves in the

data set. This is one variable less than the number of fitted curves to enable

calculation. The Ccardscij, j=2, 3,…, 10 variables enable the calculation of the



88

gradients, expressing the differentiation of slopes. This results in the following model

fitted to the data set:

Cavgct = β1Ccards + β2Ci2 + β3Ci3 + β4Ci4 + β5Ci5 + β6Ci6 + β7Ci7 + β8Ci8 +

β9Ci9 + β10Ci10 + β11Ccardsci2 + β12Ccardsci3 + β13Ccardsci4 + β14Ccardsci5 +

β15Ccardsci6 + β16Ccardsci7 + β17Ccardsci8 + β18Ccardsci9 + β19Ccardsci10.

      Row 2 shows the distribution of the residuals. The given extremes, min and max,

show the very good estimation of the line. The estimated regression line deviates from

the given data by maximally 28.57 seconds, where the average cycle time lies in the

interval [381.1972, 4298.0820]. The intercept of the line for batch size 1 is given in

row 3, while the increase in coefficient βj from βj-1 for β2 , …, β19 is given in rows 4 to

22. The residual standard error will be discussed shortly [row 23]. The p-value given

for the f-statistic indicates, that for any α>0, the null hypothesis, that βj = 0, j=1, …,

19, is rejected.

      As the lines for Kanban are less smooth, the regression was expected to show a

greater variance for the residual error. Although the initial model had a high multiple

coefficient of determination, R2=0.9892, the residual graph [see Figure 5-12] clearly

indicated an unequal residual variance making transformation necessary.
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Figure 5-12: Unequal residual error variance for initial model fitted to Kanban.
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the following was chosen with the help of the Box and Cox procedure [see 4.3.6] and

observation of the residual plots:

yy elog=′ .

      This transformation had the least residual standard error [see Table 5-3] and
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Table 5-3: The residual standard error of different transformations for the multiple
regression on Kanban.

Indicator y yy =′ yy 2log=′ yy elog=′
Residual Standard Error 84.36 0.9206 0.07605 0.05272

Figure 5-13: The distribution pattern for the residual error of the transformed multiple
regression model for Kanban.

      The regressions result in the following functions:
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where β0 is the y-intercept and β1 is the gradient for batch size i, i=1, 2, …, 10. The
values for the coefficients are given in the table below [see Table 5-4].
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Table 5-4: Function coefficients describing the dependency of the average cycle time
and the batch size derived by multiple linear regression for Kanban and CONWIP.

CONWIP
i β0 β1

1 178.9593 20.0774
2 252.4763 38.4459
3 409.2245 73.6322
4 651.4734 124.7922
5 1026.81 187.5141
6 1435.581 269.2655
7 1901.421 368.4517
8 2421.222 484.1998
9 2990.721 617.3144
10 3627.539 766.7374

Kanban
i β0 β1

1 5.8694 0.0195
2 6.2798 0.0254
3 6.9001 0.0377
4 7.662 0.0562
5 8.5958 0.0763
6 9.6922 0.0964
7 10.9192 0.117
8 12.24 0.1393
9 13.6507 0.1629
10 15.1567 0.1864

      However, these functions can be represented by a single function,

),( CardsBsizefAvgct= , per control system. The multiple coefficients of

determination indicate a loss of accuracy, but, they are still exceptionally high,

indicating a good fit of the model to the given data [see Table 5-5]. The two functions

were derived by multiple regression and can be used to calculate the average cycle

time dependent on the number of cards used and the batch size chosen.
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Table 5-5: The derived functions for CONWIP and Kanban to estimate the average
cycle time for given batch size and number of cards assigned to the system.

System Model R2

CONWIP bccbbtcycle 1832.178994.26088.22901.895873.99 2 ++−+= 0.9996

Kanban

bccbbx

et x
cycle

0073.00108.00225.03204.06679.5 2 ++−+=

= 0.9764

      The results for Kanban are visualized below. The graph gives an impression of

how the transformation influences the spread of data points [see Figure 5-14]. The

data can be considered a little blurred, reducing the distance between the data points,

especially for the larger values of the average cycle time. Furthermore, the good fit of

the model to the data can be seen.
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Figure 5-14: Three dimensional illustration of the ln-transformed data points of the
average cycle time, dependent on the batch size and number of cards, and the data
points computed with the regression model for Kanban.

5.2.3 Findings and Conclusions for Kanban and CONWIP

      The models indicate the following:

• Linear dependence between the number of cards assigned and the average cycle

time,

• Small quadratic influence of the batch size on the average cycle time, and

• Interaction of the batch size and the number of cards assigned.

Data

Model



94

      The following conclusions can be made:

1. The batch size has a higher impact on the average cycle time than the number of

cards assigned. This is true for the throughput as well, keeping the work in process

constant (Little’s Law).

2. For an increasing batch size, the increase in average cycle time increases for every

additional card assigned to the system [see Figure 5-14]. To keep the average

cycle time at a minimum the smallest batch size should be chosen.

3. The smaller batch size is superior to a larger one in every sense. The linear

function of the intercepts [see Table 5-2] proves this. In other words: for a fixed

amount of cards assigned the average cycle time increases with increasing batch

size. There are no identical data points, the lines do not cross over [see Figure

5-10], which can be derived from conclusion 2.

4. The results shown reveal the dependence of the batch size and number of cards.

Optimization should involve both parameters simultaneously. Here, a stepwise

approach could lead to an optimal allocation, when one of the parameters is held

constant as the gradients of the functions are positive in the given interval.

      After showing the dependency of the average cycle time on the batch size and

number of cards assigned for Kanban and CONWIP, the discussion is continued for

MRP in the following chapter.
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5.2.4 MRP

      The average WIP can not be controlled as easily by the push systems as by the

pull systems. As the batch size and the number of cards assigned increases, the WIP

increases by the same amount (CONWIP) or proportionally (Kanban). As the WIP

increases, the average cycle time increases, provided the throughput remains constant.

With MRP the WIP can only be controlled indirectly. An increase in WIP is achieved

by increasing the amount of material introduced to the system. This is controlled by

increasing the release rate or decreasing its inverse, the interarrival time. Figure 5-15

shows the response of the WIP to the change in interarrival time.

Figure 5-15: Work in process dependent on the interarrival time for different batch
sizes for MRP.
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      Modeling the ten machine line by a M/M/1 system, the following condition has to

be satisfied to reach a state of equilibrium [KLE75, p.95]:

λ < µ,

where λ is the birth rate or arrival rate and µ is the death rate or the inverse of the

theoretical batch process time, batch
processt ,

batch
processintarrbatch

processintarr

tt
tt

>⇔< 11
,

where intarrt  is the interarrival time.

As the interarrival time approaches the batch process time,

process
batch
process btt = ,

where b is the batch size and processt  is the process time of a single entity per machine,

the work in process approaches infinity. For a batch size of 10 the following condition

has to hold:

200)20(10 >⇔> intarrintarr tt seconds. These are the values the hyperbolas approach to

the left in Figure 5-15. As the interarrival time approaches infinity, the WIP

approaches zero. Thus, the hyperbolas all have y = 0 as an asymptote and can be

elongated to the right. Assuming an interarrival time of 250 seconds, different WIP

levels are reached for the different batch sizes. This results in flexible combinations of

interarrival times and batch sizes to achieve certain WIP levels. However, the average

utilization of the machines in the system has to be kept in the realistic interval of

[0.65, 0.9] to make the findings relevant to practical application. Figure 5-16 shows

the almost linear response of the utilization to the interarrival time. A closer look

reveals a nonlinear influence of the interarrival time.
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Figure 5-16: The average utilization of the line dependent on the interarrival time of
the batches for MRP.

      Thus, for the given utilization levels, and consequently the throughput, the

average cycle time is expected to respond similarly to the work in process (Little’s

Law). Figure 5-17 proves this expectation to be correct.
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Figure 5-17: The average cycle time per entity dependent on the interarrival time for
MRP.

      However, the lowest cycle time per entity is dependent on the batch size. Thus,

the y-asymptotes can be considered functions of the batch size. The reason was given

at the beginning of chapter 5.2. The entities are introduced to the line in batches. The

last entity of each batch has to wait until the other entities in the same batch are

processed, increasing the average cycle time with increasing batch size.

      A difference between MRP and the pull systems is the response of the average

cycle time to the batch size. The models constructed for Kanban and CONWIP

indicate a negative quadratic influence of the batch size [see Table 5-5]. As can be

seen in Figure 5-18, the average cycle time responds linearly to an increase in the

batch size. To determine this dependence, the throughput was held almost constant at

2.4 entities per minute or an average utilization of 0.8, keeping the theoretical

throughput of 3 entities per minute in mind.
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Figure 5-18: The average cycle time dependent on the batch size with a constant
throughput for MRP.
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5. The average cycle time responds hyperbolically to the batch size, their asymptotes

are functions of the batch size and interarrival time.

These observations lead to the following conclusions:

1. As the batch size increases, the average cycle time increases. For a given

interarrival time, this is always true [see Figure 5-17]. The batch size should be

chosen as small as possible,

2. Once the batch size is set to greater than one, a zero average cycle time can never

be reached [see Figure 5-17, finding 5]. To ensure a high utilization of the line, an

interarrival time close to batch process time should be implemented [see finding

1].

      After discussing the response of the systems in more detail on a lower level of

complexity, the following chapter continues the comparison of the systems on a

higher level of abstraction.

 5.3 Kanban, CONWIP, and  MRP

      In this section the performance of the different systems is briefly illustrated. At

this point only first impressions are given. As the realism of the simulated

configurations increases by adding setup times and failures, additional comparisons

will reveal more information about their characteristics.
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5.3.1 Average Cycle Time Dependent on Work in Process

      For the comparison the optimal configurations, resulting in the lowest average

cycle time, were extracted from the data set and illustrated [see Figure 5-19].

Figure 5-19: The minimal average cycle time dependent on the average work in
process for the three control systems.
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      In Figure 5-10 a WIP level of 60 can be obtained from 6 combinations for

CONWIP. The extracted numbers are shown in Table 5-6.

Table 5-6: Combinations of batch size and number of cards for maximum WIP level
60 and the resulting average cycle times for Kanban and CONWIP.

Combination Batch Size Number of
Cards

CONWIP Average
Cycle Time

Kanban Average
Cycle Time

1 1 60 1394.518 1101.557
2 2 30 1399.522 1183.894
3 3 20 1443.929 1243.223
4 4 15 1488.523 1210.624
5 5 12 1537.916 1432.689
6 6 10 1621.982 1554.002

      Figure 5-20 shows a plot of the data points from simulation and the regression

models. The difference between maximum WIP and average WIP can clearly be seen

as the average WIP is lower for Kanban resulting in a shorter average cycle time. For

a small batch size the model fits perfectly. Unfortunately, the quality of the fit

decreases with increasing batch size. Most importantly, the response of the cycle time

to the batch size is modeled well.
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Figure 5-20: The average cycle time dependent on different combinations of batch
size and number of cards assigned, simulation and regression model.

      The term in the regression model expressing the interaction of the batch size and

number of cards assigned is kept constant, resulting in the following equation for

CONWIP:
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influence on the average cycle time to the linear component of the batch size. Thus,

the average cycle time increases with increasing batch size. The same

interdependence can be derived for Kanban with the following regression model:
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cycle et 0108.00225.03204.01059.6 2 +−+= .
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closely at Figure 5-11 reveals that 15 cards assigned outperforms 14 cards,

independent of the batch size. The clustering of data points for a specific batch size in

Figure 5-7 (1) underlines this fact. Interestingly, the 15 cards assigned do not break

the order of throughput. The throughput fits nicely between that of 14 and 16 cards

assigned, independent of batch size. Disregarding this outlier and a few other

exceptions that are dependent on batch size, an increase of average cycle time with an

increase of batch size can be assumed.

      Consequently, CONWIP’s data extracted for Figure 5-19 represents the lowest

batch size possible for a specific maximum WIP. At certain WIP levels, the difference

in average cycle time between the combination with smallest batch size and the

combination with higher batch size [see Table 5-6] is smaller, than the difference in

average cycle time between two WIP levels WIP and (WIP+1) for the same batch size

[see Table 5-7]. Adding another card to increase the WIP level of 77 to 78 results in a

higher jump of the average cycle time than keeping the WIP level of 78 constant by

decreasing the number of cards assigned while increasing the batch size.

Table 5-7: The increase in cycle time for increasing batch size and constant WIP.

Batch Size Work in
Process

Average Cycle
Time

1 77 1726.513073
1 78 1758.674835
2 78 1763.326356
3 78 1775.199725
1 79 1775.474382

      In Table 5-7 the data points with higher batch sizes 2 and 3 and WIP 78 would be

dropped leaving the data point resulting from batch size one and WIP 78. Generally,

the data points with higher batch sizes would be dropped, leaving those with the
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lowest cycle time. Thus, increasing the batch size (from 1 to 3) for a specific WIP

level constant and reducing the number of cards assigned (78 to 26) may not be as

harmful to the average cycle time as an increase in the WIP level by one (78 to 79).

Here, the smaller batch size could be replaced by the higher batch size without

considerable damage. This opportunity occurs at WIP 48 the first time. Batch size one

is replaced by batch size two at WIP level 100, as simulations were only carried out

for 100 or less cards assigned.

      In Kanban batch size two outperforms batch size one at WIP level 49.46, where

32 cards are assigned. This card allocation seems to be superior in its WIP

environment. Although the difference is small, batch size two manages to outperform

batch size one for other card allocations as well.

      MRP shows similarities to CONWIP. The smaller batch size outperforms the

larger batch size without exceptions.

      As the systems are strongly constrained they have little freedom of outperforming

one another. Figure 5-19 shows almost no difference in performance for small work in

process. Taking a closer look at the lower WIP level shows that the systems’

performance is very much the same [see Figure 5-21].
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Figure 5-21: A closer look at the minimal average cycle time dependent on lower
average work in process for the three control systems.

      Figure 5-21 indicates that MRP performs best, CONWIP second best, and Kanban

can be closely ranked on the third position for WIP levels less than 27. However, the

differences are minute and not really worth considering. At WIP level 28.76 MRP

introduces batch size 2, sacrificing its first position. The next data point with batch

size 1 is at WIP level 32.74. Interpolation would reveal MRP’s behavior between the

two WIP levels, suggesting MRP’s superiority. A regression analysis was performed

for batch size one to statistically verify this ranking [see Table 5-8].
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Table 5-8: The results for the regression analysis modeling the response of the
average cycle time to the WIP for a comparison between Kanban, CONWIP, and
MRP.

Formula
Avgct ~ WIP + Ic + Im + IcWIP + ImWIP

Residuals
Min 1Q Median 3Q Max

-28.01 -3.477 0.239 3.05 19.11
Coefficients

Parameter Value Std.Error t-value Pr(>|t|)
(Intercept) 195.0680 2.1733 89.7559 0.0000

WIP 19.8483 0.0638 310.9755 0.0000
Ic -16.1534 2.7468 -5.8807 0.0000
Im -26.3223 3.5145 -7.4896 0.0000

IcWIP 0.2272 0.0695 3.2683 0.0013
ImWIP 0.1573 0.1102 1.4266 0.1556

Residual standard error
6.906 on 163 degrees of freedom

Multiple R-Squared
0.9998

F-statistic
181500 on 5 and 163 degrees of freedom, the p-value is 0

      The regression verifies the ranking above. Ic and Im indicate the difference

between the intercept for Kanban and CONWIP (Ic) and MRP (Im). MRP has the

lowest intercept with a slightly higher gradient than Kanban. CONWIP has the second

highest intercept and about the same gradient as MRP, as the probability of failing to

reject the null hypothesis, stating a zero difference, is very high. The higher gradients

for MRP and CONWIP than for Kanban indicate, that the lines cross over at some

point. However, the difference is so small, that one can assume parallelism of the

lines.

