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The globalization of markets due to the improvement of communication and
transportation media has had a significant impact on manufacturing technology in
recent years. The strong international competition forced companies to establish
efficient production facilities ensuring profitability on the long run. The performance
of the most prevalent American manufacturing control mechanism, MRP, was
guestioned after the success of the Japanese Kanban control system during the Just-In-
Time era. CONWIP, a generalization of the Kanban control system, was introduced as
a result of extensive research done to understand manufacturing systems with the aim
of improving their efficiency.

During an extensive simulation study, the performances of Kanban, CONWIP,
and MRP were evaluated for a ten identical machine tandem line with respect to batch
size, setup time, and machine failure. The utilization (throughput) was kept constant

for all control systems. The parameters were introduced to the models one at a time,

XiX



thereby increasing the realism and the variability of the manufacturing line. Thus, the
performances of the three control mechanisms were explored on three levels of
complexity. Initially, only the influence of batch size on the performances of the

control systems was investigated. Then, the setup time was taken into consideration in
addition to the batch size. Last, machine failure was introduced to augment the
models’ realism resulting in a higher practical applicability. On each level, the
performances were evaluated for steady-state, assuming the manufacturing line would
run indefinitely. In addition, the response of the performance to machine failure was
observed dynamically while keeping batch size and setup time constant.

Although the performance differences were found to be minute, Kanban and
CONWIP were outperformed by the traditional control system, MRP, for experiments
with varying batch size and for experiments including both batch size and setup times.
On the highest level of variability, with machine failure introduced, Kanban was
ranked first, closely followed by CONWIP. The two pull systems easily outranked the
push system when evaluated according to average cycle time, maximum cycle time
and the standard deviation of cycle time. Kanban performed best for the dynamic
response to failure as well, where the system performance was measured by the time

taken to recover from failure.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Primarily due to rapid development of technology in the past thirty years, the
market structure throughout the world has changed considerably. Local markets have
become accessible to foreign investors, who are not only able to perform well in their
newly established territory, but, who are even able to excel because of superior
technology. Successful companies embedded globalization in their expansion
strategies, consistently seeking for new markets abroad. Consequently, manufacturing
companies are facing global competition, forcing them to keep up with new concepts
and even to proactively incorporate improvement into their daily production routine.

In 1972 the American Production and Inventory Control Society (APICS) strongly
promoted material requirements planning (MRP) in an effort to strengthen the
American manufacturing industry and its standing in the international arena. MRP
was hoisted to the most prevalent production control system on a national level. After
the successes of Just-In-Time (JIT) its dominant appearance in industry was
guestioned. The Japanese had introduced their superior products manufactured with
the support of the Kanban control system enhancing their global competitiveness. An
enormous amount of research was directed towards the new system giving rise to a

rich body of literature documenting various concepts.



In 1990 another system, striving to maintain a constant work in process
(CONWIP), was presented, able to prove its usefulness in theory and in industry. The
extensive research produced ample knowledge of system’s behavior and good
understanding of the factors involved. The newly evolved science, Factory Physics,
attempts to describe and formalize the characteristics of the extreme probabilistic
systems.

However, the models analyzing and comparing the different control systems
analytically are based on too many simplifying and unrealistic assumptions. The
results can merely serve as approximations of real systems, a very limiting attribute
for their practical applicability. Simulation has established itself as a very powerful
alternative to the analytical modeling process. With the reduction in computer
hardware prices and the increase of processor speed, simulation has become a popular
tool in recent years. It enables modeling with great precision resulting in a very good
representation of real systems and trustworthy output data. The simulations software
available allows the study of manufacturing systems dynamically, giving the analyst a
feeling for the system in addition to generating realistic results.

In this research paper the three control systems Kanban, CONWIP, and MRP are
analyzed by means of a comparative simulation study. Ever since the introduction of
Kanban to the world of production, MRP has been discredited as an inferior control
system. However, despite its significant success, Kanban is not flawless. CONWIP is
investigated as a highly praised alternative. An evaluation of their performance with
respect to batch size, setup time and failure should unveil the superior control system

for the chosen manufacturing line.



1.2 Thesis Outline

Chapter 2 highlights the mechanisms and characteristics of the control systems,
Kanban, CONWIP, and MRP. A comparison regarding specific attributes reveals
basic differences that support the existence of all three control systems. Chapter 3
introduces simulation as the alternative to analytical modeling of manufacturing
systems. It denotes the important aspects of a simulation study. Chapter 4 serves as a
reference to both, statistical analysis methods unique to simulation, and methods
common to general data interpretation. In Chapter 5, the influence of batch size on the
performance of the control systems is demonstrated. In Chapter 6, setup time is
included in the investigations. Chapter 7 deals with the manufacturing system with the
highest degree of realism, including batch size, setup time and failure. The response
of the system to failure dependent on time is analyzed as well. Chapter 8, summarizes
calculations performed to ensure a high accuracy of the output data on a 95%
confidence level while Chapter 9 encompasses the conclusions and suggestions for

future work.



CHAPTER 2
CONTROL SYSTEMS
A brief theoretical background on the three manufacturing control systems is
given in this Chapter. The purpose is to primarily elaborate on the characteristics
unique to the individual control systems and their differences and to secondarily

explain their most important mechanisms.

2.1 Push And Pull Systems

Spearman and Hopp [HOP96, p.316] give a very describing quote of Taiichi
Ohno, the father of Just-in-Time (JIT), to distinguish the meaning of the two terms,
push and pull:

Manufacturers and workplaces can no longer base production on desktop planning
alone and then distribute, push them onto the market. It has become a matter of
course for customers, or users, each with a different value system, to stand in the
frontline of the marketplace and, so to spgall the goods they need, in the amount
and at the time they need them [OHNS88, xiv].

This global perspective can be applied to any individual manufacturing system.
The following definition gives a general and thus abstract explanation of the words:
A pushsystenmscheduleshe release of work based on demand, while a pull system

authorizeghe release of work based on system status [HOP96, p.317].



This means that a push system releases an entity to the line according to the
exogenous master production schedule (MPS). The release time is not modified for a
change in the manufacturing system [see Figure 2-1]. Information flows from the

MPS downstream towards the finished goods inventory.
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Figure 2-1: A push manufacturing system.

A pull system, however, only allows an entity to enter the system when a signal
generated by a change in the line status calls for it. This change results in the most
cases from the departure of an entity from the line [see Figure 2-2]. Information flows
from the finished goods inventory, the customer, upstream towards the raw material

inventory.
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Figure 2-2: A pull manufacturing system.



The performance of the two systems is dependent on scheduling rules as well.
Here the most prevalent one, fist come first serve (FCFS), will be assumed
throughout. Extensive simulations done by Hum and Lee for JIT systems reveal no
dominant rule. However, the results seem to indicate that FCFS is not necessarily
justified, its weakness becomes most apparent under tight production conditions.
According to them, the user should not arbitrarily adopt a scheduling rule. Instead, the
nature of the scheduling rule and the production environment should be understood
[HUMOg].

As the release of material to the line is initiated by the MPS in MRP, the
manufacturing system is controlled by the release rate of material resulting in a
specific throughput. The pull systems on the other hand only allow material into the
system when a card is liberated, a consequence of a reduction in work in process
(WIP). Thus, they control the system by managing the WIP and putting an upper
boundary on the material present in a line.

Kanban and CONWIP are the pull systems discussed here. Their performance will
be compared with the performance of MRP, the most prevalent push system.

Before a comparison of their characteristics can be made, Kanban, CONWIP, and

MRP are discussed as a basis of a practical control system in the following chapters.

2.2Kanban

Mostly the Toyota-style Kanban system is discussed as a pull system and it is

hardly surprising that the terpull is commonly viewed as synonymous witanban



[SCH82]. There is an immense Kanban literature often comparing its performance to
a push system driven by unreliable demand forecasts [BER92].

In a Kanban system, production is triggered by demand. When a part is removed
from the final inventory point, the last workstation in the line is given authorization to
replace the part. This workstation in turn sends an authorization signal to the upstream
workstation to replace the part it just used. This process continues upstream,
replenishing the downstream void by requesting material from the antecedent
workstation. To control information transfer, the operator requires both parts and an

authorization signal, a card, to work.

2.2.1The Mechanism

The Kanban system simulated here makes use of one inventory storage point and
requires only one card per station. The Kanban system developed at Toyota makes use
of a two-card system requiring a production card and a move card per station [see

HOP96, p.163]. Figure 2-3 illustrates the one-card Kanban system.

O Workstation [ Outbound Stockpoint I:' Standard Container I:‘ Kanban Card

Figure 2-3: The one-card Kanban system.



The operator finds a card in the hold box at workstatidr). He/she gets material
from the outbound stockpoint of the upstream workstdt{@p The card attached to
the material is removed and placed into the hold box of the upstream workstation (3).
The material enters the manufacturing process and the card in the hold box is attached
to the product placed in the outbound stockpoint (4). The operator at the upstream
workstationl finds the card in his/her holdbox and starts processing (5). The same
cycle is followed for the upstream machines until the raw material inventory is
reached [see Figure 2-2]. A Kanban system can be seen as a closed queuing network
with blocking. Jobs circulate around the network indefinitely. However, unlike the
CONWIP system [see 2.3.1], the Kanban system limits the number of entities per
workstation, since the number of production cards at a station establishes a maximum
WIP level for that station. Each production cards acts exactly like a space in a finite
buffer in front of the workstation. The upstream workstation is blocked when the
buffer is full [HOP96, p.325].

Berkley shows that a common model of a Kanban system is equivalent to a
traditional tandem production line with finite buffers. His model assumes that kanbans
travel instantly to their destinations when they are detached from a part, and that the
kanbans and parts travel in quantities of one [BER91]. Gstettner and Kuhn describe
and classify different Kanban systems. They analyze the system with respect to

production rate and average work in process [GST96].



2.2.2Characteristics

As the amount of material in the system is limited to the number of cards
assigned, there is a natural upper bound of material in process.

Due to the presence of the cards the involvement of the operators in controlling
the flow of material is enhanced. This involvement and active participation paired
with a proactive thinking enables continuous improvement not necessarily given for
the push systems.

A Kanban system suits a stable material flow best. The product mix should be
fairly stable and not too large as the cards are unique to certain products and
expensive in their introduction to a system.

Kanban is not useful in an environment with expensive items that are rarely
ordered, since it would require at least one of each kind of item to be in inventory at
all times.

The performance is very sensitive to the number of cards assigned to the system
and their specific allocation. Gstettner and Kuhn show that the distribution of cards
has a significant effect on the performance of Kanban systems. According to them,
the different types of Kanban control mechanisms show equivalent performance data,
if the distribution pattern is adapted accordingly [GST96].

In most Kanban systems the number of cards assigned to specific workstations is
fixed resulting in blockages or starvation. Blocking occurs when all the cards are
attached to full containers in the outbound stockpoint, while starvation occurs when at
least one production Kanban is in the hold box waiting for a container from the

upstream workstation while the machine at that station is idle. Gupta and Al-Turki
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have developed an algorithm to implement a flexible Kanban system adjusting the
number of cards to stochastic processing times and a variable demand environment
[GUPIT].