      Figure 5-22 illustrates average cycle times for higher WIP levels. As already

indicated in Figure 5-19 CONWIP performs best for the WIP levels from the upper

fifties up to 100. This is attributed to the fact, that for CONWIP up to 100 cards were
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allocated for batch size one. As the other two control systems make use of at least

batch size 2 at that level, they are outperformed by CONWIP. For WIP levels above

100 it becomes difficult to interpret the points attempting to rank the systems

according to their performance. The data points may be misleading due to several

factors:

• Different batch sizes are represented,

• Even though 10,000 units were produced narrowing the confidence interval on the

mean down tremendously, the variance influences the output, and

• The output is discrete and not continuous. The systems could be performing

equally well would their data points be in greater vicinity. As can be seen in

Figure 5-22, drawing a straight line through the data points would only give an

approximation.

Figure 5-22: A closer look at the minimal average cycle time dependent on higher
average work in process for the three control systems.
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      The previous investigation leads to the following conclusion: the smaller batch

size outperforms the bigger batch size independent of the control system. In other

words: although inferior to MRP, Kanban with batch size 3 would outperform MRP

with batch size 4 for a given WIP level.

5.3.2 Conclusions

      The observations lead to the following conclusions:

• For a given WIP level, an optimal configuration can be found for Kanban,

CONWIP and MRP. With this configuration the systems can be ranked according

to their performance:

1. MRP,

2. CONWIP, and

3. Kanban.

• For a given WIP level a lower batch size is always superior to a higher batch size.

This is true for all three control systems.

• The previous conclusion seems to hold even across manufacturing control systems

as the difference in performance between the systems is minute.

      After discussing the influence of the batch size on the performance of the

manufacturing control systems, another parameter is added to increase the realism and

the practical applicability of the investigations. In the following chapter setup is

introduced.
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 CHAPTER 6
SETUP TIME

      As mentioned earlier [see CHAPTER 5] batch size and setup are very much

related. As the batch size increases, the setup time per unit decreases. Thus, more

precisely, there is a trade off between the two parameters to optimize the performance

of the manufacturing lines.

      Spearman and Hopp distinguish between internal setup and external setup.

Internal setup operations are those tasks that take place when the machine is stopped,

while external setup operations are those tasks that can be completed while the

machine is still running. Thus, the internal setup is disruptive to the production

process and deserves the most attention [HOP96, p. 158]. Monden identifies four

basic concepts to reduce setup:

1. Separate the internal setup from the external setup,

2. Convert as much as possible of the internal setup to the external setup,

3. Eliminate the adjustment process, and

4. Abolish the setup itself [MOD83].

Here, setup refers to the internal setup only.

      Introducing setup to a system increases the variability. With similar reasoning as

in process times [see 5.1.1], the setup times are also chosen to be exponentially

distributed: setupt  ~ M(setup time) and processt  ~ M(process time), where M stands for

Markov. The setup can be viewed as another process step on a machine.
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To begin with the actual processing of the first product, the machine has to wait for

the setup to be completed. In the mean time the machine is running idle. Furthermore,

the batch must be completed on the upstream machine before the setup on the

downstream machine can begin. Baker refers to this feature as attached setup time,

which can not be scheduled in anticipation of arriving work. The setups are classified

as separable (or detached) when scheduling in anticipation is possible. In his article

Baker considers the lot streaming model for a two-machine flow shop with setup

times, transfer lots of size one, and a makespan objective. He expects the two-

machine analysis to play a role in the development of heuristic procedures for the

general m machine case, although he mentions that the efficient sequencing rules

developed for the two machines will generally not extend to three-machine problems

[BAK95]. Patterson focuses on constraint resources, building resources around

bottlenecks. He concludes from the results of his study that a critical piece of

information needed for finite scheduling is missing from the existing MRP database.

The missing data field is a code to represent a setup procedure. His case study

suggests that a setup procedure, and the required time, can be the same for multiple

inventory items. Identifying these procedures can lead to the preparation of finite

schedules that can improve due date performance and/or reduce overtime required to

meet promised ship dates [PAT93]. Afyonoglu assesses the performance of a five

machine line controlled by Kanban, CONWIP, and MRP with constant setup times.

He evaluates the systems by determining their total costs including setup costs,

inventory carrying costs, card costs, and penalty costs. His investigations result in

practical thumb-rules, beneficial to practical applications [AFY98].
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      To express the availability of the machine, the setup time was simply added to the

batch process time resulting in a new and longer delay time, delayt , for which an

arriving entity has to wait in the queue to be processed:

processsetupdelay ttt += , (6-1)

where setupt  and processt  refer to batch setup times and batch process times. As the

machine has to wait for the setup to be complete and can not process simultaneously,

the theoretical throughput [see 3.2.6] has to be adjusted with equation (5-1):

processsetupdelay
theory ttt

Th
+

== 11
.

      This results in the following machine utilization:

( )processsetupaverage
theory

average ttTh
Th

Th
u +== . (6-2)

      A new parameter is added to the models representing the setup while the other

parameters remain the same.

 6.1 Parameters

      To enable a comparison, the average utilization was held constant across the three

control systems. Furthermore, a low and a high utilization was chosen to illustrate the

performance of the systems under high and low demand conditions. The number of

cards assigned were held constant resulting in specific utilizations for varying batch

sizes and setup times. If these parameters were not held constant, too many factors

would have influenced the output and it would have become very difficult to unveil
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any dependencies. For MRP the interarrival time was adjusted to produce the

utilization levels resulting from the card allocation for the pull systems.

      The batch size, as explained earlier [see 5.1.2], and the setup ratio were chosen as

the variable parameters.

6.1.1 Setup Ratio

      As the process time was held constant throughout all the simulations, the setup

time would have been a good parameter as well. However, the setup ratio,

process

setup
s t

t
r = ,

is an established parameter and has a higher information content as it expresses the

relative length of the setup time to the process time. Table 6-1 shows the setup times

and the corresponding ratios included in the simulations.

Table 6-1: The setup times and the corresponding setup ratios included in this study.

i 1 2 3 4 5 6 7 8 9 10 11 12
setup
it

2 10 20 40 60 80 100 120 140 160 180 200

sir 0.1 0.5 1 2 3 4 5 6 7 8 9 10

6.1.2 Utilization

      For the pull systems the number of cards allocated and for MRP the interarrival

time had to be determined resulting in the same utilization for all three control

systems. The introduction of setup times to the models resulted in a decrease of
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utilization. As the number of cards allocated to the manufacturing lines was kept in

the interval [10, 70] throughout all the experiments [see 5.1.3 Number of Cards, Card

Allocation for Kanban] conducted in this study the initial utilization level interval of

[0.65, 0.9] [see 5.2.1, p. 77] had to be altered to [0.55, 0.86]. Only more than 70 cards

assigned could raise the upper utilization level to 0.9. The resulting configurations are

presented in Table 6-2.

Table 6-2: Configuration chosen to establish high and low utilization levels.

Utilization
Level

Batch
Size

# of cards
for Kanban

# of Cards
for CONWIP

high 1 70 50
high 2 50 37
high 3 33 27
high 4 25 21
high 5, 6, 9, 10 20 17
high 7, 8 20 18
low 1 14 10
low 2 – 10 13 10

      The number of cards assigned for Kanban exceed those assigned for CONWIP as

for Kanban the number indicates the upper limit of WIP in the system, for CONWIP

the number indicates the exact number of WIP in the system [see 4.2.2]. The chosen

number of cards gave rise to certain utilization levels for the varying batch size and

setup ratio. To determine the interarrival time of batches for MRP, the following

calculations were done with equation (5-2):

( ) ( )

average
intarr

intarr
average

processsetup
averageprocesssetupaverage

Th
t

t
Th

tt

u
ThttThu

11 ≈⇔≈

+
=⇔+= ( )

u

tt
t processsetup

intarr

+
≈⇒










,
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for a stable system. Thus, the interarrival time for MRP was calculated from the setup

time, process time, and average utilization. However, these were purely theoretical

terms, that needed some fine tuning.

      The fine-tuning was done by interpolation. This could be done as the utilization,

or throughput, is linearly dependent on the interarrival time for most of the utilization

intervals priorly chosen. Once the interarrival time equals or exceeds the bottleneck

processing time (here, the theoretical average cycle time), the system’s WIP grows

exponentially [see Figure 5-15], finally resulting in an unstable system. Parallely, the

average throughput approaches the theoretical throughput while the utilization

approaches one. Here, linear interpolation would lead to the wrong results. The

following calculations were done:

( )( ) intarr
intarrintarr

intarr
intarr

intarrintarrintarr

t
uu

uutt
t

uu

tt

uu

tt
2

12

212

2

2

21

12  
+

−
−−

=⇔
−
−

=
−
−

,

where index 1 refers to the high level values and index 2 refers to the low level values

and u is the wanted average utilization resulting from the calculated interarrival time,

intarrt . Fortunately, it was found that the average cycle times resulting from simulating

for 1,000 entities was very close to the actual value resulting from processing 10,000

entities. Thus, the fine tuning could be done in less time.

      Another approach to find the right utilization levels could have been to run

simulations on intervals of interarrival times close to the computed theoretical value.

The major advantage of this approach would be that the simulations could be run

without attendance. Furthermore, no interpolation calculations would have to be done.

The additional simulation time would be only a few hours.
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      The previous activities resulted in a data set based on roughly the same utilization

for the three control systems. A difference of 0.03 in utilization was exceeded in only

8 cases out of 242, as the pull systems result in discrete values, making it impossible

to obtain the exact same values [see Figure 6-1].

Figure 6-1: The higher utilization level dependent on the setup ratio and the batch size
for Kanban, CONWIP, and MRP.

      Although the graph appears to be overloaded with information, it gives a very

good impression of the output data. Furthermore, it is easily read, as the individual

data points for a given system are represented by two lines intersecting. To compare

the three systems for a given setup ratio and batch size, an imaginary vertical line can

be drawn through the three intersections and the data points can be read from top to

Kanban

CONWIP

MRP
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bottom. Taking the data points for setup ratio 10 and batch size 9, thus( )Kanbanu ,9 ,10 ,

( )CONWIPu ,9 ,10 , and( )MRPu ,9 ,10 , reading from top to bottom, it can easily be seen,

that CONWIP has the highest value, MRP the intermediate value, and Kanban the

lowest value. Although the deviation is small (the average utilizations are 0.8110,

0.8048, and 0.7945) it can be distinguished in the graph. Table 6-3 exhibits the output

for the two-sided paired t-tests performed on the difference of utilization.

Table 6-3: Output for the paired t-tests on difference of high utilization including
setup for Kanban, CONWIP, and MRP.

Null Hypothesis
True mean of differences is equal to 0.

Output
Comparison

between
t df p-value 95%

Confidence Interval
Mean of differences

estimate
Kanban-CONWIP -12.8163 119 0 (-0.0117; -0.0086) -0.01016293
CONWIP-MRP 6.2253 119 0 (0.0053; 0.0102) 0.007766142
Kanban-MRP -2.3792 119 0.0189 (-0.0044; -0.0004) -0.002396792

      The utilizations can not be considered the same, as zero is in none of the

confidence intervals. However, the differences are found to be very small, indicated

by the confidence interval and the estimate of the mean difference. The output data

shows the following order of utilization:

KanbanMRPCONWIP uuu >> .

      Keeping the setup ratio constant, the three systems unveil a linear response to the

batch size with a minimum for batch size 5, increasing for both an increasing or

decreasing batch size [see Figure 6-1]. The systems showed similar behavior not

including the setup [see Figure 5-7]. Note that the number of cards assigned is

constant, too. It is one of the fixed parameters mentioned earlier [see 6.1]. For an
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increasing setup ratio, the utilization decreases somewhat, while the increase to either

side of batch size five, per unit increase of batch size, becomes bigger.

      Figure 6-2 illustrates the difference between the utilization and the throughput as

defined earlier [see 6.1.2]. The graph clearly indicates, that it is impossible to hold a

high throughput with increasing batch size [see Figure 5-6] and setup ratio. The

throughput does not incorporate the utilization of machine capacity for setup, which

the utilization does. Furthermore, the graph states that a comparison between the

different systems for a given setup ratio and batch size can be made, as the throughput

is almost identical, the surfaces lie very close together.

Figure 6-2: Throughput dependent on the setup ratio and the batch size for Kanban,
CONWIP, and MRP.
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      For every batch entering a machine, the actual processing of the entities is delayed

for the time needed to set the machine up for individual requirements. Obviously, this

time has a great effect on the throughput when the batch size is small. For batch size

one, the machine has to be set up for every single entity, slowing down the process

and increasing the average cycle time tremendously. As the setup ratio increases, this

effect is multiplied reducing the throughput to a mere 0.23 entities per minute for

setup ratio 10. However, as the batch size increases, the influence of the setup time

decreases. The delay time )(bt delay
l of the lth entity is dependent on the batch size b,

∑∑
==

+=
l

i

process
i

h

j

setup
j

delay
l ttbt

11

)( , (6-3)

where 



=
b

l
h  is the number of setups prior to the lth entity, setup

jt  is the jth setup

time, and process
it  is the process time of entity i. As the batch size decreases, h

increases, increasing the amount of setups prior to the time when entity l reaches the

machine. The setup time and the process time are entity dependent as they are

probabilistic variables. But, for a large number of entities processed, these variables

approach their expected value and can be assumed constant.

      The throughput seems to respond quadratically to the setup ratio. As the ratio

increases from below one, the throughput quickly decreases, evening out for higher

setup ratios. The batch size has an inversely multiplicative effect on the increasing

throughput for a decreasing setup ratio.

      Keeping one parameter, the utilization, constant for the three control systems,

their performance can easily be compared. The performance of the control systems is
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compared by analyzing the average cycle time for a high utilization level and for a

low utilization level.

 6.2 Average Cycle Time (High Utilization)

      To continue the discussion from previous chapters about the average cycle time,

its response to the setup ratio and batch size is illustrated below [see Figure 6-3]. For

a low setup ratio, the cycle time shows the patterns formerly discussed [see Figure

5-7].

Figure 6-3: The average cycle time dependent on the setup ratio and the batch size for
Kanban, CONWIP, and MRP.

MRP

CONWIP

Kanban



121

      The line shows a slight negative quadratic curvature with a dent for batch size five

continuously increasing with increasing batch size [see Figure 6-4].

Figure 6-4: The average cycle time dependent on the batch size and setup ratio for
Kanban.

      As the setup ratio increases, its influence on especially the smaller batch sizes

augments while shifting the lines up parallely. The lines start to curve up for batch

sizes smaller than five. As the setup ratio reaches ten, the cycle time for batch size one

surmounts the other batch sizes. The dent in the line for batch size five remains,

making it the superior configuration. This phenomenon can be easily explained with

the assistance of the formula for the delay time per entity given before [see equation

5-3 on p. 113]. The smaller the batch size, the more setups have to be performed for a

given amount of entities. As the setup time increases, the influence of these setups

grows.

      After the discussion of the system behavior, a comparison of the performance

follows in the next section.
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6.2.1 Comparison

      Figure 6-3 reveals very similar behavior of the three systems. At first sight it is

impossible to determine the best performer. Especially for the lower setup ratios the

average cycle time seems to be almost identical. As the ratio increases, the systems

commence to distinguish themselves. Drawing imaginary lines, the cycle times unveil

the following order:

MRP
cycle

Kanban
cycle

CONWIP
cycle ttt >> .

      To prove this finding, paired t-tests were performed. The output is listed in Table

6-4.

Table 6-4: The output of the paired t-tests on the difference between the average cycle
times for Kanban, CONWIP, and MRP.

Null Hypothesis
True mean of differences is equal to 0.

Output
Comparison

between
t df p-value 95%

Confidence Interval
Mean of diff.

estimate
Kanban-CONWIP -8.7197 119 0 (-246.4751; -155.2500) -200.8625
CONWIP-MRP 9.2561 119 0 (295.6708; 456.5986) 376.1347
Kanban-MRP 4.5673 119 0 (99.2851; 251.2593) 175.2722

      The tests support the former findings and permit the construction of the following

ranking:

1. MRP,

2. Kanban, and

3. CONWIP.

Figure 6-5 illustrates the mean of differences graphically.
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Figure 6-5: The mean differences of the average cycle times between Kanban,
CONWIP, and MRP for the high utilization level.

      Recalling the difference in utilization and the resulting relation,

KanbanMRPCONWIP uuu >> ,

MRP is truly the best performer. The push system has the least average cycle times

although it has to settle with a higher utilization than Kanban. However, CONWIP

has the highest utilization which may result in the longest cycle times. Thus, position

2 and 3 can not be reliably stated. Table 6-5 shows the mean of the average cycle time

relative to the mean of the utilization for the three systems.

Table 6-5: The mean of the average cycle time relative to the mean of the utilization
for Kanban, CONWIP, and MRP.

System )( cycletE )(uE )(/)( uEtE cycle

Kanban 4913.26 0.85 5780.306
CONWIP 5114.12 0.86 5946.651

MRP 4737.98 0.85 5574.094

      The calculations were done to standardize the average cycle times with the

expected utilization enabling a comparison. The numbers support the previous

ranking.

Kanban CONWIP

MRP

376.13 s

200.86 s

175.27 s
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6.2.2 Conclusions

      The following conclusions summarize the former discussions:

The influence of the setup time on the average cycle time increases with decreasing

batch size. Thus, for a big batch size an increase in setup time is not as detrimental for

the performance of a system as for a small batch size.

      Batch size five separates the batch sizes into those with a higher sensibility to

change and those with a lower one. It encompasses the advantages of a small batch

size, viz. a lower average cycle time, and the good attributes of the big batch sizes,

viz. a lower reactivity to a change in setup time.

      Observing the average cycle time dependent on the batch size and the setup ratio,

MRP outperforms the two pull systems. In contradiction with the previous findings

[see 5.3.2], Kanban shows a better performance than CONWIP.

 6.3 Average Cycle Time (Low Utilization)

      Although less relevant to its practical applicability, the average cycle time

resulting from the low utilization level is investigated briefly. Again, the utilizations

have to be compared. The output for the paired t-test is given in Table 6-6.
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Table 6-6: Output for the paired t-tests on difference of low utilization including setup
for Kanban, CONWIP, and MRP.

Null Hypothesis
True mean of differences is equal to 0.

Output
Comparison

between
t df p-value 95%

Confidence Interval
Mean of diff.

estimate
Kanban-CONWIP -5.6057 119 0 (-0.0057; -0.0027) -0.004232567
CONWIP-MRP -2.3045 119 0.0229 (-0.0045; -0.0003) -0.002426025
Kanban-MRP -9.2092 119 0 (-0.0081; -0.0052) -0.006658592

      The p-value for comparing the average utilization of CONWIP and MRP is fairly

high indicating that the difference in utilization is very small. The mean of differences

estimate equals -0.002426025. As the difference is very small, one can assume equal

utilization for the three systems for the low level.

      The average value for the low utilization level of 0.67 can be considered a fairly

relevant level, resembling a manufacturing system barely working at full capacity.

Figure 6-6 illustrates the resulting average cycle time planes for the two utilization

levels.
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Figure 6-6: The average cycle time dependent on the setup ratio and the batch size for
the high (0.85) and the low utilization level (0.67).

      Naturally, there is a decrease in average cycle time for the lower utilization level,

as a lower throughput results in a shorter cycle time (Little’s Law). Interestingly, the

quadratic response of the cycle time to the batch size has vanished. A mere linear

dependency is the result. The average cycle time increases linearly with an increasing

setup ratio and an increasing batch size. Furthermore, a high setup ratio for a small

batch size does not have the immense impact as with a high utilization level. Note that

the utilization includes the setup as well. For an increasing setup time, the machines

decrease processing, which results in a throughput of 0.15 entities per minute for

setup ratio ten and batch size one. For this configuration the average cycle time
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closely surpasses 4,000 seconds per entity. These 4,000 seconds include 10 times

setup for 200 seconds, which adds up to 2,000 seconds. As the throughput indicates,

the system is fairly empty allowing the entities to pass through rather rapidly. Thus,

2,000 seconds remain for pure processing time, which sounds very reasonable. As the

batch size increases, the entities spend more time waiting for the other members of

their batch to be processed. Furthermore, more entities are pulled into the system, as

the number of cards stands for the amount of batches in the system. Seemingly, at this

utilization level, which counterbalances the increasing setup with a decreasing

throughput, the effects resulting from system congestion remain absent.

6.3.1 Comparison

      Understanding the system behavior better, the performance comparison remains.

Figure 6-7 illustrates the average cycle time planes for Kanban, CONWIP, and MRP.
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Figure 6-7: The average cycle time for the low utilization level dependent on the setup
ratio and the batch size for Kanban, CONWIP, and MRP.

      Even a brief look at the graph reveals the superiority of MRP to the two pull

systems. As the batch size and the setup ratio increases, this domination becomes

more apparent. However, CONWIP manages to cling very close to its related pendant.

Although the order,

1. MRP,

2. CONWIP, and

3. Kanban,

was palpable, paired t-tests were performed to quantify the difference. The result is

illustrated in Figure 6-8.
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MRP
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Figure 6-8: The mean differences of the average cycle times between Kanban,
CONWIP, and MRP for the low utilization level.

6.3.2 Conclusions

      The low utilization ranking differs from the high utilization ranking. However, it

corresponds to the ranking not incorporating setup [see 5.3.2]. MRP performs well,

outranking CONWIP and Kanban. CONWIP produces lower average cycle times than

Kanban, positioning this control system at number two.

 6.4 Regression Models

      The models reveal a very complex interdependency of the different variables. For

the regression, the fixed parameter, number of cards and interarrival time, were

introduced as variables as well. This resulted in more than 1,000 data points for the

pull systems and close to that number for MRP. In the model the average cycle time is

represented as a function of the batch size, number of cards assigned to the system or

the interarrival time for MRP, and the setup ratio [see Table 6-7].

Kanban CONWIP

MRP

142.05 s

357.46 s

499.51 s



130

Table 6-7: The regression models for the average cycle time as functions of the batch
size, the number of cards assigned to the system or the interarrival time for MRP, and
the setup ratio and their corresponding multiple coefficients of determination, R2.

System Model R2
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      The multiple coefficients of variation indicate a good fit of the models.

Unfortunately, the cubic terms for modeling Kanban were needed, as R2 would

otherwise decrease by almost 2 percentage points. The residual plot indicated a cubic

response of the average cycle time for Kanban only. Introducing the cubic regressor to

MRP could not necessarily be derived from the residual plots. By stepwise regression

and trial and error, the mean square error could be reduced, simultaneously increasing

the multiple coefficient of determination while keeping the p-values all equal to zero.

CONWIP could easily be modeled with the findings derived from the former

analyses. No interaction between a quadratic regressor and a linear regressor could be

found for CONWIP and MRP in contrast to Kanban. As the utilization for MRP

increased and approached the theoretical maximum of one, the model was found not

to be representative anymore. The values resulting were categorized as outliers. Thus,

for very high utilization levels, the given model should not be applied.
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      After investigating the influence of batch sizing and setup, another step is taken to

explore a manufacturing system’s behavior. The next step in improving the realism of

the simulated system is including machine failure.
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 CHAPTER 7
MACHINE FAILURE

      In the previous experiments machines are assumed to be available full time.

However, realistic systems are imperfect, machines suffer break down obstructing the

flow of material in manufacturing. Thus, for every break down the availability of a

machine is reduced. Other unscheduled downtimes may result from shortages caused

by human failure. They result in the machine being inactive.The term failure will be

used to indicate the unavailability of a machine. The availability of the machine can

be calculated by the following formula:

intfailrepair

intfail

intfailrepair

repair

tt

t
a

tt

t
a

+
=⇔

+
−= 1 ,

where repairt  is the repair duration and infailt  is the interfailure time. Hopp and

Spearman refer to these times as mean time to failure and mean time to repair

[HOP96, p.261].

      Figure 7-1 provides a dynamic graph of the state of an unreliable machine. The

failures occur at certain time instances [t0 and t2 ]. After a failure, it takes some time to

make the machine available for production again. This time interval [t1  - t0], will be

called the repair duration. The time instance when the machine can continue

processing [t1 ] will be referred to as reactivation. Finally, the interfailure time

represents the time interval between reactivation and the next failure [t2 - t1].
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Figure 7-1: Resource states and their occurence times.

      Here, it will be assumed that the product will not be damaged or scrapped if a

failure occurs. The machine will resume processing the entity as soon as it becomes

available again [see Figure 7-2].

Figure 7-2: The effect of failure on the entity.

      Gupta and Al-Turki explore the impact of sudden breakdown of a material

handling system on the performance of a traditional Kanban system (TKS) with

constant processing times. In addition, they also study a newly developed Kanban

system, which dynamically and systematically manipulates the number of kanbans in

order to offset the blocking and starvation caused by these factors during a production

cycle (FKS), under the same conditions. They compare the overall performance of the

Failure FailureReactivation
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Busy BusyFailed

Repair Duration Interfailure Time

Time
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TKS and the FKS by considering a variety of cases. They come to the conclusion that

the overall performance of the FKS exceeds that of the TKS [GUP98].

      Hopp and Spearman consider a tandem line with a CONWIP control strategy.

They also assume the processing times to be deterministic, but, machines are subject

to exponential failures and repairs: deterministic processing and random outages

(DPRO). They model the system as a closed queuing network and develop an

approximate regenerative model (ARM) for estimating throughput and cycle time as a

function of WIP level. Furthermore, Hopp and Spearman use an analytical alternative

to simulation, mean value approximation (MVA), for analyzing the system. For MVA

the processing times are chosen to match the mean processing times of the real

system. Their comparisons show that ARM is more robust than MVA. They also

observe that in order to get MVA to work significantly better than ARM, quite

unrealistic parameters have to be chosen. In their opinion the ARM approach to

approximating throughput in a DPRO system under a CONWIP control system

appears promising [HOP91].

      Duenyas et al. model a CONWIP production line with deterministic processing

times and exponential failure and repair times as a closed queuing network as well.

They derive an approximation for the mean and variance of the output during a

specified interval and give computable conditions under which this approximation

performs well. They show through empirical tests that the approximation is robust and

illustrate its usefulness as the basis for a procedure for selecting an economic

production quota and card count for a CONWIP line. Duenyas et al. admit to the

simplicity of the system studied, consisting of a single product line of single machine
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work stations. In more realistic cases, with additional complicating factors, detailed

analysis of the quota and card count issue is likely to be integrated with analysis of

capacity and staffing issues, and as such are likely to require simulation [DUE93].

      Tan determines the variance of the throughput on an N-station production line

with constant processing time, no intermediate buffers, and time dependent failures

analytically. Time to failure and time to repair distributions are assumed to be

exponential. Tan mentions that state-space based methods are very flexible allowing

various assumptions to be implemented in a model. However, these methods are

computationally very demanding. Instead, he applies an inflexible method, only

considering time dependent failures, which is computationally very efficient. With the

given procedure, a numerical result for a production line with a given number of

stations can easily be obtained [TAN97].

      Unfortunately, all of the studies above use deterministic processing times. As

Duenyas et al. remarks, more realistic systems with additional complicating factors

including probabilistic processing times and setup times are likely to require

simulation. Here, simulation is applied to study the effects of failure on the

performance of the different control systems.

 7.1 Parameters

      To include failure in the system, the parameters discussed above were introduced

to the models:

1. Interfailure time and

2. Repair duration.
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      By manipulating these parameters, the performance of the three control systems

could be evaluated. Due to the growing number of parameters influencing the

systems, initial investigations were carried out for less complex cases. As previously,

the amount of cards assigned to the line was kept constant. Additionally, only one

machine was subjected to failure. To get better insight into the systems' behavior, the

observations were done dynamically.

 7.2 Dynamics of Failure

      Instead of looking at the results at the end of each replication, the data was output

into a file continuously, revealing dynamic behavior. To unveil the reaction of the

systems to a failure, one single downtime was induced at a known time. This point in

time had to exceed the time instance for reaching steady state enabling an objective

comparison. The failure time was chosen such that 5,000 entities would have passed

through the system, resulting in the desired steady state and producing stable

statistics. A repair duration of 3,600 seconds or one hour would represent a realistic

event.

      Good indicators had to be chosen to give unblurred information about the

systems’ behavior.

7.2.1 Indicators

      Cumulative average values would be blurred by the large amount of entities

produced prior to failure. Furthermore, data revealing the state of the entire line would
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be cumulative as well. The data on the individual machines would be accumulated,

loosing precious information. Thus, data based on individual entities would provide

the highest information content. This data could later be compressed to give insight

into the systems’ performance.

      As throughput (utilization) was fixed, the WIP level and cycle time remained as

performance measures to compare alternatives. Generally, WIP is a difficult measure

to obtain in a real life setting. However, the cycle time is commonly available in a

shopfloor. Therefore, the cycle time was chosen as the performance indicator to

observe system behavior. The following information could be revealed from the cycle

time per entity:

1. The time spent at certain points in the system, and

2. The time taken by the system to recover from the disruption.

      After deciding on the indicator, the following methods of data collection were

chosen to obtain the desired information.

7.2.1.1 Time Spent in System

      The cycle time per entity had to be collected at different points in the line only

after the failure occurred. Collecting the data before the occurance would result in

excess data irrelevant to the investigation. Machine 5 was designated as the machine

to fail as it is situated in the middle of the line. Consequently, the cycle time was

calculated at six different passing points, before each downstream machine and after



138

the last machine in the line [see Figure 7-3]. These points would reveal the time spent

in every machine and the time of departure from the system.

Figure 7-3: The points of data collection for the investigation on the dynamics of
failure.

      The passing points are named according to the machines they precede, making

them easy to locate. Passing point 11 allows the calculation of the departure time.

7.2.1.2 Recovery Time

      The average cycle time was determined prior to failure for 5,000 entities

processed. All entities trapped upstream from machine 5 would increase their cycle

time by at least the duration of failure. As these entities depart the system, the cycle

times approach their average and the system reestablishes steady state, indicating the

time of recovery. Looking at the individual cycle times would subject the

determination of the time of recovery to too much variability. Thus, the exponentially

smoothed cycle time,
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was computed for the ith entity departing the system, where icyclet ,  is the cycle time of

the ith entity and 1,1, cycle
exps
cycle tt = , starting with the first entity leaving machine 5 after

reactivation. The recovery time, recovert , was determined as the time taken until the

moving average of the cycle times exceeded the average cycle time by less than ten

percent:

)(1.1, cycle
exps

icyle tt ≤ . Given the variability of the cycle times the system was assumed to

have approached steady state once the exponentially smoothed cycle time was within

a 10% band of the average cycle time.

7.2.2 Configuration

      A configuration resulting in a high variability of the performance indicators would

test the systems ability to cope with even more unreliability best. However, to enable

a fair comparison, the system’s utilizations had to be nearly identical. These requests

resulted in the configurations given in Table 7-1.