Mascolo et al. show that the performance of a multi-stage Kanban system can be
derived from evaluating a set of subsystems. The subsystems result from a
decomposition of the original line, where each set is being associated with a particular

stage. Numerical results show that the method is fairly accurate [MAS96].

2.3CONWIP
The CONWIP CONstantWork In Process) control system strives to maintain a
constant work in process. It was first introduced by Spearman et al. in 1990 and can

thus be classified as a very new control concept [SPE90].

2.3.1The Mechanism
CONWIP can be considered a special case of Kanban, where the entire line
constitutes one workstation. Departing jobs send production cards back to the

beginning of the line to authorize release of new jobs.



11

Raw Finished
Material Goods
[]-—» ol | ° ol ol
] ° o] o] .

2 !
B
Y
O Workstation :| Parts Buffer |:| Standard Container F‘ Card

Figure 2-4: A CONWIP production line.

The finished product is taken out of the inventory that is fed by workstaign
The production card is sent back to worksta#ioto authorize the release of a new
job (2). The operator at the upstream workstafidmds the card, gets the raw
material from the inventory and starts processing the unit (3). In a Kanban system,
each card is used to signal production of a specific part. CONWIP production cards
are assigned to the production line and are not part number specific. Part numbers are
assigned to the cards at the beginning of the production line. The numbers are
matched with the cards by referencing a backlog list. When work is needed for the
first process center in the production line [see Figure 2-4, (3)], the card is removed
from the queue and marked with the first part number in the backlog number for
which raw materials are present [SPE90].

Here, the following simplifying assumptions are made for CONWIP:
1. The production line consists of a single routing, along which all parts flow, and

2. WIP can be measured in units (i.e., number of jobs or parts in the line).
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Spearman and Hopp [HOP96, p.324] remark that a CONWIP system resembles a
closed queuing network, in which entities never leave the system, but instead circulate
around the network indefinitely. In reality, the entering jobs are different from the
departing jobs. Assuming that all jobs are identical, this difference does not matter for
modeling purposes. Gstettner and Kuhn mention that the model developed by
Spearman et al. [SPE90] can be refined and adapted to different production
environments as done by Duenyas and Hopp [DUE92] and Duenyas et al. [DUE93]
[GST96]. Huang and Wang show by means of simulation that the CONWIP
production control system is very efficient for the production and inventory control of

semi-continuous manufacturing, such as that found in a steel rolling plant [HUA97].

2.3.2Characteristics

As does Kanban, CONWIP controls the total amount of work in process in the
system. The WIP is limited to the number of cards assigned to the entire line instead
of to the individual machines.

If a machine fails in a CONWIP line, the amount of material downstream of it will
eventually be flushed out of the system by the demand process. These demand events
will cause the release of new entities to the system. If the machine fails for a long
period of time, these entities and the entities already in the system upstream of the
failed machine will accumulate in the buffer immediately upstream of the failed
machine. The release of the new jobs to the system stops once no more cards are

released from entities departing the system [BON97].
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There is no blocking in CONWIP lines since buffers are assumed big enough to
hold all parts that circulate in the line [GST96].

In CONWIP systems information about demand is sent directly from the last to
the first station. The entity goes through all the workstations in the line carrying the

information about necessary production.

2.4MRP

The promotion of material requirements planning (MRP) by the American
Production and Inventory Control Society (APICS) in 1972 boosted this production
control paradigm to the most prevalent system today. Only after the successes of JIT

and Kanban its dominant appearance in industry was questioned.

2.4.1The Mechanism

As can be derived from its name, MRP plans material requirements. It deals with
the two dimensions of production control: quantities and timing. The system must
determine appropriate production quantities of all types of items, from final products
that are sold, to components used to build final products, to inputs purchased as raw
materials. It must also determine production timing that facilitates meeting order due

dates.
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Figure 2-5: Simplified schematic of MRP.

The data from the bill of material (BOM) and the master production schedule
(MPS), as the source of demand for MRP, is processed in several steps to produce the
planned order releases and notices such as change notices and exception notices [see
Figure 2-5]. The BOM describes the relationship between end items and lower level
items while the MPS gives the quantity and due dates for all parts to obtain the gross
requirements. The schematic is presented to illustrate that all the information needed

for the entire manufacturing system originates from the MPS.
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Figure 2-6: A MRP production line.

The order is released at the raw material post (1) as planned with the help of the
MPS [see Figure 2-6]. As the entity is released independent of the amount of the
material in the buffer preceding Workstatianthe buffer size may not be limited to a
specific amount of entities. Mostly constraints are given by physical space on the
manufacturing floor. When workstatigxis finished with processing the entity, it
pushes it on to the next workstati@(2). This process continues downstream until
the entity departs the system at the finished goods post.

To be able to address the huge problem of coordinating thousands of orders with
hundreds of tools for thousands of end items made up of additional thousands of
components manufacturing resources planning (MRP 1) was developed [HOP96,
p.143]. It provides a general control structure that breaks the production control
problem into a hierarchy based on time scale and product aggregation, thus, primarily
taking the capacity of the manufacturing system into account. MRP Il brings together

many functions to generate a truly integrated manufacturing management system
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including demand management, forecasting, capacity planning, rough-cut capacity

planning, dispatching and input/output control.

2.4.2Characteristics

MRP provides a simple method for ordering materials based on needs, as
established by a master production schedule and bills of material. As such, it is well
suited for use in controlling the purchasing of components. However, in the control of
production MRP shows deficiencies [HOP96, p.143]. This is especially true for
manufacturing systems that require proper exploitation of capacity resources by
taking bottlenecks into consideration.

According to Spearman and Hopp the real reason for MRP’s inability to perform
well is the faulty underlying model. The key calculation is performed by using fixed
lead times to derive releases from due dates. These lead times are functions of the part
number only. They are not affected by the status of the plant. More importantly, the
lead times do not consider the loading of the manufacturing system. An MRP system
assumes that the time for a part to travel through the plant is the same whether the
plant is empty or overflowing with work, which is only true for infinite capacity.
Furthermore, to ensure the coordination of parts at assembly, there is a strong
incentive to increase the lead times to provide a buffer against unforeseen
obstructions. However, as inflating lead times introduces more material into the
system, it increases congestion and consequently the cycle times. Instead of delivering

on time, the products are delayed even more [HOP96, p.175].
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As quoted by the APICS literature, MRP’s bad performance in industry was
blamed on inaccurate data, including bills of material and inventory records. MRP

requires a high standard of data integrity to function properly [LAT81].

2.5Comparison of CONWIP with MRP

As mentioned previously [see 2.1], a push system controls throughput and
observes WIP, while a pull system controls WIP and observes throughput. WIP is
directly observable, while throughput can only be determined indirectly. The jobs on a
shopfloor can be physically counted and maintained according to the WIP cap. In
contrast, the release rate for MRP must be set with respect to capacity. If the rate is
chosen too high, the system will be congested with material resulting in high cost due
to insufficient throughput and high WIP. As estimating capacity is very difficult,
optimizing a push system is much more intricate [HOP96, p.325].

Concerning the efficiency, Spearman and Hopp state the following law:

For a given level of throughput, a push system will have more WIP on average than
an equivalent CONWIP system [HOP96, p.327].

The law is supported by a calculation for a simple example of a five machine
tandem line and exponentially distributed process times with mean one hour.

According to Spearman and Hopp MRP systems have more variable cycle times
than equivalent CONWIP systems [HOP96, p.327]. As the total amount of WIP in a
line is fixed, the WIP level at the individual stations are negatively correlated. As the
WIP level increases at one station, it decreases at all the other stations, which tends to

dampen the fluctuations in cycle time. In contrast, WIP levels at the individual
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stations are independent of one another for MRP. The WIP level at one station reveals
no information about the WIP levels at the other stations. The overall WIP level may
become extremely high or even low, resulting in great variability of the cycle times
that are directly dependent on the WIP level.

Spearman and Hopp state another law to express the robustness of the two
systems:
A CONWIP system is more robust to errors in WIP level than MRP is to errors in
release rate.

The law is verified with the help of a simple profit function dependent on the
throughput and the WIP level expressed in terms of percent error. The coefficients are
calculated from empirical data, revealing the functions given in Figure 2-7 [HOP96,

p.329].
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Figure 2-7 Relative robustness of CONWIP and MRP.

The profit function for CONWIP is very flat between WIP levels as low as 40%

and as high as 160% of the optimal level. The MRP function declines steadily when
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the release rate is chosen at a level below the optimum and falls off sharply when the

release rate is set even slightly above the optimum level.

2.6 Comparison of CONWIP with Kanban

Both CONWIP and Kanban are pull systems since new order releases are
triggered by external demand. As both systems control the WIP and limit the level by
an upper bound, they show similar performance relative to the push system, MRP.

Gstettner and Kuhn reveal in their comparisons between Kanban and CONWIP
that Kanban is more flexible with respect to a certain objective than CONWIP. Not
only does the absolute number of cards matter, but, the card distribution is another
parameter that influences performance. Selecting a favorable card distribution showed
that in a Kanban system a given production rate is reached with less WIP than in a
CONWIP system [GST96]. However, Spearman et al. point out that by allowing WIP
to collect in front of the bottleneck, CONWIP can function with lower WIP than
Kanban [SPE90].

As there is no blocking in CONWIP lines it can easily be understood that a
CONWIP system wittm cards will have a higher production rate than a Kanban
system withn cards [SPE92].

According to Spearman and Hopp the most obvious difference is that Kanban
requires setting more parameters than does CONWIP [HOP96, p.330]. In a one-card
system a card count must be established for every workstation, in a two-card system
twice as many. In a CONWIP system the amount of cards is set for the entire line,

which needs to be established only once. Coming up with the optimal card count
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requires a combination of analysis and continual adjustment, making it a great deal
easier to find the right configuration for the CONWIP system.

Cards are part number specific in a Kanban system and only line specific in a
CONWIP system. Instead of being matched to a specific part at the upstream
workstation, the cards are matched against a backlog [see 2.3.1], which gives the
sequence of parts to be introduced into the line. Thus, in its pure form, a Kanban
system must include standard containers of WIP for every active part number in the
line to which the cards can be matched. For a high number of parts, although only
occasionally produced, this implies a very high overall WIP level swamping the
manufacturing system [HOP96, p.330]. Gstettner and Kuhn elaborate on this
difference as well, neglecting special release mechanisms in the CONWIP system
which are based on a MPS [GST96]. In a paper Spearman et al. mention that although
the backlog affords the opportunity for control, it also provides a tremendous
challenge. The backlog sequence is the key to assuring adequate capacity when there
are significant setups and to optimizing synchronization of production of part
components [SPE90].

Hall points out, that Kanban is applicable only in repetitive manufacturing
environments [HAL83]. Spearman and Hopp explain repetitive manufacturing by
systems where material flows in fixed paths at steady rates [HOP96, p.331]. They
mention that large variations in either volume or product mix destroy this flow, at
least when parts are viewed individually, and hence seriously undermine Kanban. In
another publication Spearman et al. mention that the JIT environment provided by

CONWIP can accommodate a changing product mix as it is suitable for short runs of
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small lots. Furthermore, they find this environment to be more predictable than its
pendant provided by Kanban [SPE89]. A CONWIP system is more robust due to the
planning capability introduced by the process of generating a work backlog.