Table 7-1: The configurations chosen for the investigation on the dynamics of failure.

System Batch Size Setup Time Number of Cards Interarrival Time Utilization
Kanban 5 200 15 - 0.6553

CONWIP 5 200 11 - 0.6504
MRP 5 200 - 456 0.6561

      The following section covers observations for the time an entity spends at

different points in the system.
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7.2.3 Time Spent in the System

      The failure duration of one hour was chosen to possibly force the system to empty

the buffers of the machines downstream from the failed machine. A batch of five

entities would need on average 100 seconds to pass through one machine. For the

Kanban system at most eight batches would be present downstream during the

occurance of failure, resulting in 800 seconds. Adding the setup time of 200 seconds

per batch times eight batches to the 500 seconds would equal to 2,100 seconds on

average. As the process times and setup times are exponentially distributed, this sum

may easily double leaving a few entities in the system unlikely to obstruct the batches

that had to wait in the buffer of machine 5 for its reactivation.

      Figure 7-4 shows 20 replications for the first entity passing through the

downstream half of the line after the reactivation of machine 5 for Kanban. The

average of the time after failure for passing point six for the 20 replications is

3,851.96 seconds, with a standard deviation of 159.66 seconds. For replication 16 the

time after failure is minimal with a length of 3,616.73 seconds [see Table 7-2]. It thus

takes the first entity 3,616.73 – 3,600 = 16.73 seconds after failure to depart machine

5. Either this entity was worked on before the failure occurred and it took 16.73

seconds to complete processing or the process time was shorter than the mean of 20

seconds. The maximum is 4,446.35 seconds for replication 10. This entity was

delayed 846 seconds at machine five, a truly long period of time, which can most

probably be associated to the random number given by the exponential distribution.

As the entity continues travelling through the downstream half of the line, the

coefficient of variation increases from 0.05 to 0.10. This can easily be seen in the
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graph comparing the local maxima and minima and their difference. For passing point

11 or the system departure, this difference equals to 1,889.25 seconds or half an hour.

Figure 7-4: 20 replications showing the first entity passing through the downstream
half of the line after the reactivation of machine 5 for Kanban.

      CONWIP shows similar patterns [see Figure 7-5]. Replication 11 reveals an

extremely early departure time from machine 5. Only 3,604.558 seconds after the

failure of the machine, the entity passes through passing point 6, indicating a process

time of 4.558 seconds [see Table 7-2]. This short time may be due to processing of the

entity before the failure occurred. However, the value could have been generated by

the random distribution as well.
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Figure 7-5: 20 replications showing the first entity passing through the downstream
half of the line after reactivation of machine 5 for CONWIP.

      As usual, MRP shows a somewhat different pattern [see Figure 7-6]. The variation

increases tremendously resulting in a maximum of 7,624.563 seconds, which is about

1,200 seconds higher than Kanban’s maximum [see Table 7-2].
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Figure 7-6: 20 replications showing the first entity passing through the downstream
half of the line after reactivation of machine 5 for MRP.

      The coefficients of variation of the time after failure for MRP are clearly higher

than those for Kanban of CONWIP [see Table 7-2].

Table 7-2: The coefficients of variation, the minimal and the maximal times after the
failure of machine 5 for Kanban, CONWIP, and MRP.

Passing
Point

Kanbanc~ CONWIPc~ MRPc~ min
Kanbant min

CONWIPt min
MRPt max

Kanbant max
CONWIPt max

MRPt

6 0.0477 0.0611 0.0399 3616.07 3604.56 3639.90 4446.35 4761.03 4276.69

7 0.0672 0.0670 0.0890 3732.42 3694.91 3704.37 4652.95 4931.82 5226.18

8 0.0732 0.0732 0.1041 3799.85 3936.57 3828.04 4982.78 5414.80 5847.88

9 0.0765 0.0826 0.1091 3890.76 4210.94 3942.76 5396.01 5790.14 6255.38

10 0.0967 0.0961 0.1150 4065.97 4385.84 4097.58 6217.88 6359.00 7060.23

11 0.0959 0.0928 0.1191 4521.75 4474.03 4224.08 6411.00 6786.05 7624.56
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      Figure 7-7 gives a comparative view of the three control systems and their average

times after failure. The average was calculated for 30 replications ensuring a half-

width of less than 10% of the mean [see 8.4.1 Dynamics of Failure, Time Spent in the

System]. According to the data points in the graph, Kanban outperforms the other two

systems at nearly every passing point. As the variability of the times increases,

Kanban maintains its superior performance. This can be explained by pointing to the

fact that MRP and CONWIP continue sending units into the system during repair

whereas Kanban terminates the entry of new batches into the system.

Figure 7-7: The average time after failure at the passing points for Kanban, CONWIP,
and MRP.

      The paired t-test for the time after failure at the passing point 11 indicates, that

there is no significant difference between CONWIP and MRP [see Table 7-3]. Even

for Kanban and CONWIP or MRP the confidence interval of the two sided test
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includes zero, indicating that there is no significant difference. The p-values support

this finding.

Table 7-3: The results of the paired t-test for the time after failure at passing point 11
or departure of the system for Kanban, CONWIP, and MRP.

Null Hypothesis
True mean of differences is equal to 0.

Output
Comparison

between
t df p-value 95%

Confidence Interval
Mean of diff.

estimate
Kanban-
CONWIP

-1.7553 30 0.0894 (-524.2984; 39.6207) -242.3388

CONWIP-MRP 0.5156 30 0.6099 (-232.3546; 389.2861) 78.4657
Kanban-MRP -1.5290 30 0.1368 (-382.7632; 55.0169) -163.8731

      Thus, it can not be stated with a high confidence that Kanban outperforms the

other two systems. More replications would have to be run to narrow the confidence

intervals down. It is very likely, that zero will drop out of the interval for a

comparison between Kanban and CONWIP or MRP, as the given intervals are shifted

to the left around the negative mean values.

      At first the individual entity was observed as it passed through the system. The

performance of the control system was judged by the time taken for the first entity to

depart the line after reactivation of the failed machine. A second investigation looks at

the system with a higher degree of abstraction. The performance will be rated

according to the time the system takes to recover from the failure.
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7.2.4 System Recovery

      As described earlier, the exponentially smoothed time taken to depart the line is

calculated and scaled with the time taken for the smoothed time to get within a 10%

range of the average cycle time. Figure 7-8 illustrates the exponentially smoothed

cycle time versus the time after the failure occurred for 15 replications, where

Kanban, CONWIP, and MRP are represented by five replications each.

Figure 7-8: The moving average of the cycle time dependent on the time after failure
for five replications per Kanban, CONWIP, and MRP.

Kanban
CONWIP
MRP
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      A quick look reveals that it takes MRP very much longer to approach the average

cycle time than it takes the pull systems. A closer look unveils that the curves have

different shapes, too. With Kanban and CONWIP controlling the manufacturing line,

a negative quadratic shape can be seen. The first entity can pass through the

downstream half of the line fairly quickly without much obstruction. The second

entity has to wait until the first one is processed resulting in an increase of its cycle

time. Thus, the exponentially smoothed time increases incorporating the increased

cycle times. Depending on the exponentially distributed process times, another peak

may occur in the lines. As the amount of entities trapped in the system is limited to

the number of cards assigned to the upstream half of the line, a decrease of the

moving average can soon be expected. The decrease is caused by the entities entering

the system after the failure and passing through unobstructedly.

      With MRP the situation looks somewhat different. As the entities are constantly

introduced to the system, independent of failure, a fairly big amount of material builds

up during failure. A large amount of entities with high cycle times resides in the

system waiting to be processed. These entities have similar cycle times only slightly

differing in their process history. The sum of process times and setup times adds up to

about half of the average cycle time, about 2,500 seconds. The repair duration of

3,600 seconds is added to this amount making up more than half of the total.

Consequently, several long cycle times influence the moving average resulting in

several peaks. The peaks occur randomly and not necessarily soon after the

reactivation of the failed machine [see Figure 7-8, replications 10 to 15]. A quadratic

structure can not be discerned, rather a steady decrease.
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      A regression analysis was performed to support the findings. The resulting

multiple linear regression models are shown in Table 7-4.

Table 7-4: Output for the multiple linear regression models fitting the moving average
cycle time dependent on the time after failure for Kanban, CONWIP, and MRP.

Model
2

)1(2
2

)1(2110 tIttIItt ikikikiii
move
system +++++ +++++= ββββββ
System i k R2 β intercept β linear t β quadratic t
Kanban 1, 2, …, 29 29 0.826 (-32425.30; 15218.36) (-3.850; 9.571) (-0.007; 0.006)

CONWIP 1, 2, …, 29 29 0.819 (-25573.86; 227.67) (-0.039; 6.525) (-0.004; 0)
MRP 1, 2, …, 34 34 0.881 (-4659.49; 8471.05) (-0.479; 0.690) 0

      Multiple regression models were chosen to compensate for the differences in

intercept, slope and curvature per replication. A simple model would have required an

enormous amount of data to describe the response of the system to failure as the

variability is quite big. The individual intercepts per replication reflect the time of

departure for the first entity after failure. These times were found to be quite variable.

The same behavior was found for the curvature. The p-values for the t-test calculating

the significance of the individual regressors range from very low to very high,

indicating that a difference of intercept, slope, and curvature could not always be

found between the individual replications. However, the multiple coefficients of

determination are fairly high, which can not be ascribed to the high number of

observations, indicating a good fit of the model.

      Interpreting the output data in Table 7-4, the following can be stated:

1. Kanban has a higher variability than CONWIP judged by the coefficient intervals.

The variability is not necessarily comparable with MRP, as MRP produced a

much higher amount of data points due to the long time of recovery.
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2. The gradients indicate, that Kanban recovers faster than CONWIP, which in turn

recovers faster than MRP.

3. For MRP no curvature can be measured, due to the frequent peaks or local

maximums in the moving average time line [see Figure 7-8]. Kanban even shows

a positive quadratic response, indicating that the peak is reached early and the

moving average decreases faster at the beginning and slower as it approaches the

average cycle time.

      These findings were verified with the calculated means of the time after failure

when the exponentially smoothed average of the cycle times exceeded the average

cycle time by less than 10% [see Figure 7-9].

Figure 7-9: The time after failure for which the exponentially smoothed average of the
cycle times exceeds the average cycle time by less than 10% for Kanban, CONWIP,
and MRP.

      To calculate the means, 20 replications sufficed for the pull systems. For MRP 40

replications were needed to meet the 10% criterion for the half-width of the

confidence intervals [see 8.4.1 Dynamics of Failure, Recovery Time]. Figure 7-9
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clearly illustrates the superiority of the pull systems over the push system. As

expected, Kanban performs best, taking on average 9,921.55 seconds after failure to

enter the 10% band width of the average cycle time. As moving average of cycle time

is the biggest of the three control systems, 5,373.84 seconds, Kanban naturally takes a

shorter time to meet the stop criterion. This may be the main reason, why CONWIP is

clearly outperformed, needing 11,180.64 seconds to come within 10% of its average

cycle time. CONWIP has the shortest moving average, which is almost 200 seconds

shorter than the shortest time for Kanban. MRP shows an easily noticeable difference

in time after failure from its pendants. It takes nearly twice as long as the pull systems

to approach the average cycle time. This can be ascribed to the enormous buildup of

WIP during failure. Similarly, CONWIP builds up more WIP than Kanban, as the

cards are not bound to specific machines, accumulating entities in front of the failed

machine. Theoretically, Kanban keeps only about half of the total WIP in the

upstream half of the line, being able to quickly reduce the moving average with short

cycle times produced by entities entering the system after failure.

7.2.5 Conclusions

      The following conclusions can be made from the investigations above:

1. Looking at the time spent in the system the ranking,

1. Kanban,

2. MRP, and

3. CONWIP,
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can be derived. However, the ranking can not be stated with high confidence for

the number of replications completed, as the differences in the time spent in the

system are not highly significant.

2. A closer look at the time needed for recovery after failure reveals the following

order:

1. Kanban,

2. CONWIP, and

3. MRP.

This order can be ascribed to the amount of WIP accumulating in front of the

failed machine increasing the cumulative cycle time. This amount is the largest

for MRP.

      After investigating the dynamic response of the manufacturing systems to failure,

the influence of machine failure on the performance of a system in steady-state is

observed next.

 7.3 Failure in Steady-State

      In comparison to the simulations carried out to observe the dynamic response

where failure was induced at one machine only, in this section all the machines were

caused to fail at exponentially distributed time instances lasting for exponentially

distributed time durations. A large number of entities was processed to reach a steady-

state for which the indicators could be estimated fairly accurately on a 95%

confidence level [see Table 8-16].
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      The previous models were altered to represent more realistic systems with

machine failure, including the old set of parameters as well as the additional

parameters introduced above [see 7.1].

7.3.1 Parameters

      The parameters

• Process time,

• Number of cards for the pull systems,

• The interarrival time for MRP,

• Setup ratio, and

• Batch size

were kept from the previous models constructed for experiments including setup time

[see 6.1]. The simulations were performed with the same levels. Additionally,

• The interfailure time and

• The repair duration

were introduced.

      Realistic machine availability had to be determined to ensure the practical

applicability of the performed simulations. A range of availability was established,

that would keep the machine utilization fairly high. As the card configurations chosen

for setup were kept for the current experiments, very low availability would reduce

the machine utilizations to unacceptable low values.
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      However, the availability had to be represented by specific interfailure times and

repair durations. These parameters should represent different scenarios to consider

minor failures, which can be resolved within minutes, and major failures, that may

take several hours to repair. Thus, short interfailure times with short repair durations

as well as long interfailure times with longer repair durations should be taken into

account. Unfortunately, the influence of the length of failure and its frequency on the

system’s performance was not well understood. These influences were studied first.

7.3.2 Influence of Interfailure  Time and Repair Duration

      For the investigations on the influence of interfailure time and repair duration a set

of experiments was performed using CONWIP. At that point in time, CONWIP

seemed to unite characteristics from both Kanban and MRP.

      As the influence of the availability on the average utilization was unknown, a

fairly low availability was chosen:

923.0
6007200

7200 =
+

=a ,

where the interfailure time equals 7,200 seconds or two hours and the repair duration

600 seconds or 10 minutes, thus, both values being easily divisible by 60. The

availability was kept constant and the interfailure time and the repair duration were

increased resulting in the combinations given in Table 7-5.
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Table 7-5: Combinations of interfailure time and repair duration resulting in a
constant availability.

Configuration 1 2 3 4 5 6 7 8 9 10 11
Interfailure Time 7200 8640 10080 11520 12960 14400 15840 17280 18720 20160 21600
Repair Duration 600 720 840 960 1080 1200 1320 1440 1560 1680 1800

      Furthermore, the simulations were run for low and high utilization levels, keeping

the amount of cards assigned constant. The setup time was kept constant at 2 seconds,

not to distort the output data even more. The batch size, b, was altered, b = 1, 2, …,

10. This resulted in

220)10)(2(11 === bua nnnn

simulations, where an  is the number of combinations of interfailure time and repair

duration, un  is the number of utilization levels, high and low, and bn  is the number of

different batch sizes chosen. The batch size was altered rather than running several

replications with a fixed size, as its influence on the performance was not known and

the results were supposed to reveal information generally applicable. The average

utilizations were then averaged for a given availability combination and utilization

level:

∑
=

=
10

1j
j

avg
il uu ,

for the ith configuration, i = 1, 2, …, 11, and the lth utilization level, l = low, high,

where ju  stands for the jth average utilization per batch size and replication. The

resulting data is illustrated in Figure 7-10.



155

Figure 7-10: The average of the average utilizations per batch size and replication
versus the configuration for increasing interfailure times and repair durations.

      The graph clearly illustrates the decrease in utilization with increasing interfailure

times and repair durations. To observe the availability closely, the state of the

machines was determined every twenty seconds to calculate the average availability.

The average availability throughout the entire simulation time was given as an output

at the end. This output proved the availability to be almost constant across the

different configurations.

      The decrease in utilization has a logical explanation. The downstream buffers

must be maintained at all times to provide protection against the loss in throughput.

However, long repair durations starve the machines downstream for a considerable

amount of time resulting in empty buffers and possibly a production stop. It takes

quite some time to replenish this WIP. Shorter failures can rather be viewed as long

process or setup times, momentarily creating a vacuum of WIP at certain places in the

manufacturing line. The downstream buffers may still be able to provide the starved
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part of the line with enough material to continue processing. Hopp and Spearman

discuss a one machine line example revealing similar behavior [see HOP96, p. 263].

7.3.3 Conclusions for Interfailure Time and Repair Duration

      As the interfailure times and the repair durations increase, keeping the availability

constant, the average utilization decreases. Thus, it seems to be of advantage to

implement preventive maintenance done frequently with a shorter duration. Waiting

for the failure to occur resulting in bigger damage and longer repair times can reduce

the performance of a system.

      As the length of the interfailure time, the length of the repair duration, and the

degree of machine availability influence the performance of the system, two

experiments were conducted:

1. the interfailure time was increased while the repair duration was held constant,

and

2. the interfailure time was held constant while the repair duration was decreased

to reach certain degrees of availability. The resulting scenarios are shown in Table

7-6.
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Table 7-6: The interfailure times and repair durations in different time units
representing the scenarios for the range of availability simulated.

Scenario
infailt  [s] infailt  [h] infailt  [d] repairt  [s] repairt  [min] Availability

1 28200 7.83 0.33 1800 30 0.94
2 34200 9.50 0.40 1800 30 0.95
3 43200 12.00 0.50 1800 30 0.96
4 58200 16.17 0.67 1800 30 0.97
5 88200 24.50 1.02 1800 30 0.98
6 178200 49.50 2.06 1800 30 0.99
7 86400 24.00 1.00 5515 91.91 0.94
8 86400 24.00 1.00 4547 75.79 0.95
9 86400 24.00 1.00 3600 60 0.96
10 86400 24.00 1.00 2672 44.54 0.97
11 86400 24.00 1.00 1763 29.39 0.98
12 86400 24.00 1.00 873 14.55 0.99

      Thus, the availability was kept within the interval [0.94; 0.99]. The repair time

makes up at most 6% of total time. Here, this means that for scenario 1 28,200

seconds or 0.33 hours after every reactivation of a machine a failure occurs, which

takes 1,800 seconds or 30 minutes to repair [see Table 7-6].

      As before, the utilization was kept constant across all the manufacturing lines

controlled by the three different control mechanisms.

7.3.4 Utilization

      The number of cards allocated to the systems, resulting in a high and a low

utilization level, was retained throughout the simulation studies. As more variability

was introduced to the systems, including setup time and machine failure, the

minimum utilization level decreased to an unrealistic level [see Table 7-7]. This was



158

accepted as a consequence of the trade-off between a low variation of the parameter

levels and the realism of the systems.

Table 7-7: The minimum, mean, and maximum values for the low and high utilization
levels as a summary for the simulations completed, including machine failure for
Kanban, CONWIP, and MRP.

System Utilization Level Min Mean Max
Kanban low 0.318 0.59 0.753

CONWIP low 0.31 0.60 0.741
MRP low 0.31 0.60 0.741

Kanban high 0.445 0.66 0.866
CONWIP high 0.46 0.68 0.872

MRP high 0.46 0.68 0.87

      However, the response within the utilization interval [0.65; 0.9] was observed to

be almost linear, making the results obtained here for the higher utilization level only

transformable to utilization levels within an interval. Table 7-8 lists the output for the

paired t-test to establish the difference in utilization between the three control

systems.

Table 7-8: The output for the paired t-test to establish the difference between the
utilization including machine failure for Kanban, CONWIP, and MRP.

Null Hypothesis
True mean of differences is equal to 0.

Output
Comparison

between
Level t df p-value 95%

Confidence Interval
Mean of diff.

estimate
Kanban-CONWIP Low -23.5278 1199 0 (-0.00947, -0.00801) -0.00874

CONWIP-MRP Low 18.9 1199 0 (0.00035, 0.00043) 0.00039
Kanban-MRP Low -22.3771 1199 0 (-0.00908, -0.00762) -0.00835

Kanban-CONWIP High -44.2013 1199 0 (-0.02358, -0.02158) -0.02258
CONWIP-MRP High 12.7387 1199 0 (0.00033, 0.00045) 0.00039
Kanban-MRP High -43.3191 1199 0 (-0.02319, -0.02118) -0.02219
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      For the high utilization level the difference between Kanban and CONWIP is

much greater than for the low utilization level. The relative difference between the

control systems Kanban and CONWIP can be calculated with the following formula:

( )
Kanban

KanbanCONWIP
CONWIPKanban u

uu
uu

−
=δ ,

where Kanbanu  is the average utilization for Kanban and CONWIPu  is the average

utilization for CONWIP, here ( ) 0342.0=CONWIPKanban uuδ , ( ) 0336.0=MRPKanban uuδ ,

and ( ) 00006.0=MRPCONWIP uuδ .

The small difference between CONWIP and MRP is a result of adjusting MRP’s

interarrival time to the utilization obtained for CONWIP. The resulting relation

KanbanMRPCONWIP uuu >>

agrees with the relation obtained for the systems with batch size and setup time

included and machine failure excluded [see 6.1.2].

      The cycle time is investigated to establish the influence of machine failure on the

performance of the control systems. Initially, the average cycle time is discussed.

Then, the maximum cycle time and the standard deviation of cycle time are taken into

consideration.

7.3.5 Average Cycle Time

      As the reduction of machine availability decreases the utilization (the throughput)

of the manufacturing line, it has an increasing effect on the average cycle time. Figure

7-11 illustrates the response of the average cycle time to the batch size, the setup ratio
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and the availability level for the high utilization level. Different availability levels

form layers of the response surface and the average cycle time increases with

decreasing availability. Thus, looking at a vertical data point row in Figure 7-11 the

availability decreases from bottom to top. The individual layers resemble the response

surfaces shown for the models including batch size and setup time only [see Figure

6-1]. The surfaces lie nearly parallel to one another, the gradients increase slightly for

decreasing machine availability. As the batch size and the setup ratio increase, the

variance of the average cycle time increases. The data points are spread further apart

for higher values of batch size and setup ratio.

Figure 7-11: The average cycle time versus the batch size and the setup ratio for the
six availability levels for Kanban.
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      Figure 7-12 reveals the response of the average cycle time to the batch size, setup

time and availability level for CONWIP. The reason for displaying the graph is to

illustrate the difference in variance between Kanban and CONWIP. The data points

are spread further apart for CONWIP than for Kanban. Further, observing the average

cycle time for a batch size of one and a setup ratio of ten, CONWIP unveils a spread

of data points above the 15,000-second mark. This makes an overall increase of

average cycle time for CONWIP in comparison to Kanban discernible.

Figure 7-12: The average cycle time versus the batch size and the setup ratio for the
six availability levels for CONWIP.

      Figure 7-13 shows the response of the average cycle time to the batch size, the

setup ratio and the different availability levels for MRP. The increase in variance can
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easily be seen. Further, the unequal spread of data points for a fixed batch size and

setup ratio indicates a non-linear response of the average cycle time to the availability.

Drawing an imaginary vertical line through a given combination of batch size and

setup ratio reveals unequal distances between the data points on that line. The average

cycle time for a batch size of one and a setup ratio of one even exceeds the 20,000

second mark, indicating the inferiority of the pull system, MRP, to the push systems,

that stay close to the 15,000 mark for the lowest availability of 0.94.

Figure 7-13: The average cycle time versus the batch size and the setup ratio for the
six availability levels for MRP.

      The three graphs shown above reveal the response of the cycle time to the batch

size, setup time and availability level for the high utilization level that results from
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higher card assignments to the line for the pull systems and from a lower interarrival

time for the push system, MRP. The low utilization level is not investigated in detail,

as its mean below 0.65 makes the results hardly applicable to reality. For the low

utilization level, the response surfaces resemble the surface obtained for setup and

batch size experiments [see Figure 6-3]. The variance of the data points for given

combinations of batch size and setup ratio was found to be less than the variance

obtained for the higher utilization level. Henceforth, only the output data for the high

utilization level will be discussed.

      Table 7-9 provides a short summary of statistics on the average cycle time for

Kanban, CONWIP, and MRP.

Table 7-9: A summary of statistics on the average cycle time for Kanban, CONWIP,
and MRP including machine failure.

Control System Minimum 1. Quartile Mean Median 3. Quartile Maximum
Kanban 1888.96 4681.02 6298.4 6185.48 7768.58 14116.33

CONWIP 2101.54 5129.98 6959.04 6762.1 8513.11 16456.66
MRP 2457.91 6292.81 8469.86 7959.91 10107.02 20555.58

      The output for the paired t-test performed to establish the difference between the

means of the average cycle times for the three control systems given in Table 7-10

supports the data given above [see Table 7-9].
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Table 7-10: The output for the paired t-test to establish the difference between the
average cycle time including machine failure for Kanban, CONWIP, and MRP.

Null Hypothesis
True mean of differences is equal to 0.

Output
Comparison

between
t df p-value 95%

Confidence Interval
Mean of diff.

estimate
Kanban-CONWIP -55.001 1199 0 (-684.2086 ,-637.0774) -660.643

CONWIP-MRP -30.057 1199 0 (-1609.433, -1412.199) -1510.816
Kanban-MRP -39.698 1199 0 (-2278.777, -2064.141) -2171.459

      The 95% confidence intervals for the difference between Kanban and CONWIP

and for the difference between Kanban and MRP are narrow, their half-width is below

10% of the estimate of the mean of difference, indicating an accurate estimation of the

true difference.

      The results are not surprising at all and can be explained by looking at the WIP in

the line. For Kanban the material is assigned to certain machines with the number of

cards as an upper bound. During a machine failure, the material downstream the failed

machine is pulled out of the system, while the material trapped upstream the failed

machine is limited to a fixed amount. The total number of cards assigned to the line

provides an upper limit to the WIP trapped in the system. For CONWIP, the material

accumulates in front of the failed machine, as the material pulled out of the system is

replaced by new releases at the beginning of the line [see 2.3.1]. The amount trapped

upstream the failed machine may amount to the total number of cards assigned to the

line, provided the repair duration is long enough for the entities downstream the failed

machine to pass out of the system to be replaced by new releases. For MRP no upper

limit exists, the releases are controlled by the interarrival rate of raw material to the

line. Independent of a machine failure, new orders are released at the beginning of the
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line. During a machine failure the material is trapped in front of the failed machine for

the entire repair duration. The material downstream the failed machine passes through

the line, however, depending on the repair duration, the amount trapped upstream may

result in a high WIP level for the entire line.

      Thus, the amount of material trapped in the system during failure is the smallest

for Kanban, followed by CONWIP. For MRP, the WIP level is the highest, primarily

limited due to the fact that the utilization level is synchronized for all three systems.

As the number of entities trapped in the system during failure increases, the influence

of their cycle time on the average cycle time increases. This results in the highest

average cycle time for the biggest average amount of WIP trapped during failure.

7.3.6 Conclusions for Average  Cycle Time

      The following relation summarizes the information obtained from the graphs and

tables above:

Kanban
cycle

CONWIP
cycle

MRP
cycle ttt >> .

Assuming equal utilization for the three control systems, Kanban clearly outranks its

pendants. However, the relation

KanbanMRPCONWIP uuu >>

indicates, that the line controlled by Kanban had a smaller utilization and thus a

smaller throughput than the lines controlled by the other two systems. A two percent

difference may well influence the performance. However, assuming an almost linear

response of the average cycle time to utilization may result in a difference of about
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300 seconds, a difference of 660 [see Table 7-10] is found to be most unlikely. MRP

shows a definite inferiority to the pull systems, responding with an average cycle time

of more than 1,500 seconds.

      The resulting ranking illustrates the superiority of Kanban over the other systems,

even though the difference between Kanban and CONWIP is not as obvious as that

between the pull system and the push systems:

1. Kanban,

2. CONWIP, and

3. MRP.

      The average cycle time represents a good indicator for the performance of a

manufacturing system. Other indicators should be considered as well to obtain a better

understanding for a mechanism’s characteristics. The maximum of the cycle time and

the standard deviation of cycle time give more insight into a system’s behavior.

7.3.7 The Maximum Cycle Time

      A low average cycle time is an indication for a good performance of a control

system. However, a low average may result from a majority of short cycle times and a

minority of very long cycle times. Assuming that an important order is trapped in the

manufacturing system resulting in a very long cycle time with a first come first serve

scheduling policy, the due date can not be made. As a consequence, the customer may

be lost. Thus, knowledge on the maximum cycle time may prevent such unfortunate
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situations. Table 7-11 summarizes statistics on the maximum cycle times for the

simulations completed.

Table 7-11: Statistics on the maximum cycle time including machine failure for
Kanban, CONWIP, and MRP.

Control System Minimum 1. Quartile Mean Median 3. Quartile Maximum
Kanban 5865.9 17880.6 27091.8 23073.8 31693.5 88870.4

CONWIP 5939.3 19132.7 28202.8 24698.4 33690.3 98645.7
MRP 8928.2 24941.4 36361.3 30514.8 42545.1 116682.2

      The box plots in Figure 7-14 illustrate the data from Table 7-11. The small

difference between the first quartile and the median and the large distance between

the median and the third quartile indicate a concentration of data below the median.

There are no outliers below the first quartile. On the other hand, the maximum values

for the maximum cycle times can be classified as outliers indicating a minority of data

points with extremely large values. The interquartile range for the pull systems is far

less than the range for MRP. The small difference between Kanban and CONWIP

does not have a notable effect on the customer satisfaction concerning on time

delivery.
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Figure 7-14: Box plots of the maximum cycle time including machine failure for
Kanban (1), CONWIP (2), and MRP (3).

      The large values for the maximum cycle time result from a low availability and

unfortunate variability in the manufacturing system. The maximum cycle time

decreases with increasing availability. The decrease is most predominant for MRP.

The paired t-test performed on the maximum cycle times for the 1,200 configurations

simulated reveals a significant (on a 95% confidence level) difference between the

manufacturing lines controlled by the three mechanisms [see Table 7-12].
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Table 7-12: The output for the paired t-test on the maximum cycle time including
machine failure for Kanban, CONWIP, and MRP.

Null Hypothesis
True mean of differences is equal to 0.