Spearman and Hopp mention prevalent employee issues differentiating CONWIP
and Kanban. The pull mechanism at every workstation results in great operator stress
as described by Klein [KLN89]. When the operator receives a card having to wait for
the material to start processing, the void has to be replenished as quickly as possible
upon arrival of this material. This is only true for the first workstation in a CONWIP
system. The other station function according to a push system where the operators are
subjected to less pacing stress [HOP96, pp.332-333].

The previous comparisons illustrate the advantages of CONWIP over MRP and
Kanban. Most fundamentally, the differences between the pull and the push systems
can be utilized as an advantage to building a manufacturing system that encompasses
the positive attributes of the different mechanisms. The result is an integration of the
systems to compensate for the weaknesses on both sides. According to Titone
integration of various functions into a total comprehensive manufacturing strategy
leads to world-class manufacturing and profits. Using MRP Il for planning and JIT for
the execution combines two powerful tools into an efficient manufacturing system
[TIT94]. Wang et al. introduce an experimental push/pull production planning and
control software system which is designed as an alternative to a MRP Il system for
mass manufacturing enterprises in China [WAN96].

Bonvik et al. compare a two-boundary hybrid system to conventional systems.

The system is a hybrid of basestock and Kanban control. Basestock control limits the
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amount of inventory between each production stage and the demand process. Each
machine tries to maintain a certain amount of material in its output buffer, subtracting
backlogged finished goods demand, if any [KIB88]. For the hybrid system demand
information is propagated directly as in basestock control and inventory at the
individual workstations is limited as in Kanban control. The hybrid control policy
demonstrated superior performance in achieving a high service level target with
minimal inventories [BON97].

The three control mechanisms were evaluated by means of simulation as the
analytical methods available serve as approximations limited to special cases not

applicable to more complex systems.



CHAPTER 3
SIMULATION
Simulation refers to a broad collection of methods and applications to mimic the
behavior of real systems, usually on a computer with appropriate software. Since
computers and software have evolved tremendously in recent time, simulation has
become very powerful and popular [KEL98, p.3]. Simulation, like most analysis
methods, involves systems and their models. A system is a facility or process, either
actual or planned. It is a collection of elements that cooperate to accomplish some
stated objectives. A model is a collection of symbols and ideas that approximately
represent the functional relationship of the elements in a system [BAI98, p.2]. The
system is studied to measure its performance, improve its operation or to determine an
optimal design. As sometimes the primary goal is to focus attention on understanding
how a system works, the results after the modeling process may become irrelevant.
Often, simulation analysts find that the process of defining how a system works,
which must be done before developing a model, provides great insight into the
mechanisms of the system.
From a practical viewpoint, simulation is the process of designing and creating a
computerized model of a real or proposed system for the purpose of conducting
numerical experiments to improve the understanding of the behavior of that system

for a given set of conditions [KEL98, p.7].

23
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Here, the purpose of the simulation was to evaluate the behavior of the system
under different sets of conditions by using the models to carry out groups of
experiments. The simulations primarily provided estimates of the statistics of system
performance. The systems, Kanban, CONWIP, and MRP, were modeled by a ten
identical machine tandem line and exponential distributed process time with mean 20
seconds. Indeed, the modeling process gave great insight into the mechanisms of the
systems creating a feeling for their behavior.

Yavuz and Satir reviewed selected published research on Kanban-based
operational planning and control in assembly and flow lines. Their article focuses on
simulation models and distinguishes between explorative and comparative type
research. Operational and experimental design features are summarized in tabular

format giving a good overview of work done in this area [YAV95].

3.1 The Software

Two simulation tools were used to conduct the experiments: EFML and Arena.

3.1.1EFML

The Emulated Flexible Manufacturing Laboratory (EFML) was developed in the
Department of Industrial & Systems Engineering at the University of Florida. The
originating concept was to develop a hands-on environment where students and

companies could test and study manufacturing operations in a factory setting, giving
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students and managers the ability to test the performance of a manufacturing facility,
which could be distributed over several computers.

The EFML is composed of a network of personal computers linked together
through the Virtual Manufacturing Software, which enables the communication of the
computers via the TCP/IP protocol and the internet. The software is written with
Borland’s Delphi Developers Toolkit based on an object oriented architecture. The
objects machine, dispatch/raw material inventory storage, repair and maintenance
facility, transportation, assembly line, and finished goods inventory storage can be
assigned to different computers to construct a complete factory. The object

architecture is illustrated in

Figure3-1
Supervisor
Object
Factory
Object
Dispatch Object/ Products Object/ Transport Machine/Assembly
Raw Material Finished Goods Objects Objects
Object Inventory

Repair
Objects

Figure 3-1: The object architecture for the EFML.
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As the dispatch object releases material to the shop floor, based on predetermined
release times, the behavior of each factory component can be observed in real time.
According to Mijon the advantage of the EFML over traditional simulation software
is the visual interface providing meaningful output. This output lets the viewer see
where the problem is arising and potentially the reason for its occurrence [MIJ97, p.

3].

The EFML is an evolving system which is continuously improved, adding more

features to increase the realism of the system and to enhance user friendliness even at

the time of writing this thesis.

3.1.2Arena

Arena combines the ease of use found in high-level simulators with the flexibility
of simulation languages down to general-purpose procedural languages like the
Microsoft Visual Basic programming system, FORTRAN, or C. It does this by
providing alternative and interchangeable templates of graphical simulation modeling-
and-analysis models that one can combine to build a fairly wide variety of simulation
models. For ease of display and organization, modules are typically grouped into
panels to compose a template. By switching templates one can gain access to a whole
different set of simulation modeling constructs and capabilities. In many cases,
modules from different panels and templates can be mixed together in the same
model. The modules in Arena templates are composed of SIMAN components. Arena
maintains its modeling flexibility by being fully hierarchical, as depicted in Figure

3-2.
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User-Created Templates
Commonly used constructs.
Company-specific processes.
Company-specific templates.
Etc.

high

Application Solution Templates
Call$im

BP$im

Etc.

Vertical Solutions

Common Panel

Many common modeling constructs.
Very accessible, easy to use.
Reasonable flexibility.

Level of Modeling

Support, Transfer Panels
Access to more detailed modeling for greater flexibility.

Arena Templates

Blocks, Elements Panels
All the flexibility of the SIMAN simulation language.

SIMAN Template

User-Written Visual Basic, C/C++, FORTRAN code
The ultimate in flexibility.
C/C++/FORTRAN requires compiler.

low

Figure 3-2: Arena’s hierarchical Structure.

Arena includes dynamic animation in the same work environment. It also provides
integrated support, including graphics, for some of the statistical design and analysis
issues that are part of a good simulation study [KEL98, p.13].

The models for Kanban, CONWIP, and MRP were created with the Blocks and
Elements Panels to utilize all the flexibility of the SIMAN simulation language.

EFML and Arena served as the framework for the simulation study, which is

introduced next.
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3.2The Simulation Study

Issues related to design and analysis and representing the model in the software
certainly are essential to a successful simulation study. However, there are more
aspects that should be taken into consideration. Following the flowchart in Figure 3-3

should improve the chances of conducting a successful study.
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Identify Problem

v

State Objectives

v

Collect/Prepare Data

;

Verify Model

v

Validate Model

No

Is the
model correct?

Modify/Refine Model

Experiment Design

v

Simulation Execution

v

Output Analysis and Interpretation

v

Conclusions and Implementation

Figure 3-3: Flowchart of a simulation study.

The simulation study does not necessarily have to exactly follow the given
flowchart, there is no general formula to guarantee success. It rather gives a rough
path to follow. Here, the identification of a problem can be omitted directly

proceeding to the second step, stating the objective.
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3.2.1State Objective

The objective is to compare the performance of the three manufacturing control
systems: Kanban, CONWIP, and MRP. The comparison should involve three main
parameters influencing the performance of a manufacturing system:

» Batch size,
e Setup time, and
* Machine failure.

To observe the influence of the individual parameters without any blurring
interaction between one another, the central parameter of this study, batch size, is
introduced first. The complexity of the models is increased steadily by adding setup
time and failure in two further steps. This process allows to build new investigations
on the knowledge gained during prior steps improving the realism with the increasing
number of parameters.

After determining the objective of this study, the focus had to be directed on the

input data.

3.2.2Collect/Prepare Data

The data is produced by the random number generator provided by the software
packages. The Arena random number generator was tested by applying the chi-square
test of uniformity to the numbers generated. The null hypothesis of uniformity was

not rejected at levat = 0.10 revealing that the numbers generated didn’t behave in a
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way significantly different from the expectations for truly independent and identically
distributed random variables [BAI98, p.60]. Similar behavior was expected from
EFML. As previously mentioned, the exponential distribution function was chosen as
the input distribution function. This distribution function is commonly used for
simulations on manufacturing systems as it has the remarkable memoryless property,
where the past history of a random variable, that is distributed exponentially, plays no
role in predicting its future [KLE75, p. 66]. Unlike most other probability

distributions, the shape of the exponential distribution is governed by a single
quantity. Further, it is a distribution with the property that its mean equals its standard

deviation [MCC94, p.250].

3.2.3Formulate Models

The models of the systems were built according to the descriptions previously
given. Figures 1-3, 1-4, and 1-6 depict the graphical models of Kanban, CONWIP,
and MRP respectively. For each control system 4 models were created to enable
simulations on the 4 levels including the following parameters:

» Batch size,

e Batch size and setup time,

» Batch size, setup time, and failure (dynamic response), and
» Batch size, setup time, and failure (in steady state).

A few assumptions were made to simplify the simulation process, unfortunately
resulting in a less realistic system. The most important assumptions were the

following:
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 The 10 stages are in series, i.e., each stage has only one supplier and one
consumer,

» There is an infinite supply of raw parts at the input of the production system,

* The systems are saturated, there are always demands for finished parts,

* Information is transmitted instantly,

« Transportation within and between workstations is instantaneous,

* The system produces a single part type,

» Kanbans are associated with batches and not with individual entities, and

* Any kanban detached at the output of a stage is immediately available for the
upstream stage, there is no return delay.

More assumptions may result implicitly from those given above.

3.2.4Verification of the Models

The three basic models were verified with the EFML output. EFML was verified
formally. However, the output data has not been verified before with another
simulation software, therefore making this verification process an especially
interesting task.

For both Kanban and CONWIP 25 replications were run on Arena and EFML. For
MRP 30 replications were carried out. The configurations are given in Table 3-1. The

interarrival time corresponds to batch interarrival times.
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Table 3-1: Configuration for Kanban, CONWIP, and MRP to verify correctness of the
models.

Control System  Process Time  Batch Size  Number of Cards Interarrival Time

Kanban 20 4 20 -
CONWIP 20 4 20 -
MRP 20 5 - 105

A paired t-test [see 4.2.3] was performed on the output data to test the following
hypothesis:
H,: True mean of average cycle time differences is equal to 0, and
H.: True mean of average cycle time differences is not equal to 0,
to calculate the 95% confidence interval. The statistics are given in Table 3-2.