Output
Comparison

between
t df p-value 95%

Confidence Interval
Mean of diff.

estimate
Kanban-CONWIP -5.4447 1199 0 (-1511.4478, -710.7101) -1111.079

CONWIP-MRP -33.2093 1199 0 (-8640.428, -7676.457) -8158.442
Kanban-MRP -38.3098 1199 0 (-9744.237, -8794.805) -9269.521

      Although the p-value of zero indicates a significant (95% confidence level)

difference between the maximum cycle times for Kanban and CONWIP, the small t-

value of –5.447 indicates a lesser significance on a higher confidence level. Further,

the difference of 1,111.079 between the two systems looks rather small when set

relative to the mean:

( ) ⇔
−

=
max

Kanbancycle

max
Kanbancycle

max
CONWIPcyclemax

CONWIPcycle
max

Kanbancycle t

tt
tt

 ,

 , ,
 , ,δ

( ) ⇔=
27091.8

27091.8-28202.8
 ,

max
CONWIPcycle

max
cycle ttδ

( ) 041.0 , =max
CONWIPcycle

max
cycle ttδ ,

a relative improvement of less than 5%. The difference between the pull systems and

the push system would certainly influence the business of a manufacturing company,

considering the relative increase of the maximum cycle time of

( ) 342.0 , , =max
MRPcycle

max
Kanbancycle ttδ  and

( ) 289.0 , , =max
MRPcycle

max
CONWIPcycle ttδ .
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      The result is not surprising. In an MRP controlled manufacturing line a large

amount of material is trapped upstream the failed machine [see 7.3.5, p. 160]. The last

entity in the queue in front of the failed machine has to wait until all the other entities

have been processed. The waiting time increases with an increasing amount of

material waiting in the queue. As the queue is expected to be longer for CONWIP

than for Kanban, CONWIP results in slightly higher maximum cycle times.

7.3.8 Conclusions for the Max imum Cycle Time

      Summarizing the information above and assuming an almost linear response of

the maximum cycle time to utilization, the following ranking results:

1. Kanban, closely followed by

2. CONWIP, and

3. MRP.

      The last aspect of cycle time investigated is the standard deviation of cycle time

for the number of entities processed per configuration.

7.3.9 Standard Deviation of Cycle Times

      Both the average cycle time and the maximum cycle time indicate the

performance of the manufacturing control systems by measuring the central tendency

of the data distribution. They do not indicate the variation or spread of data, revealing

the dynamic behavior of a system. The standard deviation of cycle time enables the
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estimation of how the manufacturing process varies resulting in different cycle times

for the entities leaving the system. Table 7-13 summarizes the statistics on the

standard deviation of cycle time for the 1,200 simulations run per control system.

Table 7-13: Statistics on the standard deviation of cycle time including machine
failure for Kanban, CONWIP, and MRP.

Control System Minimum 1. Quartile Mean Median 3. Quartile Maximum
Kanban 512.75 1510.77 2451.14 2172.26 2930.1 6765.17

CONWIP 461.95 1690.82 2762.69 2422.58 3259.18 7797.59
MRP 1155.77 3155.76 4754.63 3837.42 5786.49 12874.55

      Figure 7-14 visualizes the behavior of the standard deviation of the cycle time for

Kanban (1), CONWIP (2), and MRP (3). The box plots display the most obvious

differences between the three control systems.

Figure 7-15: Boxplots of the standard deviation of cycle time including machine
failure for Kanban (1), CONWIP (2), and MRP (3).
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      For the pull systems the plots reveal a fairly symmetric distribution of data points

around the median between the first and the third quartile. The median for MRP lies

in the lower half of the box denoting the first and third quartile. Thus, the lower half

of the data is more condensed than the upper half of the data, indicating a few

configurations with quite a big standard deviation in cycle times. Further, the data

points for MRP lie further apart. Considering the slightly bigger minimum value as

well, the process unveils a much higher variability than its pendants. As with the

maximum cycle time, the mean of the standard deviation of cycle times for the

different configurations lies above the median [see Table 7-13], denoting a few

configurations with exceptionally high outputs.

      Figure 7-15 does not show the big difference in mean between Kanban and

CONWIP. The medians for the two systems are almost the same. Thus, CONWIP

produces more extreme outliers increasing the mean. A paired t-test reveals a

significant (95% confidence level) difference between the two pull systems [see Table

7-14].

Table 7-14: The output for the paired t-test for the standard deviation of cycle time
including machine failure for Kanban, CONWIP, and MRP.

Null Hypothesis
True mean of differences is equal to 0.

Output
Comparison

between
t df p-value 95%

Confidence Interval
Mean of diff.

estimate
Kanban-CONWIP -30.2428 1199 0 (-331.7594, -291.3373) -311.5483

CONWIP-MRP -55.745 1199 0 (-2062.049, -1921.836) -1991.943
Kanban-MRP -56.8838 1199 0 (-2382.939, -2224.043) -2303.491

      Table 7-15 shows the relative increase of standard deviation of cycle time. The

values are high in comparison to the average cycle time and the maximum cycle time.
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Table 7-15: The relative increase of the standard deviation in cycle time including
machine failure for Kanban, CONWIP, and MRP.

Indicator Value

( )stdev
CONWIPcycle

stdev
Kanbancycle tt  , ,δ 0.127

( )stdev
MRPcycle

stdev
Kanbancycle tt  , ,δ 0.721

( )stdev
MRPcycle

stdev
cycle tt  ,CONWIP ,δ 0.940

      The standard deviation of cycle time increases by as much as 94% if MRP is

chosen instead of Kanban. Even the increase between the two pull systems reaches

12.7%, a notable difference.

7.3.10 Conclusions for the Standard Deviation of Cycle Times

      The difference in standard deviations of cycle times between the three control

systems is considerable resulting in the following ranking of the mechanisms:

1. Kanban,

2. CONWIP, and

3. MRP.

      The initial investigation in the response of the cycle time to varying batch size,

setup time and machine failure were done to primarily compare the performance of

the three control systems. The regression analysis in the next subchapter provides

more information on the individual systems as it reveals quantitative dependencies

between the parameters and the indicator average cycle time.



174

7.3.11 Regression

      The models were constructed with the aim to enable the calculation of the

expected average cycle time with the help of the following parameters:

• Amount of cards assigned for the pull systems,

• Interarrival time for MRP

• Batch size,

• Setup ratio,

• Machine availability,

• Interfailure time, and

• Repair duration.

      Either both the availability and the repair duration (for Kanban and CONWIP) or

both the availability and the interfailure time (for MRP) were included in the models

to take the decrease of utilization for an increase in interfailure time and repair

duration, while keeping the availability constant, into consideration [see 7.3.2].

      Further, the models were expected to show significant (on a 95% confidence

level) regressors and interactions of regressors to provide more insight into the

influence of the different parameters on the performance of the control systems. By

doing simple arithmetics, the effect of the individual regressors was approximated to

establish the most influential parameter or interaction of parameters. A model

validation was performed to reveal the correctness of the regression models.
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7.3.11.1 Models

      Table 7-16 lists the regression models for Kanban, CONWIP, and MRP. The

coefficients of determination indicate a good fit as all three exceed 0.97. The models

were constructed by including regressor terms by trial and error. The best model given

by the software’s stepwise regression algorithm was found to represent the data points

insufficiently.

Table 7-16: The regression models for the average cycle time including machine
failure for Kanban, CONWIP, and MRP.

System Model 2R
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      The models were assembled from regressors, which were found to be significant

on a 99% confidence level. The probability for the t-value being greater than the

tabled value were lower than 0.01 for the t-tests performed on the coefficients. The p-
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value for the F-test was zero for the three models obtained. Naturally, the models

given in Table 7-16 are not necessarily optimal, but, they seem to represent the data

set quite well.

      After transformation, the residuals were found to be independently and normally

distributed with a fairly equal variance. The most significant outliers were identified,

to analyze the influence of the data points on the model. Figure 7-16 shows the

Cook’s distance [see 4.3.8] versus the index of the data points, the twenty most

notable outliers are labeled.

Figure 7-16: The Cook’s Distance versus the index of the data points for the
regression model for Kanban, including machine failure.

      Eleven of the twenty outliers were identified as data points with an index ending
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batch size one, setup ratio one and the smaller number of cards assigned. These
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configurations resulted in unusually short average cycle times. However, the

throughputs or utilizations were found to be exceptionally small as well, making these

configurations not applicable to reality. For the other outliers an obvious pattern could

not be distinguished.

7.3.11.2 Effects of the Regressors

      A small coefficient does not necessarily indicate, that the corresponding regressor

has a small effect on the response variable. The domain of the regressor has to be

taken into consideration as well. Suppose regressor A has a coefficient of 1, but

represents values in the domain [1,000, 2,000]. On the other hand, regressor B has a

coefficient of 1,000, but represents values in the domain [0.1, 0.2]. Multiplying the

coefficient with the average of the lower and upper bound of the given domains,

results in 1,500 for A and 150 for B. Thus, although the coefficient of B is much

higher than the coefficient of A, A has a greater effect on the response variable. For

the example, only two levels were taken to calculate the average of the values in the

domain. 2,400 replications were used to construct the models. Thus, the averages

were calculated from 2,400 values using the following formula:

∑∏
= =

=
2400

1 12400

1

i

m

j
jr

r

lAverage ,

where jl  stands for the level of the jth variable in the rth regressor term in replication

i. Table 7-17, Table 7-18, and Table 7-19 list the domain for the regressor terms, the

average of the levels for the regressor and the corresponding effects on the average

cycle time for Kanban, CONWIP, and MRP, respectively.
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Table 7-17: The domain and the corresponding effects for the regressor terms
including machine failure for Kanban’s regression model.

Regressor Domain of Regressor Average Coefficient Effect

repairt [873, 5515] 2480.833 0.0011 2.728917

b [1,10] 5.5 0.4542 2.4981

sr [1, 10] 5.5 0.245 1.3475

c [13,60] 20.95 0.0436 0.91342

scr [13, 600] 115.225 0.0049 0.564603

bc [13, 600] 98.75 0.0031 0.306125
3
sr [1, 1000] 302.5 0.0004 0.121
3b [1, 1000] 302.5 0.0004 0.121

sabr [0.94, 99] 29.1936 -0.0005 -0.0146
2

sr [1, 100] 38.5 -0.0102 -0.3927
2c [169, 3600] 596.55 -0.0007 -0.41759

sacr [12.22, 594] 111.2066 -0.0038 -0.42258
2

sr [1, 100] 38.5 -0.0137 -0.52745

ab [0.94, 9.9] 5.307979 -0.3139 -1.66617

repairat (820, 5460) 2380.847 -0.0011 -2.61893

      For Kanban, the repair time and the batch size show a considerable positive effect

on the response variable [see Table 7-17]. Considering all the terms including the

setup ratio leaves a positive effect on the average cycle time. An increase in the setup

ratio results in an increase of the average cycle time. The amount of cards assigned to

the entire line is positively influential on the response variable, too. The average cycle

time increases with an increasing number of cards allocated to the line. However, the

square term of the same variable has a fairly large negative effect on the indicator,

neutralizing the positive effect to some extend. The interaction term of the repair

duration and the availability have a negative influence on the indicator. This indicates

the decrease of cycle time for an increase in availability. The least influence is
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subjected by the interaction of availability, batch size and setup ratio, which has a low

information content in any case.

Table 7-18: The domain and the corresponding effects for the regressor terms
including machine failure for CONWIP’s regression model.

Regressor Domain of Regressor Average Coefficient Effect

sar [0.94, 9.9] 5.307716 0.2508 1.331175

ac [0.94, 44) 16.06885 0.0582 0.935207

ab [0.94, 9.9] 5.307818 0.1694 0.899144

repairt [873, 5515] 2480.833 0.0002 0.496167

bc [10, 440] 80.65 0.0011 0.088715
2c [100, 1936] 16.65 -0.0005 -0.00833

sbcr [10, 4400] 443.575 -0.0001 -0.04436
2b [1, 100] 38.5 -0.0038 -0.1463
2

sr [1, 100] 38.5 -0.0065 -0.25025

sabr [0.94, 99] 29.19294 -0.0097 -0.28317

repairat (820, 5460) 2380.664 -0.0002 -0.47613

a [0.94, 0.99] 0.965053 -8.7099 -8.40552

      The most influential parameters for CONWIP are the interaction terms of the

availability with the setup ratio, the number of cards, and the batch size [see Table

7-18]. The average cycle time increases with an increasing setup ratio, number of

cards assigned, and batch size. The repair duration has a fairly strong positive

influence on the average cycle time as well. As with Kanban, an increasing

availability decreases the indicator, expressed by the large negative coefficient of the

main availability term. The interaction terms including availability are not influential

enough to compensate for the strong negative effect of the main availability term.
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Table 7-19: The domain and the corresponding effects for the regressor terms
including machine failure for MRP’s regression model.

Regressor Domain of Regressor Average Coefficient Effect
2a (0.88, 0.98) 0.964983 1383.788 1335.332

intfailt [28200, 178200] 79050 0.0103 814.215

intarrt [48, 927] 379.0517 0.1648 62.46771

b [1, 10] 5.5 7.448 40.964
2
intarrt [2304, 859329] 167781 0.0002 33.5562

sar [0.94, 9.9] 0.964983 22.7093 21.91409

intarrbt [48, 9270] 5.5 0.0048 0.0264

2b [1, 100] 5.5 -0.0494 -0.2717

intarrstbr [48, 92700] 14457.09 -0.001 -14.4571

sr [1, 10] 5.5 -10.4123 -57.2677

intarrat (45, 918) 364.9666 -0.4997 -182.374

intfailat [26508, 176418] 76668.18 -0.0103 -789.682

a [0.94, 0.99] 0.964983 -3132.03 -3022.36

      As the model for MRP only required square root transformation and not a natural

logarithm transformation, the effects are much bigger for MRP’s model [see Table

7-19]. As before, the machine availability has a big effect on the average cycle time.

The negative influence is stronger than the positive influence of the parameter, taking

the main effect, the effect of the square term and the effects of the interaction terms

into consideration. MRP is outranked by the pull systems, only when machine failure

(availability) is introduced to the models. The regression analysis thus supports the

strong influence of this parameter on the performance of the push system. Further, the

interfailure time influences the average cycle time positively. The utilization

decreases with increasing interfailure time [see 7.3.2], resulting in longer average

cycle times. As expected, the interarrival time has a negative effect on the response

variable. The average cycle time increases with a decreasing interarrival time.
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Looking at the output data immediately reveals the higher average cycle time for the

shorter interarrival time. Unexpectedly, the setup ratio shows a negative effect on the

indicator. Although, the negative influence is compensated by the interaction term of

the setup ratio and the machine availability, the sum of the effects results in an overall

negative effect on the average cycle time for the parameter setup ratio. Most

importantly, the batch size does not strongly effect the average cycle time. In practice,

the batch size is considered an influential factor, which has a linear effect on the

performance of a manufacturing system. For MRP, the machine availability seems to

influence the performance more significantly, demoting the batch size to a less

significant factor.

7.3.11.3 Model Validation

      In the previous section, the effect of the regressors on the response variable was

compared to the theoretical expectations. All of the expectations with one exception

were satisfied. The only unexpected effect was found for the setup ratio in the MRP

model [see Table 7-19].

      Further, new data was collected to check the models and its predictive ability.

Values within the parameter domains [see Table 7-17, Table 7-18, and Table 7-19]

produced a good fit of the models. Unfortunately, the above regression models were

found to produce unsatisfactory results for predicting average cycle times with

parameter levels outside the given intervals. Input values close to the given parameter

domains resulted in somewhat representative output data. However, the fit of the
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predicted values worsened with an increasing distance of the input values from the

given domains.

7.3.12 Conclusions

      The following summarizes the information obtained from constructing regression

models for the three control systems:

• The machine availability has a strong negative influence on the average cycle

time.

• The number of cards assigned to the line, the interarrival time, the interfailure

time and the repair duration, keeping the availability constant, have a strong

positive effect on the average cycle time.

• The batch size has only a small positive effect on the average cycle time. The

effect was expected to be more significant for this parameter. The setup ratio has a

positive effect on the performance of the pull systems, while the regression model

for MRP indicates a negative effect of the setup ratio on the average cycle time.