Table 3-2: Statistics on t-test to verify concurrence of output between EFML and
Arena for Kanban, CONWIP, and MRP.

System t-value df p-value Interval Estimate of Average
mean of diff.  Cycle Time

Kanban  0.4048 24 0.6892 (-3.6486; 5.4292) 0.8903 1608.517
CONWIP 0.2335 24 0.8174 (-2.2046; 2.7671) 0.2812 1848.7355
MRP -0.164 29 0.8709 (-115.2965; 98.1806) -8.5580 4166.046

All of the intervals include the value 0 resulting in the failure of rejecting the null
hypothesis. The 95% confidence intervals indicate a small deviation of the average
cycle times for Kanban and CONWIP.

For MRP the interval calculated is considerably bigger, even evaluated relative to
the average cycle time. Here CONWIP presents a very small deviation. The reason for
the strong deviation of MRP is the varying average cycle time, even after a big
amount of entities have passed through the system. The half-width for the confidence

interval indicated [see Table 8-4], that 10,000 entities would result in an accurate
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estimation of the cycle time. Although Figure 3-4 reveals that the average cycle time

for 10,000 entities produced has approached a fairly stable value, it is still varying for

bigger numbers.
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Figure 3-4: The cycle time per entity and the cumulative average cycle time
dependent on the number of processed entities for MRP with Arena.

Even after 20,000 entities processed the average is moving, indicating that the
random generator has an influence on the output for Arena. The same behavior is
expected for EFML, as both simulation tools don’t generate true random numbers.
This fact could explain great deviations even for a high number of replications
completed [see Figure 3-6].

To get an impression of how the systems would behave for different
configurations, more simulations were run for varying batch size (1, 2, 4, 8, and 10)

and number of cards (10, 15, 18, 10, and 22) or length of interarrival time (22 — 645).
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The difference was measured as the percentage deviation in average cycle time,

At

cycle*

EFML _ t— Arena
Af — 100 cycle cycle

cycle = EFML !
tcycle

wheref . is the average cycle time for EFML aff;* is the average cycle time

le

for Arena.

As not enough replications were run to evaluate the output data statistically, scatter

diagrams were constructed to visualize the results.
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Figure 3-5: The deviation of the average cycle time between EFML and Arena for
different configurations for CONWIP.
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Figure 3-6: The deviation of the average cycle time between EFML and Arena for
different configurations for Kanban.
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Figure 3-7: The deviation of the average cycle time between EFML and Arena for
different configurations for MRP.

Figures 2-5, 2-6, and 2-7 indicate a fairly random output. The shift of data points
for Kanban [see Figure 3-6] can probably not be associated to a software error, as the

points lie above (batch size eight) and below (batch size four) the x-axis. The
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calculations done earlier reveal no significant difference between the outputs for batch
size four and 20 cards assigned. Faulty input data would probably result in a bigger

difference than 2%. The shift may again be attributed to the random generators.

3.2.5Validation

The models under consideration were representing systems existing in theory
only. Too many parameters were omitted to enable the simulation of a real system,
making validation impossible. Yavuz and Satir mention, that the modeling of real-life
manufacturing environment and usage of empirical data would provide a practical
means of validation for the simulation models developed. The validation was missing
in most of the articles reviewed. Validation would unravel intricacies of

manufacturing that are demystified through mostly gross assumptions [YAV95].

3.2.6Simulation Experiment D esign

Experiments are performed by investigators in virtually all fields of inquiry,
usually to discover something about a particular process or system. Literally, an
experiment is a test. A designed experiment is a test or series of tests in which
purposeful changes are made to the input variables of a process or system to observe
and identify the reasons for changes in the output response [MON91, p.1].

The progression of choice of factors and levels included in the experiments is
discussed at the beginning of the chapters covering the different stages of simulation:

* batch size,
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* batch size and setup time,
* and batch size, setup time and failure.
The discussions comprise the following factors, henceforth called system parameters:

» Total number of cards assigned to the entire trjsee 5.1.3],

Batch sizeb [see 5.1.2],

« The ratio of setup time to process tinng[see 6.1.1],

Time between failures (interfailure timd),,,, [see 7.1], and

Repair durationt _ .. [see 7.1].

repair
The levels were determined according to practical applicability, primarily
concerning average machine utilization. First, a high and a low level per factor was
established. Then, the interval [low, high] was divided into segments with a certain
amount of intermediate levels. As the average run time of one replication was
approximately two minutes, the amount of levels was held high, mostly equal to ten.
The total cost could be selected as the primary response variable as the cost affects
the basic goal of a company: making profit. The optimization of manufacturing
resources can reduce costs considerably resulting in a higher profit margin or even a
higher revenue as other market segments are conquered, in turn increasing the overall
market share. This elevates cost to one of the most important indicators if not the most
important indicator for the efficiency of a manufacturing system.
One characteristic makes cost even more useful. It can serve as an overall
indicator, that takes different aspects into consideration, consolidating all the
indicators. However, when several indicators are accumulated to be represented by

one quantifier, the question, how to weigh the individual components, arises. The
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weights are most diverging for different industries. Even within one industry, they
may differ considerably, representing the company’s unique environment.

A wide variety of functions is available enabling a controller to construct a model
perfectly fitting the needs. Unfortunately, often weights contain error terms and other
parameters that are determined by subjective estimation, making a cost analysis at this
point questionable.

Constructing functions for different scenarios would certainly give more insight
into the problem [AFY98]. But, the gain in investigating other factors was classified
as more important. Furthermore, the regression models can be transformed into cost
functions without greater effort. The construction of more complex models would
certainly be an interesting topic for another thesis that would probably be most
rewarding when written in cooperation with industry.

Consequently, the performance measures were selected as the response variables.
The control systems were evaluated on several criteria utilizing the following

performance indicators:

Work in processWIP,
* Throughput,Th,
» Average utilization [see 5.2.1],

» Average cycle timet

cycle?

 Time spent in the system (analysis of dynamic respohgg), [see 7.2.1
Indicators, Time Spent in System], and

* Recovery time (analysis of dynamic responsg), ., [see 7.2.1 Indicators,

Recovery Time].
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The relationship,

Th:wl

cycle

is known as Little’s Law and is often referred to in manufacturing literature, being

originally derived for a basic queuing system. It was found to be independent upon
any specific assumptions regarding the arrival distribution, the service time
distribution, the number of servers in the system or upon the particular queuing
discipline within the system [KLE75, p. 17]. The formula existed as a “folk theorem”
for many years before Little established its validity in a formal way [LIT61]. The
formula is a useful tool as it can be used to calculate the third unknown indicator
when two indicators are known, independent of system configurations.

The three basic principles of experimental design,

1. randomization,

2. blocking, and

3. replication

were taken into consideration in the following manner:

1. As the system variables and statistics were reinitiated after every replication and
the random number generators were assumed to produce numbers confidently,
behaving like numbers following a true random distribution, the order of the runs
was not randomized.

2. The simulation software and the computer hardware provided an identical
environment for every experiment performed, making experiment blocking

[MON91, p. 9], unnecessary.
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3. As most of the simulations were performed for non-terminating systems [see
3.2.7] a large number of entities was produced rather than completing several
replications of the same configuration [see 4.2.2]. Only the analysis done on the
dynamic behavior to failure involved a terminating system [see 4.2.1]. Here, the
number of replications was established prior to the bulk of experiments [see

8.4.1].

3.2.7Simulation Execution

Depending on the starting and stopping conditions, terminating or non-terminating
simulations can be executed as a natural reflection of how the target system actually
operates. The terminating simulation ends according to some model-specific rule or
condition. For instance, a manufacturing line operates as long as it takes to produce
500 completed assemblies specified by order. According to Kelton et al. the key
notion is that the time frame of the simulation has a well-defined and natural end, as
well as a clearly defined way to start up. A steady-state of non-terminating simulation,
on the other hand, is one in which the quantities to be estimated are defined in the
long run, i.e., over a theoretically infinite time frame [KEL98, p. 177]. For a
manufacturing line that never stops or restarts, a non-terminating simulation is
appropriate.

After initial reflections on parameter settings and several model modifications,
preliminary calculations of the confidence intervals [see 4.2 and CHAPTER 8] were
conducted. These computations were done to ensure high accuracy on the estimation

of the performance indicators. After the completion of the simulations on each of the
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levels, the confidence on the indicators was reevaluated. All the calculations carried
out on the confidence were aggregated and documented in a separate chapter not to

disrupt the analysis of the data.

3.2.80utput Analysis and Interpretation of the Results

The output analysis and interpretation forms the major part of this documentation.
Since simulation was the modeling tool in question, statistical output analyses were
considered in a comprehensive manner. Yavuz and Satir, and Chu and Shih found

these issues to be treated rather lightly in many studies reviewed [YAV95] [CHU92].

3.2.9Conclusions and Implementation

At the end of the three chapters encompassing the discussions on the stepwise
introduction of batch size, setup time, and machine failure the conclusions drawn
from prior investigations are presented. Conclusions presented within the chapters, are
clearly marked by a heading.

Unfortunately, a few additional factors have to be taken into consideration to
enable simulations of an authentic manufacturing line. However, some findings may
be translated into implementations able to improve productivity and efficiency of a
real production system.

Before proceeding to the actual discussions of the simulations, a fairly
comprehensive but short theoretical background on the statistical analysis methods

used is given in the next chapter. The summary of the statistical theory in one chapter
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can serve as a review for some readers, but should primarily serve as the source of
reference making explanations within the chapters redundant. Thus, several

clarifications are reduced to one only, and the obstruction of narration is eliminated.



CHAPTER 4
STATISTICS
A simulation is a computer-based statistical sampling experiment [BAI98, p.97].

The results of a simulation have to be analyzed with the appropriate statistical
techniques to reveal their full potential. Statistics cannot prove that a factor has a
particular effect. They only provide guidelines as to the reliability and validity of
results. Properly applied, statistical methods do not allow anything to be proved
experimentally, but, they do allow us to measure the likely error in a conclusion or to
attach a level of confidence to a statement. Thus, the primary advantage of statistical
methods is that they add objectivity to the decision-making process. Unfortunately,
the output processes of virtually all simulations are non-stationary and auto-
correlated. Thus, classical statistical techniques based on identical independent
distributed (1ID) observations may not be directly applicable. Sometimes, special
techniques have to be applied to ensure the statistical independence of the output data.

Let X, X,,..-,%,, D€ a realization of the random variablkég X,,...,X . resulting
from a simulation run ofn replications using the random numbegsu,, . lf.the
simulation is run with different sets of random numbeysu,, , a.different
realizationx,,, X,,,...,X,,, Of the random variableX,, X,,...,X , will be obtained. For

different runs of a simulation, different random numbers are used for each replication.

44
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The statistical counters are reset at the beginning of each replication, which uses the
same initial conditions. Suppose that we makedependent runs of length,

resulting in the observations:

The observations from a particular replication (row) are not IID due to the nature

of the random generators. However, the observations ithtiselumn are 11D

observations of the random variab¥e, i=1, 2, ...,m. This independence across runs

allows the statistical methods discussed below to be used. The goal it to make use of

the observations to draw inferences about the random varixbles,,..., X, the

parameters influencing the performance of the different control systems [BAI98,

p.98].