      The next chapter covers the variability of the performance indicators and

summarizes the calculations done on confidence intervals to ensure accurate

computation of estimated values.
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 CHAPTER 8
CONFIDENCE

      To ensure a statistically sound interpretation of the observations, all the data was

tested on a 95% confidence interval. The half-width [see 4.2.1] of the confidence

interval of the point estimate was maintained below the 10% fraction of the mean as a

measure of accuracy:

( )nXh γ≤ ,

where γ is the given parameter, γ=0.1.

      As the most variable configurations were unknown, confidence tests were done

before and after the simulations.

      The transient behavior of the systems was investigated prior to the experiments.

Then, a 95% confidence interval was calculated for the configuration assumed to have

the highest variability to guarantee the desired accuracy.

      The configuration with the highest variability could only be determined by

reasoning prior to a set of replications. The actual configuration was found after

completing the experiments by analyzing each replication. If the configuration

assumed to have the highest variability was found to actually produce the highest

variability for an experiment, no additional calculations were performed. Otherwise,

the confidence interval was recalculated.
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      The coefficient of variation for the cycle time, cyclec~ , was computed for every

replication:

)(

)(~
2

cycle

cycle

cycle tE

ts
c = ,

as the ratio between the sample standard deviation and the expected value of the cycle

time. The half-width of the confidence interval of the configuration with the highest

coefficient of variation was computed and assured to be below the 10% value of the

expected value. This procedure was ensued for all replications done.

 8.1 Transient Behavior

      The transient behavior of the three control systems was primarily investigated to

reveal the duration needed to produce stable statistics [see 4.1]. Furthermore, as most

of the simulations were run for a non-terminating system, it was worth finding out,

whether the statistics should only be initialized after a warm-up period. This would

reduce the number of entities sent through the system and reduce the experimentation

time. Table 8-1 lists the configurations for the analysis of the transient behavior for

Kanban, CONWIP, and MRP.

Table 8-1: The configurations for the analysis of the transient behavior for Kanban,
CONWIP, and MRP.

System Batch Size Number of Cards Interarrival Time
CONWIP 1 10 -
Kanban 1 10 -

MRP 2 - 42
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      At a glance, the graphs [see Figure 8-1, Figure 8-2, and Figure 8-3] indicate that

Kanban and CONWIP show very similar patterns, MRP reveals a very interesting

behavior. For Kanban and CONWIP the transient phase ends after only 1,000 entities

produced as the average cycle time evens out. For MRP it takes about 3,000 entities

before the steady-state is approached. One could argue that it takes even longer as the

average cycle time line starts to really even out only after more than 10,000 units have

been processed.

Figure 8-1: Cycle time and average cycle time dependent on the number of processed
entities for CONWIP.
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Figure 8-2: Cycle time and average cycle time dependent on the number of processed
entities for Kanban.

      Kanban has a few increases in the average cycle time for quite a big number of

entities, finally reaching the steady state close to 15,000 entities. CONWIP has only a

few minor bumps in the average cycle time line. For both these systems, the changes

can most probably be attributed to the random generator. However, as the number of

produced entities increases, the average no longer shows disturbances by the

generated input values.
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Figure 8-3: Cycle time and average cycle time dependent on the number of processed
entities for MRP.

      MRP exhibits a very different pattern. The cycle times increase and decrease
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Only when this weight decreases relative to the number of processed entities, the

average cycle time will remain constant.

      As the analysis revealed short transient times [see 4.1] for all the systems, 10,000

entities produced were thought to be sufficient to provide an accurate estimation of

the statistical indicators of performance. The computations done on the confidence

interval disclosed this assumption as truthful. These calculations are shown in the

following sections.

      However, one important issue remains: the warm-up period. Several points lead to

the dismissal of taking warm-up into account:

• The configurations change considerably resulting in different steady-state times,

the warm-up periods would have to be estimated for a large number of

replications or chosen very long,

• The duration of one replication for producing 10,000 entities was about two

minutes on average, not making time an issue, and

• Calculations of the confidence interval with a warm-up period didn’t show a great

improvement of the confidence interval without one.

 8.2 Batchsize

8.2.1 Prior to Simulations

      The standard deviation is dependent on the work in process in the system and

increases with increasing WIP. Thus, WIP should be maximum to obtain a maximal

standard deviation. As the WIP increases, the average cycle time increases, resulting
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in a decrease of the coefficient of variation. Assuming the average cycle time

increases faster than the standard deviation, the smallest WIP, and consequently, the

smallest batch size and the least amount of cards, should be chosen. Table 8-2 shows

the configuration chosen and its output.

Table 8-2: Configuration for Kanban and CONWIP to determine confidence interval
prior to simulation and the corresponding utilization and coefficient of variation as the
output.

System Batch Size Number of Cards Utilization
cyclec~

Kanban 1 10 0.4297 0.2007
CONWIP 1 10 0.5276 0.2279

      CONWIP’s utilization was taken to calculate the interarrival time for MRP [see

5.2.1]:
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This resulted in the configuration and output given in Table 8-3.

Table 8-3: Configuration for MRP to determine confidence interval prior to
simulation and the corresponding utilization and coefficient of variation as the output.

System Batch Size Interarrival Time Utilization cyclec~

MRP 1 38 0.5280 0.2384
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      To calculate the confidence interval on the expected value of the average cycle

time, the cycle time for every entity leaving the system was saved in a file. This data

was analyzed according to the Method of Batch Means [see 4.2.2 Analysis for Non-

Terminating Simulations,       The Method of Batch Means]. Here, batch refers to data

accumulations, allowing an unbiased statistical analysis of their means. It should not

be confused with the system parameter influencing the performance of a control

system. A correlation analysis then provided the lag length for greatest independence

of data between two batches [see Figure 8-4].

Figure 8-4: Correlogram for MRP indicating the correlation dependent on the lag
number.

      The amount of batches resulting is given in Table 8-4 as number of observations.

It can clearly be seen that for Kanban a greater correlation of the data than for

CONWIP existed, resulting in larger batches and a smaller number of observations.

MRP showed the highest correlation of the data. Unfortunately, the correlation did not
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Table 8-4: Output for confidence interval calculations for CONWIP, Kanban, and
MRP.

Identifier Average Standard
Deviation

0.95 C.I.
Half Width

Minimum
Value

Maximum
Value

Number of
Observations

CONWIP 381 71.3 3.43 217 706 1666
Kanban 349 43.5 3.41 228 532 625

MRP 357 41.5 5.79 277 492 200

      The half-widths for the different systems are well below the 10% accuracy

requirement. In the case of Kanban and CONWIP, they are even below a 1% accuracy

level. Thus, producing 10,000 entities would result in a high confidence. To ensure

that this was true for all the replications, the runs with the highest coefficient of

variation were determined from the output data.

8.2.2 Succeeding Simulations

      The output data indicated the configurations in Table 8-5 to have the highest

coefficients of variation.

Table 8-5: Configuration for CONWIP, Kanban, and MRP resulting in the highest
coefficient of variation of all the simulations run.

System Batch Size Number of Cards Interarrival Time
cyclec~

CONWIP 1 10 - 0.2279
Kanban 1 11 - 0.2144

MRP 1 - 38 0.2384

      The initial configuration chosen for CONWIP and MRP were confirmed to have

the highest coefficient of variation. For Kanban a slightly higher coefficient was

found for eleven instead of ten cards being assigned. This deviation was classified as

not substantial. No additional calculations were done.
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      Table 8-6 exhibits the configurations for the minimal coefficients of variation.

Comparing the values given in Table 8-5 and Table 8-6 reveals higher coefficients in

general for the push system, MRP. This can most probably be attributed to the

behavior described earlier in this chapter [see 8.1, Figure 8-3].

Table 8-6: Configuration for CONWIP, Kanban, and MRP resulting in the lowest
coefficient of variation of all the simulations run.

System Batch Size Number of Cards Interarrival Time
cyclec~

CONWIP 9 20 - 0.0751
Kanban 10 19 - 0.0756

MRP 10 - 252 0.0803

      Table 8-6 unveils a minimal coefficient of variation for a batch size of 9 for

CONWIP instead of a batch size of 10. This is due to the fact that simulations were

only run for 17 cards with a batch size of 10. Every additional card would have

resulted in a lower coefficient of variation. Comparing Table 8-5 and Table 8-6

reveals a decrease of the coefficient of variation for an increase in WIP for the pull

systems. MRP shows the same behavior for an increase in WIP due to an increase in

batch size. However, the response of the coefficient of variation to an increase in WIP

due to a decrease in interarrival time changes for different batch sizes.
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Figure 8-5: The coefficient of variation dependent on the interarrival time for MRP.

      Figure 8-5 shows an increase of the coefficient of variation for an increase in

interarrival time, resulting in a decrease in WIP, for a batch size of one. As the batch

size increases, the decrease in the coefficient of variation for an increase in

interarrival time, resulting in a decrease in WIP, becomes more evident. Thus, for

MRP the standard deviation of cycle time increases as fast as the average cycle time

with increasing WIP, for a given batch size. For the pull systems, the average cycle

time increases faster than the standard deviation of cycle time, resulting in a decrease

of the coefficient of variation for an increase of the WIP, for a given batch size.
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 8.3 Setup

8.3.1 Prior to Simulations

      Assuming that the systems including setup time would behave as the systems

without setup, similar initial configurations were chosen. For Kanban 10 cards were

assigned, as the increase of the coefficient of variation for 11 cards was considered a

unique phenomenon. As the coefficients tended to decrease for increasing throughput,

the longest setup time was chosen, resulting in a low throughput [see Table 8-7].

Table 8-7: Configuration for Kanban, CONWIP, and MRP including setup time to
determine confidence interval prior to simulation and the corresponding throughput
and coefficient of variation as the output.

System Batch
Size

Setup
Time

Number of
Cards

Interarrival
Time

Throughput
cyclec~

Kanban 1 200 10 - 0.1503 0.1936
CONWIP 1 200 10 - 0.1503 0.2192

MRP 1 200 - 399 0.1503 0.2151

      Table 8-8 exhibits the results of the calculations done. Again, the half-widths lie

well below the 10% value of the average, indicating a very accurate calculation of the

expected value. The major difference between this and the previous results are the

number of observations. While the number has decreased for the two pull systems, it

has increased for MRP, allowing more accurate calculations [compare with Table

8-4]. Generally speaking, the correlation of the output data has increased by the

introduction of setup.



195

Table 8-8: Output for confidence interval calculations including the setup time for
CONWIP, Kanban, and MRP.

Identifier Average Standard
Deviation

0.95 C.I.
Half Width

Minimum
Value

Maximum
Value

Number of
Observations

CONWIP 4.02e+003 347 34.1 3.18e+003 4.92e+003 400
Kanban 3.65e+003 408 35.8 2.7e+003 5.22e+003 500

MRP 3.76e+003 520 56 2.65e+003 5.64e+003 333

      Although the half-widths were found to easily satisfy the 10% criterion, an

analysis of the output data was performed.

8.3.2 Succeeding Simulations

      The coefficients of variation were analyzed after the completion of 4,626

replications. Table 8-9 lists the three configurations with the highest coefficients.

Table 8-9: Configuration for Kanban, CONWIP, and MRP including setup time to
determine confidence interval succeeding the simulations and the corresponding
throughput and coefficient of variation as the output.

System Batch
Size

Setup
Time

Number of
Cards

Interarrival
Time

Throughput
cyclec~

Kanban 1 200 12 - 0.1366 0.2027
CONWIP 1 200 10 - 0.1492 0.2181

MRP 1 200 - 271 0.2208 0.2403

      Comparing the configurations found with the highest coefficients of variation to

the configurations determined prior to the replications [see Table 8-7], no major

deviations could be discerned. The batch size and setup time were equal. For

CONWIP a small change in the number of cards assigned occurred. MRP showed an

unexpected increase in variability for a decrease in interarrival time. Figure 8-6
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illustrates the unusual behavior of the configuration. Although the utilization

decreases steadily with an increasing interarrival time, the variability of the specific

interarrival time shows an extraordinary jump. However, disregarding the exceptions,

the expected increase of variability with a decreasing utilization for batch size one can

be discerned in the graph.

Figure 8-6: The coefficient of variation and the utilization dependent on the
interarrival time for MRP with batch size one and setup time 200.
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Table 8-10: The coefficients of variation prior to the simulations and succeeding the
simulations and their difference including setup for Kanban, CONWIP, and MRP.

System prior
cyclec~ succeeding

cyclec~ cyclec~∆
Kanban 0.1936 0.2027 0.0091

CONWIP 0.2192 0.2181 -0.0011
MRP 0.2151 0.2403 0.0252

      The confidence intervals were not recalculated for the differing configurations, as

the differences in the coefficients of variation for the cycle times, cyclec~∆  , were

considered to be negligible [see Table 8-10]. The half-widths calculated prior to the

bulk of the simulations were sufficiently small to allow small deviations.

 8.4 Failure

      With a new source of variability added to the models, the machine failure, the

amount of entities processed to ensure an accurate calculation of the indicators had to

be reevaluated. The small half-widths determined for setup indicated some tolerance

for increasing variability. However, especially the variability for MRP was expected

to increase tremendously, as a large amount of entities would be trapped in the

manufacturing line during repair.

      Parallel to CHAPTER 7 incorporating the discussions on the influence of machine

failure on the performance of the manufacturing system, the dynamic response is dealt

with first, followed by the response to machine failure in steady-state.
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8.4.1 Dynamics of Failure

      The confidence on data for the two areas of investigation, the time spent in the

system [see 7.2.3] and the time to recover after failure [see 7.2.4], is given below.

8.4.1.1 Time Spent in the System

      To enable a comparison of the three manufacturing systems observing their

dynamic behavior to failure, 20 replications were completed. The calculated half-

width of the 95% confidence intervals of their mean was found to exceed the 10%

limit. Additional 10 replications were run and the t-test was repeated for the passing

point 11 [see 7.2.3]. The coefficients of variation for the data collected at this passing

point were very close to the highest for Kanban and CONWIP and the highest for

MRP. The output of the computations is given in Table 8-11.

Table 8-11: The output for t-tests done for the time after failure at passing point 11 for
Kanban, CONWIP, and MRP.

Null Hypothesis
True mean of differences is equal to 0.

Output
System t df p-value 95%

Confidence Interval
95% C.I.

Half-width
Mean

estimate
Kanban 29.1104 30 0 (4763.814; 5482.668) 359.427 5123.241
CONWIP 28.8857 30 0 (4986.223; 5744.937) 379.357 5365.580
MRP 27.8355 30 0 (4899.202; 5675.026) 387.912 5287.114

      The half-widths clearly meet the 10% requirement, ensuring statistically confident

observations.
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8.4.1.2 Recovery Time

      To ensure an accurate estimation of the mean times, only 20 replications were

needed for the pull systems and double the amount was needed for MRP [see Table

8-12]. This immediately indicates the greater variability of the push system, which

can primarily be attributed to the high level of work in process accumulating in the

system during failure.

Table 8-12: The results for the calculation of the confidence intervals for the time
after failure and the moving average of the cycle times for Kanban, CONWIP, and
MRP.

System Indicator t Df p-value 95% C.I. Half-Width Mean
Kanban

nowt 24.221 19 0 (9064.196; 10778.908) 857.356 9921.552

Kanban exps
cyclet 142.1707 19 0 (5294.726; 5452.952) 79.113 5373.839

CONWIP
nowt 31.4352 19 0 (10436.21; 11925.08) 744.435 11180.64

CONWIP exps
cyclet 81.5805 19 0 (5063.826; 5330.502) 133.338 5197.164

MRP
nowt 23.4124 39 0 (19825.32; 23574.83) 1874.755 21700.08

MRP exps
cyclet 451.5923 39 0 (5296.451; 5344.110) 23.8295 5320.28

      The half-widths for the confidence intervals calculated for the time after failure,

nowt , meet the 10% criterion, while those calculated for the exponentially smoothed

cycle times, exps
cyclet , indicate a very accurate estimation of the mean [see Table 8-12].