4.1 Transient and Steady-State Behavior
For the output stochastic process X, let.
F (1) =P(X; =xI),i=1, 2, ...,
wherex is a real number an | represents the initial conditiEn@<|I )is called the
transient distribution of the output process at tirffa initial conditionsl.
For fixedx andl, the probabilitiesF, (X1 ), F,(X1),...are just a sequence of numbers.

If F (x1) 0T - F(x)for all x and all initial conditions, thenF(x) is called the
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steady-state distribution of the output proc&ssX, . Here, if the distributions are
approximately the same aftesteps in time, then steady-state is said to start atttime
However, steady-state does not mean the random varixlesX,,, will take on

the same value in a particular simulation run. It means that they will have
approximately the same distribution [BAI98, p.98].
As mentioned earlier, statistics can not prove the correctness of a certain

statement. Instead, they allow statements to be made with a certain confidence.

4.2 Confidence

The statistical analysis methods differ according to whether simulations are

terminating or non-terminating [see 3.2.7].

4.2.1Analysis for Terminating Simulations

The data set is given byndependent replications of a terminating simulation.

Each replication is initiated with the same conditions and a different random generator

seed and terminated by a certain event. Thus, independence of the observations is

achieved by a different string of random numbers.

LetX be the observation of thth replicationj=1, 2, ...,n. It is assumed that the
X;'s are comparable for different replications. Consequently teecan be defined
as identical independently distributed random variables.

For n data poinf&;, X, ..., X, the sample mean is an unbiased point estimator for

the mean of X represented by the following formula:



a7

where §(n) is the sample variance given by

2

S [x. - X(n)
)_;[ |

s’(n)=

( n-1

with n-1 degrees of freedom.

Let h be the half-width of the confidence interval of the point estimate,

)

h=t ..,
n-11-a/2 n

To ensure the desired accuracy of the estimation,
h<yX(n),
wherey is a given parameter, Oy< 1, herey= 0.1 by default.

After an initial simulation witim replications this condition may not be satisfied.
Additional n,replications have to be run to reduce the initial half-widtb the
desired half-width, [BAI9S, p.103]

For moderately largg the sample statistics will remain relatively unchanged

with respect ta, thus,

tnl—l,l—a 12~ th -11-al21

s’(n)=s*(n,),



48

X(n,)=X(n,)

Consequently,

4.2.2Analysis for Non-Terminating Simulations

LetY:, Y., ... be an output string from a single replication of a non-terminating
simulation.P(Y, < y)=F (y)O'mr - P(Y < y)=F(y),
whereY is the steady state random variable with distribuioBue to the initial
conditions, the observations near the beginning of the simulation usually are not

representative of the steady-state behavior. For given observétiovs ..., Y,the

following formula gives a good point estimatekdiy)

3

Y,

Y(ml)= i:n+i| ,

wherel stands for the warm-up period amdor the number of observatiolsandm
are determined such that
Y(m1)=E(Y).
The Method of Batch Means is applied to ensure the accurate calculation of a
point estimate for non-terminating systems.
A replication results in observatiovis, Y,, ..., ¥, after removing the warm-up

periodl. Them observations are divided intobatches of lengthk, thus,m=nk Let

Y, (k) be the sample mean of tkebservations in thigh batch. Let
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n m

\ JZVj(k)

Y(n,k)= -

Y
1=1
m

be the grand sample mean. ThE(n,k) can be used as the estimate poin&ipf)

The batch sizkecan be determined by a correlation analysis.set equal to the

lag length resulting in a minimal correlation of the data. Should
m

n=—
k

be non-integer, the excess amount of data,

_ _mmQg
TTEE

can be truncated.

4.2 .3Paired-t Confidence Interval

The following assumptions have to be made:
1. Each system provides an equal amount of data (n replications),
2. Observations are independent within the systems.

The following descriptions will refer to the two systems as System A and System
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Table 4-1: For the paired-t test, comparing two systems is reduced to estimating a
single parameter, the difference.

Replication System A System B Difference
1 Xa1 Xo1 y
2 Xa2 X2 d;
n Xgn an dn

The confidence interval on the quanfyvhich is the expected value adfwill
enable a comparison between the two systems. Thus, the problem of comparing two
systems is reduced to estimating a single parameter, ndnied¢ Table 4-1]. The
resulting confidence interval is referred to gmaed-t confidence interval

This method is particularly appealing as the following assumptions can be
omitted:
1. Variance ofx, = variance ok, (assumption for the two-sample-t method),
2. Xyandx,are independent.

The confidence interval requirggsandx,, to be independent, but correlations
across rows are permitted. The procedure for computing the confidence intedval on

is exactly the same as for the single-system case:
_ d
d=y —,

20

s(d)= ZM , and

n-1

s(d_):ﬂ

=
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The half-width for a (1) confidence interval o centered atl is then given by
h= tn—l,l—GIZS(a) :

The statistia is an estimate of the difference in the measured performance of the

two systems: if the two systems perform identically, the expected valliégsdd. If

the computed confidence interval contains 0, a difference between System A and
System B can not be reliably stated. However, if the interval does not contain a 0, a
difference between the two systems can be stated with the appropriate confidence

level. If the confidence interval does not contain 0, the two systems differ and the

appropriate system can be selected based on the sign of

The authors elaborate on the fact, that if the interval on the difference between the
systems contains 0, the two systems are not necessarily the same. Additional
replications may be required to discern any difference [PEG95, pp. 177].

Another powerful tool to analyze data is regression. As regression describes
statistical relations between variables, it also enables estimation and prediction of data

points.

4.3 Multiple Regression
A regression model is a formal means of expressing the two essential ingredients
of a statistical relation:
1. Atendency of the dependent variable to vary with the independent variable in a
systematic fashion, and

2. A scattering of points around the curve of statistical relationship [NET90, p. 27].
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Probabilistic models that include terms involviAgx (or higher-order terms), or
more than one independent variable are called multiple regression models. The
general form of these models is
Y=Bo+BiX +BoXy +.t fiX HE.

The dependent variables written as a function of k independent
variables«, X,,...,X,. X;,%,,...,X, can be functions of variables as long as the
functions do not contain unknown parameté&he random error terng, is added to
make the model probabilistic rather than deterministic. The value of the coefficient
determines the contribution of the independent varigbdedf3is the y-intercept.

The coefficients3, B, ..., B are usually unknown because they represent population
parameters

Y=L+ B X +B,X% +...+ B X + £

Randomerro

Determinigic partof model
The Least Squares Approach is used to fit the multiple regression models. The

estimated model
V=B + B+t L%,
minimizes
SSE= S (y-9)*,
whereSSEstands for the sum of square errors.
The sample estimatqég,[il,...,ﬁk are obtained as a solution to a set of

simultaneous linear equations.
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Model Assumptions:

1. For any given set of values xf x,, ..., %, the random errag has a normal
probability distribution with mean equal to 0 and variance equad.to

2. The random errors are independent in a probabilistic sense [MCC94, p.744].
o’ represents the variance of the random e&drhus it is an important measure

of the usefulness of the model for the estimation of the mean and the prediction of

actual values of. If o® = 0, all the random errors will equal 0 and the predicted

values, ¥, will be identical tcE(y), that is,E(y) will be estimated without error. On
the other hand a large valueasfimplies large values afand larger deviations

between the predicted valuep, and the mean valuE(y). Thus,o® plays a major

role in making inferences abof 3, ..., 3. in estimatindg=(y), and in predicting for
specific values ok, %, ..., %..
Since the variance of the random error will rarely be known, the results of the

regression analysis are used to estimate its value with the following formula

2 _ E(yi_yi)z

T n-(k+))
(k+1) indicating the number ¢ parameters. This will be referred to as the mean

square for error (MSE). To enable a meaningful interpretation, the standard deviation

s is introduced as a measure of variability

_ E (yi _9i)2

| n-(k+D
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4.3.1Estimating and Testing Hy potheses about th@ Parameters

Some of th@ parameters have practical significance in the models formulated in
the following chapters. Thus, their values will be estimated and hypotheses will be
tested about them. Considering the model
y =B+ Bx+ X" +e
the following hypothesis could be performed using a t-test:
null hypothesid, : 8,= 0 (No curvature in the response curve.)
against the
alternative hypothesid, : 3,< 0 (Concavity exists in the response curve.).

The t-test utilizes a test statistic analogous to that used to make inferences about

the slope of the straight-line regression model. The t statistic is formed by dividing the

sample estimatqéz of the paramete|3, by the estimated standard deviation of the

sampling distribution otéz, S; -

5

S,

Test statistict =

For relevant estimated model coefficiqﬁi}tﬂshe estimated standard deviation
S; and the calculatetdvalues will be given. To find the rejection region for the test
the upper-tail value for t is retrieved from thable. This is a,tsuch thaP(-t < -t,)

= a. This value can then be used to construct rejection regions for either one-tailed

[see Figure 4-1] or two-tailed tests.
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a=0.05

N

> t, t
Rejection Area

Figure 4-1: Rejection region for a test®f

The numbers given in the following chapters list the two-tailed significance levels
for eacht value. The null hypothesis, that the parameter equals to zero, would be
rejected in favor of the alternative hypothesis, that the parameter does not equal to

zero, at any level larger than the given number. A 10@(26 confidence interval

for a3 parameter is given by

A

B £t,,,S

al2 é.
where {,is based om-(k+1) degrees of freedom and n observations knt) 3

parameters in the model [MCC94, p.746].

4.3.2Usefulness of a ModelR? and the Analysis of VarianceF-Test

Conducting-tests on eac8 parameter in a model is not a good way to determine
whether a model is contributing information for the predictiog. 8 hen conducting
a series of-tests to determine whether the independent variables are contributing to
the predictive relationship, it is most likely that an error would be made in deciding
which terms to retain in the model and which to exclude. This may result in including

a large number of insignificant variables and excluding some useful ones. Thus, a
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global test that encompasses all fiyigarameters is needed. Furthermore, it would be
useful to find a statistical quantity that measures how well the model fits the given
data. As this statistical quanti®? , the multiple coefficient of determination, can be

used to calculate the F valu. will be introduced first.

4.3.3Multiple Coefficient of D etermination, R?
As the name multiple coefficient of determination indica®ess the equivalent
of r%, the coefficient of determination for the straight-line model [see MCC94, p. 697].

It is defined as the following

R? =1- > (y=9)° _ Explainedvariabiliy
> (y-y)° Total variablity

where ¥ is the predicted value gffor the modelR? represents the fraction of the

sample variation of the values that is explained by the least squares prediction
equation R = 0 implies a complete lack of fit of the model to the dataRéne 1
implies a perfect fit with the model passing through every data point. Thus, the larger

the value of, the better the model fits the data [MCC94, p. 759].

4.3.4Variance F-Test

The following test would formally test the global usefulness of the model:
Ho: Bi=B=..=5=0
(Al model terms are unimportant for predicting,

H. : At least one of the coefficienfis nonzero
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(At least one model term is useful for predicting
The test statistic used to test this hypothesis kssatistic, which can be

calculated with the following formula:

_ R?/k
1-R)/[n-(k+1)]

wheren is the sample size akds the number of terms in the model. The formula
indicates that th€ statistic is the ratio of the explained variability divided by the
model degrees of freedom to the unexplained variability divided by the error degrees
of freedom. The larger the proportion of the total variability accounted for by the
model, the larger thE statistic.

To determine when the ratio becomes large enough that the null hypothesis can be
rejected and the model is more useful than no model at all for predicthneg
calculated F value is compared to a tabitedhalue:

Rejection region: F > F,, whereF is based on k numerator angk+1)
denominator degrees of freedom.

McClave et al. caution the reader that a rejection of the null hypothesis leads to
the conclusion, with 100(&3% confidence, that the model is useful. However, useful
does not necessarily mean best. Another model may prove even more useful in terms
of providing more reliable estimates and predictions. Thus, this global F-test is
usually regarded as a test that the model must pass to merit further consideration

[MCC94, p.762]. It will only be used in this sense in the following chapters.
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4.3.5Comparison of two or more Regression Functions

Instead of fitting separate regressions for separate data sets, only one regression is
fitted. This regression gives rise to the same response functions otherwise obtained.
This has the following advantages:

1. Inferences can be made more precisely by working with one regression model
containing indicator variables since more degrees of freedom will then be
associated with the mean standard eMSE[NET0, p.355],

2. One regression run on the computer will yield both fitted regressions, and

3. Tests for comparing the regression functions for the different classes of the
qualitative variable can be clearly seen to be tests of regression coefficients in a
general linear model [NET90, p.358].

Here the data sets of the different control systems are accumulated to produce one
data set. Indicator variables (or binary variables) that take on the values 0 and 1 are
used to quantitatively identify the classes of the qualitative variables distinguishing
the control systems. To prevent computational difficulties a qualitative variable with ¢
classes will be represented layl( indicator variables [see NET90, p.351].

Assuming that a first order model is to be employed it would give rise to the
following function:

Y=Bo+ Bt Bl tE

where

X, = independent variable, and

| _ [ controlsysend
! %) controlsysem’
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The response function of this regression model is:
E(y)= B, + B, + By,
which can be interpreted as:
E(y)= (B, + B.)+ Bix,
for the control system 1, and as:
E(y)= B, + B
for the control system 2. Thu8, measures the differential effect of the type of
control system. It shows how much higher (lower) the mean response line is for the
class coded 1 than the line for the class coded 0O, for any given level of x

This approach is completely general. If three control systems are to be compared,
additional variables are simply added to the model. Furthermore, the differentiation is
not only limited to the y-intercept, but can be introduced to distinguish gradients or
coefficients of variables with higher order.

However, the following assumption has to be made:
The error term variances in the regression models for the different populations are

equal, otherwise transformations may be used to approximately equalize them.

4 .3.6Transformation

Simple transformations of either the dependent vanatie¢he independent
variablex, or of both, are often sufficient to make the simple regression model
appropriate for the transformed data. Unequal error variances and non-normality of

the error terms frequently appear together. To reduce the departure from a simple
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linear regression model a transformationyas needed, since the shapes and spreads
of the distributions of need to be changed. Such a transformatioproay help to
linearize a curvilinear regression relation at the same time. At other times, a
simultaneous transformation on x may also be needed to obtain or maintain a linear
regression relation. However, it is very unlikely that such a transformation will be
needed in the following chapters.

Box and Cox [COX58] have developed a procedure for choosing a transformation
from the family of power transformations gnThis procedure is useful for correcting

unequal error variances. The family of power transformations is of the form:

wherey is a parameter to be determined from the data. The family encompasses the
following and widely used transformation:
y' =log.y.
The criterion for determining the appropriate parametéthe transformation of
y in the Box-Cox approach is to find the valueydhat minimizes the error sum of

squaresSSEfor a liner regression based on that transformation.

4.3.7Residual Analysis

When regression analysis is applied deviations from the initial assumptions may
result in incorrect reliabilities stated. The departures have to be detected and taken
into account should they be big enough to alter the results. Fortunately, experience

has shown that least squares regression analysis produces reliable statistical tests,
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confidence intervals, and prediction intervals as long as the departures from the
assumptions are not too great [MCC94, p.784].

As the assumptions [see 3.2.3] concern the random error comnioéthe
model, a first step is to estimate the random error. Since the actual random error
associated with a particular valueyak the difference between the actyablue and
its unknown mean, the error is estimated by the difference between theyactiued

and the estimated mean. This estimated error is called the regression residual, denoted

A

by €.

£ = actual random error
= (actual y value) — (mean gf
=y-E(y)
= Y= (Bo *+ By + BoXe +..+ BX,)

£ = estimated random error (residual)

= (actual y value) — (estimated mearypf

=y-y

y- (Bo + [’jlxl + :ézxz Tt kak)'

As the true mean gf(i.e., the true regression model) is not known, the actual
random error can not be calculated. However, because the residual is based on the
estimated mean (the least squares regression model), it can be calculated and used to
estimate the random error and to check the regression assumptions. These checks are

generally referred to as residual analyses [MCC94, p.784].
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4 .3.8Influential Observations

When using regression, some subset of the observations may be found to be
unusually influential. Sometimes these influential observations are relatively far away
from the vicinity of the rest of the data. Dennis R. Cook developed an excellent
diagnostic, the Cook’s distance. This is a measure of the squared distance between the

usual least squares estimatg3dfased on alh observations and the estimate obtained
when thath point is removed, saﬁi [NET9O0, p. 403].

The next chapter comprises a discussion of the influence of the batch size on the
performance of the three manufacturing systems. A comparison between the systems
introduces the chapter to give the reader a brief overview of the material. Then, the
two pull systems are discussed in more detail to explain their behavior. The push
system, MRP, is introduced separately due to its different attributes. After dealing
with the material in more detail on a level where the interdependence of factors is
more evident the discussion continues on a higher level by returning to the

comparison of the systems.



CHAPTER 5
BATCH SIZE

Avoiding setups and facilitating material handling are the two primary reasons for
batching jobs together in a manufacturing system. If large lots of similar products are
run in batches, equipment setups are infrequently needed. If setups are long, large lots
result in substantially more effective capacity. Furthermore, for process batches equal
to move batches the material that is moved between workstations in large batches
requires less handling than if it is moved in small lots [HOP96, p. 288].

The entities arrive at a workstation in a batch. While the first entity of that batch
enters the machine, the remaining entities have to wait to be processed. The batch can
be transported to the next stage in the system, only when the last entity of a batch is
completed. Here, transportation is assumed infinitely fast resulting in zero
transportation time.

A variety of single stage models and analytical techniques have been reviewed by
Chaudhry and Templeton [CHA83]. The literature covers single stage manufacturing
systems only, not applicable to a ten machine tandem line. Gold investigates
sophisticated batch service systems in push and pull manufacturing environments as
single stage systems by using embedded Markov chain techniques [GOL92]. Kim et
al. focus on production scheduling in semiconductor wafer fabrication taking batch

sizes into account. They use simulation to evaluate new scheduling rules [KIM98].

63
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Schoening and Kahnt show how to extend the methodology of Mitra and Mitrani

[MIT90] to model a one-card Kanban system with batch servers [SCG95]. However,

in all three cases the batches could be processed simultaneously by batch servers, such

as plating baths, drying facilities, and heat-treating ovens, not quite transferable to the
tandem line with sequentially processing machines.
The model parameters and their levels are introduced to elaborate on the input

data prior to the discussion of the simulation results.

5.1 Parameters
The process time was established at 20 seconds throughout all the simulations
while the following parameters were varied to evaluate the performance of the
manufacturing systems:
» Batch size,
e Total number of cards assigned to the line, and
* The interarrival time for MRP.

The levels of these parameters or factors are discussed briefly.

5.1.1Process Time

A workstation which processes a batch sizan be modeled as astage

Erlangian server. In such a system a customer enters the server, proceeds one stage at

a time through the sequenceraitages and departs at the end. Only then, a new

customer enters. The total time that a customer spends in this service facility is the
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sum ofr independent identically distributed random variables, each chosen from an
exponential distribution. The probability distribution function of the service time is an
Erlangian distribution [KLE75, pp. 123-124]. Consequently, the process time for a
batch of size is distributed according to arstage Erlangian distribution with a

mean of the individual process time, viz. 20 seconds. The batch size and the mean

process time per entity were given as an input.

5.1.2Batch Size

The following batch sizes were selected:
1,2, ...,10, and 20.

Initially, neutral experiments were conducted to establish differences of system
behavior for batch size 20. The results were found to be compliant with the results
obtained for batch size 1 to 10. Thus, batch size 20 was omitted for further

experiments.

5.1.3Number of Cards

The second design parameter portrays the number of cards assigned to the entire
line. Naturally, this parameter applies to the pull systems only. Its pendant for MRP is
the interarrival time. The parameter merely indicates the total amount of cards in the
system. It does not specify the number of cards assigned to individual machines.
Huang and Wang determine the number of cards in a CONWIP sy&tbn,

applying Little’s Law:
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6 =ut,

wherep is the average throughput of the production linetaadhe average time for

a card to pass through the production line. The formula is expanded to approximate

the number of cards in a production line in series containing a bottleneck [HUA98].
Optimizing the number of kanbans in a line has been a popular research topic.

According to Bonvik et al. most kanban implementations set the parameters by rules

of thumb or simple formulas [BON97]. Sugimori et al. state Toyota’s formula as an

example:

o> DL+a)
p

wherec is the number of cardB is the demand raté,the replenishment lead time,

a safety factor, andthe number of parts in a container [SUG77]. During factory
operation, the kanban numbers are steadily decreased by reducing the safety factor.
According to Bonvik et al. the fact that the formula is based on standard lead times is
less than satisfying, as it does not reflect the lead time consequences of shop floor
congestion and limited machine capacities [BON97].

Liberopoulos and Dallery use an iterative heuristic to optimize the number of
cards assigned to a conventional single-stage Kanban control system (KCS). They
show that the computational complexity of optimizing a single-stage generalized
Kanban control system (GKCS) is the same as that of optimizing the KCS, which can
be considered a special case of the GKCS [LIB95]. However, the algorithm was
found to be rather complex, making use of an analytically tractable approximation
method or simulation for initialization. Dallery and Liberopoulos introduce the

extended Kanban control system (EKCS) as a KCS accommodbsitagjes in
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another publication [DAL95], which was recently generalized to assembly structures
by Chaouiya et al. [CHY98]. However, these discussions have a pure comparative
nature, not incorporating the number of cards assigned to the system.

Unlike CONWIP, the Kanban control system does not only vary with the number
of cards assigned to the entire system, but, its performance is dependent on the
number of cards assigned to the individual machines. To ensure a comparison of an
optimal Kanban with CONWIP and MRP, some card allocation studies had to be

carried out prior to the actual simulations.