8.4.2 Machine Failure in Steady-State

      As done previously, the configuration with the highest variability had to be

determined to enable accurate calculations of the expected values for the indicators. In
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a first step, the influence of the interfailure time and the repair duration on the

performance of the manufacturing control system was investigated. Then the levels

for the relevant parameters could be set with the information gained by constructing

regression models.

8.4.2.1 Influence of Interfailure  Time and Repair Duration

      The influence of increasing interfailure time and repair duration for a constant

availability can be seen in Table 8-13 for a low utilization level and in Table 8-14 for

a high utilization level. The regression was performed for eleven combinations of

interfailure time and repair duration and varying batch size from size one to size ten

[see Table 7-5].

Table 8-13: The response of the average utilization to different combinations of
interfailure time and repair duration and varying batch size for a small number of
cards [see Table 6-2]assigned to a line controlled by CONWIP.

Formula
Ul ~ Bsize + Bsize^2 + Combination

Coefficients
Identifier Value Std. Error t-value Pr(>|t|)

(Intercept) 0.2799 0.0048 58.4823 0.0000
Bsize 0.0439 0.0018 24.6760 0.0000

I(Bsize^2) -0.0021 0.0002 -13.2893 0.0000
Combination -0.0061 0.0004 -16.9164 0.0000

Residual Standard Error
0.01202 on 106 degrees of freedom

Multiple R-Squared
0.9679

F-Statistic
1066 on 3 and 106 degrees of freedom, the p-value is 0
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Table 8-14: The response of the average utilization to different combinations of
interfailure time and repair duration and varying batch size for a large number of
cards [see Table 6-2] assigned to a line controlled by CONWIP.

Formula
Uh ~ Bsize + Combination

Coefficients
Identifier Value Std. Error t-value Pr(>|t|)

(Intercept) 0.5451 0.0055 99.4371 0.0000
Bsize 0.0111 0.0007 16.6929 0.0000
Combination -0.0094 0.0006 -15.6008 0.0000

Residual Standard Error
0.02 on 107 degrees of freedom

Multiple R-Squared
0.8299

F-Statistic
261 on 2 and 107 degrees of freedom, the p-value is 0

      In both cases, for the low and high average utilization level, the combination has a

significant effect on a high confidence level on the average utilization. The negative

gradient of the combination indicates, that the average utilization decreases with an

increasing interfailure time and repair duration. However, the small coefficient for the

combination in comparison to the coefficient for the batch size indicates a minute

effect on the average utilization and thus on the performance of the manufacturing

line [see Figure 7-10].

      Comparing the low and high utilization levels, the sensitivity of the average

utilization to an increasing interfailure time and repair duration increases from the low

level to the high level. The decrease of the coefficient of determination indicates an

increase of variance with increasing utilization. The model provided is not able to

describe the interdependence of the regressors with the response sufficiently.
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      After constructing the models and observing a significant effect (on a 95%

confidence level) of the increase in interfailure time and repair duration on the

utilization, the levels for the relevant parameters could be set.

8.4.2.2 Prior to Simulations

      With the aim to determine the configuration with the highest variability before the

experiments were carried out, the negative correlation between utilization and

variability lead to the following interdependence:

The lower the utilization, the higher the variability.

      However, not all of the variability can be derived from the utilization level. The

amount of material trapped in the system during repair plays a significant role on a

system’s performance as well. As the number of entities in the system increases

during machine failure and repair, the number of entities with a longer cycle time

increases and consequently, the average cycle time increases. Once the entities held in

the line upstream from the failed machine pass out of the system, the average cycle

time decreases rapidly. This increases variability on the average cycle time. Thus,

there exists a trade-off between low utilization, which results from a low WIP level,

and the high WIP level during the repair time. The setup time manipulates both

factors. As the setup time increases, the utilization decreases. On the other hand, an

increase in setup time decreases the reactivity of the system to failure as it takes

longer for each entity to pass through the system. The material trapped upstream the

failed machine is not built up as fast during failure. Furthermore, with increasing
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setup time, keeping the batch size constant, the average time spent in the system

increases as well, making a fairly short repair duration less effectual.

      Keeping the trade-off in mind and judging by the results obtained from previous

experiments, the parameters were set at the following levels:

• Small number of cards assigned to the line,

• Small batch size,

• small setup time,

• Low availability.

The influence of the interfailure time and the repair duration was not taken into

account. Table 8-15 lists the resulting configurations.

Table 8-15: The configurations for Kanban, CONWIP, and MRP including machine
failure prior to simulations.

System Batch
Size

Setup
Time

Interfailure
Time

Repair
Duration

Number of
Cards

Interarrival
Time

cyclec~

Kanban 1 20 28200 1800 13 - 1.199
CONWIP 1 20 28200 1800 10 - 1.261

MRP 1 20 28200 1800 - 71 1.082

      Calculations done for 10,000 entities processed, revealed large half-widths.

Consequently, the number of entities passing through the manufacturing line was

increased until the half-width easily met the 10% criterion. The number of entities

processed was increased by additional units to buffer unexpected variability. Table

8-16 shows the resulting amount of entities processed to ensure adequate accuracy for

the calculation of the expected values.
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Table 8-16: The amount of entities processed to ensure good estimation of indicators
including machine failure.

Control System Amount of Entities Processed
Kanban 15,000

CONWIP 20,000
MRP 100,000

      The computations resulted in the numbers illustrated in Table 8-17.

Table 8-17: Output for confidence interval calculations including machine failure for
Kanban, CONWIP, and MRP.

Identifier Average Standard
Deviation

0.95 C.I.
Half Width

Minimum
Value

Maximum
Value

Number of
Observations

Kanban 1.06e+003 839 52 476 8.77e+003 1000
CONWIP 1.08e+003 820 56.9 523 6.14e+003 800

MRP 1.05e+004 2.5e+003 292 6.06e+003 1.87e+004 285

8.4.2.3 Succeeding Simulations

      Fortunately, the number of entities processed was chosen fairly high. The

difference between the coefficients of variation for the configurations chosen prior to

the bulk of simulations [see Table 8-15] and the highest coefficients for all

configurations simulated were tremendous. Table 8-18 illustrates the configurations

with the highest coefficient of variation for the average cycle time.

Table 8-18: The configurations for Kanban, CONWIP, and MRP including machine
failure succeeding the simulations.

System Batch
Size

Setup
Time

Interfailure
Time

Repair
Duration

Number of
Cards

Interarrival
Time

cyclec~

Kanban 1 20 86400 5515 14 - 1.929
CONWIP 1 20 86400 5515 10 - 2.365

MRP 1 20 86400 3600 - 99 1.344
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      Table 8-19 shows the outputs for the calculations on the confidence interval.

Unfortunately, the 10% criterion was not met for CONWIP. However, there were

only two configurations out of 2,400, for which the coefficient of variation of the

average cycle time exceeded a tolerable value. Thus, the output data could be

regarded as a good estimation of the true indicators. The fairly small half-width for

MRP indicates, that it was unnecessary to produce as many as 100,000 entities, which

resulted in long simulation times. A smaller number would have sufficed.

Table 8-19: Output for confidence interval calculations including machine failure for
Kanban, CONWIP, and MRP succeeding the simulations.

Identifier Average Standard
Deviation

0.95 C.I.
Half Width

Minimum
Value

Maximum
Value

Number of
Observations

Kanban 1.12e+003 1.47e+003 105 506 1.68e+004 750
CONWIP 1.2e+003 1.47e+003 130 573 1.34e+004 500

MRP 2.82e+003 1.88e+003 185 599 1.48e+004 400

      The above investigation reveals a strong increase in variability for increasing

failure time and repair duration. Looking at the half-width, the output data becomes

almost double as variable for the same machine availability [compare Table 8-17 and

Table 8-19].

      The last chapter gives an overview of the conclusions made throughout prior

discussions.



206

 CHAPTER 9
CONCLUSIONS

 9.1 Summary

      In this thesis the performances of Kanban, CONWIP, and MRP were evaluated for

a ten identical machine tandem line with respect to parameters including batch size,

setup time, and machine failure. The utilization (throughput) was kept constant for all

control systems. The parameters were introduced to the models one at a time, thereby

increasing the realism and the variability of the manufacturing line. Thus, the

performances of the three control mechanisms were explored on three levels of

complexity. Initially, only the influence of batch size on the performances of the

control systems was investigated. Then, the setup time was taken into consideration in

addition to the batch size. Last, the machine failure was introduced to the models to

augment the realism of the models resulting in a higher practical applicability. On

each level, the performances were evaluated for steady-state, assuming the

manufacturing line would run indefinitely. In addition, the response of the

performance to machine failure was observed dynamically while keeping batch size

and setup time constant.
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      Conclusions for the models including batch size variations only [see 5.2.3]:

• There is a linear dependence between the number of cards assigned and the

average cycle time. The batch size influences the average cycle time non-linearly

while the batch size and the number of cards interact. Thus, the batch size has a

higher impact on the average cycle time than the number of cards assigned to the

line.

• For an increasing batch size, the increase in average cycle time increases for every

additional card assigned to the system.

• For a fixed number of cards allocated to the line, the average cycle time increases

with increasing batch size.

• For a batch size greater than one, the average cycle time is always greater than

zero. For a batch size of one, the average cycle time approaches zero as the WIP

level approaches zero.

• For a given WIP level, an optimal configuration can be found for Kanban,

CONWIP, and MRP resulting in the following ranking of their performance:

1. MRP,

2. CONWIP, and

3. Kanban.

• For a given WIP level a lower batch size always results in a smaller average cycle

time than a higher batch size, which seems to hold across all manufacturing

control systems.
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      Conclusions for the models including both batch size and setup time variations

[see 6.2.2 and 6.3.2]:

• The influence of the setup time on the average cycle time increases with

decreasing batch size. Thus, for a big batch size an increase in setup time is not as

detrimental for the performance of a system as for a small batch size.

• Batch size five separates the batch sizes into those with a higher sensitivity to

change and those with a lower one. As a medium batch size, it encompasses the

advantage of a small batch size and the good attributes of a big batch size. A small

batch size results in a lower average cycle time, a big batch size has a lower

reactivity to a change in setup time.

• Observing the average cycle time dependent on the batch size and the setup ratio,

MRP outperforms the two pull systems. In contradiction with the previous

findings , Kanban shows a better performance than CONWIP. Therefore, the order

is:

1. MRP,

2. Kanban, and

3. CONWIP.

      Conclusions for the models looking at the dynamic response to machine failure

[see 7.2.5]:

• Time spent in the system by the first entity trapped upstream the failed machine,

the control systems can be ranked in the following manner:

1. Kanban,
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2. MRP, and

3. CONWIP.

• However, this ranking can not be stated with high confidence, as the differences in

the time spent in the system are not highly significant.

• A closer look at the time needed for recovery after failure reveals the following

order:

1. Kanban,

2. CONWIP, and

3. MRP.

      Conclusions for the models combining batch size, setup time, and machine failure

variations [see 7.3.3]:

• As the interfailure time and the repair duration increase keeping the availability

constant, the average utilization decreases. Thus, it seems to be of advantage to

implement preventive maintenance done frequently with a shorter duration.

Waiting for the failure to occur resulting in bigger damage and longer repair times

can reduce the performance of a system.

• Looking at the average cycle time as an indicator of performance, Kanban

outperforms the other systems. The difference between Kanban and CONWIP is

not as obvious as that between the pull system and the push systems. Therefore,

the order is:

1. Kanban,

2. CONWIP, and

3. MRP.
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• Table 9-1 lists the optimal configurations for the minimal average cycle time for

Kanban, CONWIP, and MRP.

Table 9-1: The optimal configurations for the minimal average cycle time for Kanban,
CONWIP, and MRP.

System sr b c / intarrt intfailt repdurt a cyclet

Kanban 1 1 60 178200 1800 0.99 1888.963
CONWIP 1 1 44 86400 873 0.99 2101.542

MRP 1 1 48 86400 873 0.99 2457.908

• The same ranking results for the maximum cycle time as an indicator.

• Table 9-2 shows the optimal configurations for the minimal maximum cycle time

for Kanban, CONWIP, and MRP.

Table 9-2: The optimal configurations for the minimal average cycle time for Kanban,
CONWIP, and MRP.

System sr b c / intarrt intfailt repdurt a cyclet

Kanban 1 2 50 86400 873 0.99 5865.879
CONWIP 1 2 37 86400 873 0.99 5939.28

MRP 1 4 120 86400 873 0.99 8928.158

• The difference in standard deviation of cycle time between the three control

systems is considerable, resulting in the following ranking of the mechanisms:

1. Kanban,

2. CONWIP, and

3. MRP.
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• Table 9-3 illustrates the optimal configurations for the minimal standard deviation

of cycle time for Kanban, CONWIP, and MRP.

Table 9-3: The optimal configurations for the minimal average cycle time for Kanban,
CONWIP, and MRP.

System sr b c / intarrt intfailt repdurt a cyclet

Kanban 1 4 25 86400 873 0.99 512.7491
CONWIP 1 2 37 86400 873 0.99 461.947

MRP 2 6 196 86400 873 0.99 1155.772

• The following summarizes the information obtained from constructing regression

models for the three control systems with the average cycle time as the response

variable:

• The machine availability has a strong negative influence on the average cycle

time.

• The number of cards assigned to the line, the interfailure time and the repair

duration have a strong positive effect on the average cycle time.

• The setup ratio, the batch size and the interarrival time have only a small effect

on the average cycle time.

      Summarizing the above observations, MRP does not perform inferior to pull

systems for a manufacturing line with reliable machines, when the release rate is

selected judiciously. In fact, MRP tops the list on several experimental settings. Only

in experiments with unreliable machines, the MRP system shows inferiority. For the

more realistic setting, Kanban performs best, closely followed by CONWIP. MRP is

placed third with a significant difference in performance.
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 9.2 Future Work

      Although the realism was augmented throughout this study, the models could be

improved further by introducing the following parameters:

• Transportation,

• Varying process times,

• different product types,

• move batches unequal to process batches, and

• irregular demand and supply.

      Further, the parameter levels could be increased. Factor analysis instead of

regression analysis could be applied to study the effect of the different parameters on

the performance of the system, as the regression models were found to insufficiently

predict performance outside the given intervals.
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GLOSSARY

a Machine availability
b, Bsize Batch size

β Regression model coefficients
c Number of cards assigned to line
c~ Coefficient of variation

cyclec~ Coefficient of variation for cycle time

e Excess amount of data
E(X) Expectation of the random variable X

ε Regression model random error
h Half-width of confidence interval
I Percentage increase in throughput
M Exponential distribution

beginningM Resultant moment around beginning of line for card allocation rules

medianM Resultant moment around median of line for card allocation rules

R2 Multiple coefficient of determination

sr Setup ratio

s Sample standard deviation
s2 Sample variance
SSE Sum of square errors

Avgct, cyclet Average cycle time
exps
cyclet Exponential smoothing of cycle times

delayt Delay time

Th Throughput

averageTh Average throughput

theoryTh Theoretical throughput

intarrt Interarrival time

intfailt Interfailure time

processt Process time
batch
processt Batch process time
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recovert Recover time

repairt Repair duration

setupt Setup time

u Utilization
u Average utilization
WIP Work in process

maxWIP Maximal work in process

X Sample mean
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