5.1.3.1Card Allocation for Kanban

Card allocations can not be carried out according to a generally applicable
algorithm. Some rules have been documented, applicable to specific manufacturing
systems. Gsettner and Kuhn make use of a heuristic to determine the optimal
allocation for a given production rate in a Kanban line witstations. The
production rate is calculated analytically underestimating the true production rate
systematically. The procedure starts with assigning one card to every station. The
number of cards is then increased at each station on a trial basis. The distribution
which shows the best ratio between change in production rate and WIP is finally
accepted (greedy procedure) [GST96].

The next sub-chapter constitutes an endeavor to specify general allocation rules

relevant to the ten machine tandem line.
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5.1.3.2Card Allocation Rules

To visualize the material and to avoid ambiguity, the rules are explained with the
assistance of statics, essential to any engineering education. The ten machine tandem
line [see Figure 5-1] can be modeled as a beam supporting ten weights of equal

distance to one another [see Figure 5-2].

Figure 5-1: The ten machine tandem line.

W1 W2 W3 W4 W5 W6 W7 w8 W9 W10
[ (oY ]
Arm + Moment

<« Center Point +,

Figure 5-2: Free body diagram of the ten machine tandem line modeled as a beam.

Themomenbf a force is its tendency to produce rotation of the body on which it
acts, about some axis. The measure of a moment is the product of the force and the
perpendicular distance between the axis of rotation and the line of action of the force.
This distance is called tmoment arnjsee Figure 5-2]. The intersection of the axis
of rotation with the plane of the force and its moment arm is callecktiter of
momentgJENSS, p. 15]. As it is a point, it is referred tocasiter pointhere. All the
forces of a system may be regarded as the component of their resultant force. Hence,

about any point, the moment of the resultant force (total weight) equals the algebraic
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sum of the moments of the separate forces (weights). This principle is known as
Varignon’s Theorem [JENS83, p. 17].

For the ten machine production line, the weight refers to the number of cards
assigned to a machine. The weight increases with increasing number of cards
allocated. Thus, the balance of the line can be expressed as the moment of the
resultant force, a consequence of a specific card allocation.

As the rules are not applicable to all manufacturing lines, the following
assumptions were made:

1. Identical machines,
2. All machines comprise the bottleneck,
3. Objective: maximum throughput, and

4. Center point: median of line (between machine 5 and 6).

Applying the statics analogy to the manufacturing line the following rules result:
1. Increase weight of last machine last,
2. Positive moment preferred to negative moment:

* Increase weight on positive side of center point first,

» Start increasing weight with smaller arm first,
3. Establish balance on line:

* Symmetric structure relative to center point,

* moment close to the absolute minimum (zero): same weight with certain

arm on either side (positive and negative) of center point,
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« Small difference (one card) in weight between the machines for the entire line,
and
4. Minimize number of consecutive machines with same weight.

All rules are to be applied simultaneously. However, the importance of the rules
decreases with increasing number. Thus, if the rules contradict one another, the rules
with lower number override the rules with higher number. Initially, all machines get
assigned the same amount of cards. Then, any additional cards are allocated according
to the rules. All the additional cards previously positioned may have to be reallocated
for one more card assigned to the line, thus satisfying an additional rule. For example:
the card remaining from allocating one card to each machine, theatd, is

assigned to the"bmachine [see Figure 5-3].
1 1 1 1 1 2 1 1 1 1
Figure 5-3: Number of cards per machine for 11 cards assigned to a ten machine line.

However, when a T'xard is assigned, the"Ltard previously assigned has to be
reallocated to machine seven while th& tard is assigned to machine four [see

Figure 5-4].

1 1 1 2 1 1 2 1 1 1

Figure 5-4: Number of cards per machine for 12 cards assigned to a ten machine line.
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To test the correctness of the rules, some simulations were carried out. For these
simulations batch size, setup time, and failure were not taken into consideration. It
was assumed, that the card allocations were optimal independent of the above
mentioned parameters.

The rules were found to result in a good approximation of the optimum. However,
an approximation was not good enough to compare Kanban with the other two
systems, both being able to perform at their optimal settings. Consequently, more
simulations were run to establish optimal card allocations for 10 to 70 cards assigned
to the line. Assuming that the performance of the line could not be improved
otherwise, one rule was kept: small difference (one card) in weight between the
machines for the entire line.

The following number of combinatioms, had to be run for 10 to 19 cards being

assigned:

9 10
m = - H=1023.
A

As it was found that even the optimal allocations for the interval 10 to 19 cards
could not be applied to the lines with 20 to 70 cards, simulations had to be run for the
following intervals:

1. [10, 19],
2. [20, 29],
3. [30, 39],
4. [40, 49],
5. [50, 59], and

6. [60, 69],
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plus one last replication for 70 cards assigned. This resulted in
n = 6m+l = 6(1023)+1 = 6139
experiments.
Thus, 6139 replications were completed resulting in the data to evaluate the rules

quantitatively.

5.1.3.3Deviation of Rules from Optimum

The performance of the line for 10 to 70 cards assigned was measured by the
throughput. The percentage increase in throughpfatr allocating optimallyTh,,
instead of allocating according to the rul€l, was calculated according to the

following formula:

| :Eﬁ%%m.

Figure 5-5 indicates an increase in most of the cases. Only in a few cases the rules
resulted in the optimal allocation. Naturally, there was no increase in throughput for
10, 20, ..., 70 as with these numbers only one allocation was possible under the given

assumptions [see p. 68].
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Figure 5-5: Increase in throughput by allocating cards optimally instead of simply
applying the rules.

To put these percentage increases in a relative context, the maximal increases, i.e.
the increases from the worst possible allocation to the optimal allocation, are
indicated in Figure 5-5 (Max) as well. The graph shows all maximal increases for the
first interval, 10 to 20 cards assigned, and only the maximal increase for 25, 35, ...,
65 cards assigned per consecutive allocation interval. These numbers were expected
to show the greatest deviation in throughput as they give rise to the greatest amount of

different possible allocations;

%O
a= E= 252,
5

where five additional cards had to be assigned after an equal amount of cards was
allocated to all the machines.
The graph illustrates the good approximation of the optimum by the rules. This is

especially true for a bigger number of cards assigned. It can clearly be seen that the
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maximal increase decreases with an increasing amount of cards in the system. This

can be ascribed to the following:

* the machines are busy most of the time as enough cards have been allocated to
them,

* the increase of utilization per additional card assigned to the system decreases
with an increasing amount of cards allocated [see Figure 5-6], and

* the ratio,

wherec, is the smallest number of cards assigned to any machine on the line and

C, the largest number of cards assigned to a machine, decreases as the

differenced® =c, —c,, is kept constant and equal to 1.

0.9
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Figure 5-6: The average utilization dependent on the number of cards for Kanban.
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The optimal card allocations for maximum throughput, minimal work in process
and minimal average cycle time were carefully studied.

The optimal allocations for minimizing WIP and average cycle time were found to
be very close to the rules applied. Note that these rules are different from those given
above, as the primary objective to achieve minimal WIP and minimal average cycle
time is to liberate the system of WIP. This is most efficiently done by placing more
cards towards the end of the line to pull material out of the system. Less cards at the
beginning of the line would result in raw material only being pulled into the system
for processing, not keeping any excess material in the buffers.

However, trying to achieve maximal throughput resulted in a great variability of
where the additional cards should be placed. Table 5-1 shows an extraction of the list
obtained to illustrate this interesting phenomenon. The systems with the same amount
of additional cards were grouped together. These additional cards were indicated as

ones in their respective rows. Looking at the table unveils no obvious paftern, .

and M are discussed below.

beginning
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Table 5-1: Additional cards allocated to the system with ten machines.

# of cards assigned 1o \41 \1> 3 M4 M5 M6 M7 M8 M9 M10 M .- M peginning

the system

11 0o 0 o 0o 02 0 O O o 1 6

21 0O 0 0 1 0o O O o0 o 0 -2 4

31 0O 0 0o 0 0 0 O 1 O 0 3 8

41 1 0 0 0 O O O o o 0 -5 1

51 0o 0 o 0 0 0 O O O 1 5 10
61 0 0 o O 0O o o o o 1 5 10
12 0o 0 o1 0 0O 1 O O O 0 11
22 0O 0 1 0 0 0 O 0 1 0 1 12
32 O 0 0o 0 O 1 1 o0 O 0 3 13
42 0 1 o 0 0 O O o0 1 0 0 11
52 0O 0 1 0 O O 1 o0 O 0 -1 10
62 0O 01 0 O O O o0 1 0 1 12
13 0o 0 1. 0 1 01 O O O -2 15
23 0o 0 1. 0 1 0 1 O O O -2 15
33 0 1. o O o0 1 O 1 0 O 0 16
43 0O 0 1 0 1 0 O o0 1 0 0 17
53 0o 0o o 0 1 1 1 0 O 0 2 18
63 0O 0 1 0 1 0 O O 1 0 0 17

As the research on card allocation was not the main topic of this research paper, a
very limited amount of time was spent trying to find patterns that could explain this
variation. Some calculations were done to express the findings mathematically. The

interest was focused on the balance of the syskm,., represents the moment of

the line with the center point at the median (between machine 5 and machine 6):
10
M median = Z |IVVI '

wherew; stands for the weight of machingsee 5.1.3, Card Allocation Rules] and
stands for the arm of machinerhis was expected to be close to zero at all times,
assuming the correctness of the rules. As can be seen in Table 5-1, this number
greatly varies and sometimes equals to the maximuml grrb,

M guantifies the moment of the line for additional cards with the center

beginning

point at the beginning of the line, such that:
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10

M beginning — ; id?,

whered’is the difference between the amount of cards of the different machines in

the system [see 5.1.3, Card Allocation Rules]. This formula indicates the position of

weight on the line. For 33 and 43 [see Table 1], IS the same and indicates a

edian

balanced line. HoweveiM ..., Shows, that the weight is distributed differently,

viz. more towards the end of the line for 43 cards assigned. Compdring,, and

M for the different allocations, shows no evident pattern. More research could

beginning

be conducted to find explanations for this behavior.

5.1.4Interarrival Time

This parameter stands for the time interval between two consecutive batch
arrivals. Its inverse is the arrival rate. The interarrival time was favored to the arrival
rate as it is understood more intuitively. Furthermore, it served as a direct input value
for the software applied.

The selected levels resulted from setting the utilization intgmyald, ] for

MRP equal to the utilizations for the pull systems. The levels selected divided the
intervals into nine partitions.

As the average cycle time represents one of the primary indicators of the
performance of a manufacturing line, its response to a change in batch size is

discussed first.
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5.2 Average Cycle Time

The following graph shows the influence of the batch size and the number of cards

allocated to the system on the average cycle time for the three control systems:

Kanban (1), CONWIP (2), and MRP (3) [see Figure 5-7].

2000 3000 4000 5000

1000

Pverage Cycle Time

=¥

Figure 5-7: The average cycle time dependent on the batch size and number of cards

allocated to the line for the three control systems: Kanban (1), CONWIP (2), and
MRP (3).

The average cycle time increases with increasing batch size. For the vertically
aligned data points, the number of cards assigned increases from bottom to top. As the

material is pulled into the system in batches the last member of each batch has to wait
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until all the other members are processed. As the batch size increases, this waiting
time increases.

The lowest values of the average cycle time per batch size were obtained for the
least number of cards assigned to the system, viz. ten. Ten cards theoretically enable
all the machines to be busy simultaneously. Furthermore, Kanban requires this
minimal amount to function. For the upper bound at most 200 entities were chosen:
Wip,.., = bc = (10)(20) = 200,
whereb is the batch size ardis the number of cards assigned to the system.

However, another constraint enforces even stronger limitations on the systems: the

average utilization of the machines.

5.2.1The Average Machine Utilization

Little’'s Law relates the three parameters: throughput, cycle time, and work in
process. This interdependence has proven practically to be the only stable observation
for the turbulent stochastic manufacturing systems. Thus, it can easily be used to
make conclusions about one of the parameters when one is kept constant and the other
one is known.

The three parameters constitute ideal indicators of performance for a production
system. The production engineers are most definitely interested in reducing work in
process to decrease cycle time and increase the throughput of the line. Thus, these

parameters serve as quantitative indicators enabling state of the art process control.
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From these indicators other indicators can be derived. One of these indicators
would be the machine utilization. The utilizatiancan be determined independently

of the throughput, but, they are directly related:

u= Thaverage ,
Thheory

whereTh, ... is the average throughput derived from the systems under study, and

Thyeory IS the theoretical throughput, which can be determined by the following

formula:

1

Thheory = t— )

process

wheret is the process time of the bottle neck machine in minutes. Here, the

process

machines are identical and can all be considered bottle neck machines with a process

time of 20 seconds 0% minute resulting in the following:

Thheory = = 3

Wik~

entities per minute.

The utilization gives a relative performance of a machine and can be calculated
for the entire line. The average utilizatian, of the line can be calculated by the
following formula:

10

2 U

1=1
10 °

u=
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whereu, is the utilization of machine For the simulations completed in this study,

the utilization of a machine was determined by sampling the system in 20 second
intervals. The sampling interval was set arbitrarily equal to the machine process time.

The average throughptih, was computed at the end of each simulation

verage
replication using Little’s Law:

T _ Wi Paverage
haverage - = '

cycle

wheret . is the average cycle time and
10
> WIR
Wlaverage: =
10

is the average work in process calculated from the work in process per machine
sampled in 20 second intervals.
The average cycle time was computed by the following formula:

k |
cycle
2.

t -
| 1
cycle n

cycle

wheret J

is the cycle time of entity j=1, ...,n, heren=10,000. Calculating the

average utilization either way results in the same value. For the simulations completed
the values differ in the third decimal after the comma, an insignificant difference.

The utilization serves as an ideal indicator for the practical applicability of the
simulation data. A rule of thumb states that utilizations above 0.9 are unrealistic in

industry. Utilizations below 0.65 are uneconomical. To make the observations and
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conclusions transferable to real life problems, all configurations were chosen to
produce utilization within the interval [0.65, 0.9].

As the utilization was one of the constraints kept throughout all simulations, it
unveiled itself as an ideal parameter to serve as a common factor for comparisons
between the three control systems.

To enable a comparison between the systems the utilization interval was kept

constant for all three of them [see Figure 5-8].

Utilization

Figure 5-8: Utilization dependent on batch size and number of cards for Kanban (1),
CONWIP (2), and MRP (3).
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This utilization interval was created by controlling the number of cards assigned
to the line for the pull systems and by adjusting the interarrival time for the push

system, MRP.

5.2.2Kanban and CONWIP

As the average WIP differs for Kanban and CONWIP for a certain amount of
cards [see 2.6], the minimal amount of cards for Kanban could only be determined by
additional replications. The data with utilization below the lower bound of the interval
[0.65, 0.9] was dropped. In CONWIP all the cards are used at all times resulting in the
same amount of WIP as number of cards in the system. In Kanban the amount of
cards represents an upper limit of WIP in the system. Here, the cards are bound to a
machine. Assuming that a machine at the beginning of the line has an exceptionally
long processing time for a particular entity, the machines down the line, at least those
close to the momentary bottleneck, are idle. These machines don’t carry WIP, leaving
the system with less WIP than cards assigned. Figure 5-9 shows that the data points

are clearly below the 45 degrees line.
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Figure 5-9: Average WIP dependent on the number of cards assigned to a Kanban
system.

Figure 5-7 also shows that with an increasing number of cards assigned, average
work in process increases and, consequently, the average cycle time increases as well
[see 3.2.6]. The data points are aligned vertically, the number of cards assigned
increases from bottom to top. The waiting time for a unit to be processed increases not
only within the batches, but, it increases throughout the line as more material is

caught in the system. Figure 5-10 illustrates this dependence for CONWIP.
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Figure 5-10: The average cycle time dependent on the number of cards assigned to the
system for CONWIP.

The straight lines formed by the data points without any outliers make the linear
dependency most evident and indicate that Little’s Law holds: as the number of cards
increases, the WIP increases, and the average cycle time increases. Naturally, Kanban
shows the same behavior, although the lines are not quite as smooth [see Figure 5-11].
Figure 5-7 reveals this fact, too. The circles are not as evenly spread for Kanban as for
CONWIP for specific batch sizes. Especially the higher batch sizes show a higher

concentration of circles at certain average cycle times.
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Figure 5-11: The average cycle time dependent on the number of cards assigned to the
system for Kanban.

To find out how well the data fits the linear dependency assumption a multiple
regression analysis was performed on both systems. As expected, the regression
model for CONWIP proves the linear behavior of the dependent variable. The high
value of the multiple coefficient of determinatiorf, :R0.9999 [see Row 24, Table
5-2], shows the perfect fit of the model. To give the reader an idea of the data output

given by the software, it is tabulated below.
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Table 5-2: Multiple regression output for CONWIP with the average cycle time
(Avgct) dependent on the number of cards (Ccards).

Formula
Cavgct ~ Ccards + Ci2+Ci3+Ci4+Ci5+Ci6 +Ci7+Ci8+ Ci9 + Cil0+ 1
Ccardsci2 + Ccardsci3 + Ccardsci4 + Ccardsci5 + Ccardsci6 + Ccardsci7 +
Ccardsci8 + Ccardsci9 + Ccardscil0

Residuals
Min 1Q Median 3Q Max
-19.75 -5.095 -0.4204 4.093 28.57 2
Coefficients

Parameter Value Std.Error t-value Pr(>|t))
(Intercept) 178.9593 3.8587 46.3780 0.0000 3
Ccards 20.0774 0.1136 176.7149 0.0000 4
Ci2 73.5170 6.6358 11.0788 0.0000 5
Ci3 156.7482 9.6439 16.2536 0.0000 6
Ci4 242.2489 13.2812 18.2400 0.0000 7
Ci5 375.3362 24.0987 15.5750 0.0000 8
Ci6 408.7711 20.5851 19.8576 0.0000 9
Ci7 465.8402 18.0067 25.8704 0.0000 10
Ci8 519.8010 20.5851 25.2513 0.0000 11
Ci9 569.4994 20.5851 27.6656 0.0000 12
Cil0 636.8179 20.5851 30.9359 0.0000 13
Ccardsci2 18.3685 0.2409 76.2555 0.0000 14
Ccardsci3 35.1863 0.4872 72.2192 0.0000 15
Ccardsci4 51.1600 0.8083 63.2931 0.0000 16
Ccardsci5 62.7219 1.8121 34.6125 0.0000 17
Ccardsci6 81.7514 1.4810 55.1986 0.0000 18
Ccardsci7 99.1862 1.2407 79.9445 0.0000 19
Ccardsci8 115.7481 1.4810 78.1533 0.0000 20
Ccardsci9 133.1146 1.4810 89.8792 0.0000 21
Ccardscil0 149.4230 1.4810 100.8906 0.0000 22

Residual standard error
9.57 on 130 degrees of freedom 23
Multiple R-Squared
0.9999 24
F-statistic

50270 on 19 and 130 degrees of freedom, the p-value is 0 25

The formula [see row 1] describes the linear dependence of the response variable
to the nineteen independent variables that have a main effect on the model. It contains
9 indicator variables, §ij=2, 3, ..., 10 to fit the y-intercepts for the ten curves in the
data set. This is one variable less than the number of fitted curves to enable

calculation. The Ccardggcj=2, 3,..., 10variables enable the calculation of the



88

gradients, expressing the differentiation of slopes. This results in the following model
fitted to the data set:

Cavgct =S,Ccards +3,Ci2 + B,Ci3 + 3,Ci4 + B:Ci5 + B,Ci6 + B,Ci7 + B,Ci8 +

B:Ci9 + (,,Cil0 + B,,Ccardsci2 +S,,Ccardsci3 +f,,Ccardsci4 +f,,Ccardsci5 +
B.sCcardsci6 +p,Ccardsci7 +f,;,Ccardsci8 +f,sCcardsci9 +f,,CcardscilO.

Row 2 shows the distribution of the residuals. The given extremes, min and max,
show the very good estimation of the line. The estimated regression line deviates from
the given data by maximally 28.57 seconds, where the average cycle time lies in the
interval [381.1972, 4298.0820]. The intercept of the line for batch size 1 is given in
row 3, while the increase in coefficiggtfrom 3, for 3, , ..., 1o IS given in rows 4 to
22. The residual standard error will be discussed shortly [row 23]. The p-value given
for the f-statistic indicates, that for aay0, the null hypothesis, th@t= 0, j=1, ...,

19, is rejected.

As the lines for Kanban are less smooth, the regression was expected to show a
greater variance for the residual error. Although the initial model had a high multiple
coefficient of determination, 0.9892, the residual graph [see Figure 5-12] clearly

indicated an unequal residual variance making transformation necessary.
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Figure 5-12: Unequal residual error variance for initial model fitted to Kanban.

From the transformations,
y' =log, Y,

y' =log, y, and

y =4y
the following was chosen with the help of the Box and Cox procedure [see 4.3.6] and
observation of the residual plots:
y' =log.y.

This transformation had the least residual standard error [see Table 5-3] and
resulted in a considerable decrease in inequality [see Figure 5-13]. The distribution of

the data points resembles the gun shot pattern.



Table 5-3: The residual standard error of different transformations for the multiple

regression on Kanban.
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Figure 5-13: The distribution pattern for the residual error of the transformed multiple
regression model for Kanban.
The regressions result in the following functions:

Avgef*™ = B, + B;c
AVgCt’Kanban = eﬁ0+ﬂlc

wheref3, is the y-intercept anf, is the gradient for batch sizg=1, 2, ..., 10.The
values for the coefficients are given in the table below [see Table 5-4].
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Table 5-4: Function coefficients describing the dependency of the average cycle time
and the batch size derived by multiple linear regression for Kanban and CONWIP.

CONWIP
: Bo B
1 178.9593 20.0774
2 252.4763 38.4459
3 409.2245 73.6322
4 651.4734 124.7922
5 1026.81 187.5141
6 1435.581 269.2655
7 1901.421 368.4517
8 2421.222 484.1998
9 2990.721 617.3144
10 3627.539 766.7374
Kanban
' Bo By
1 5.8694 0.0195
2 6.2798 0.0254
3 6.9001 0.0377
4 7.662 0.0562
5 8.5958 0.0763
6 9.6922 0.0964
7 10.9192 0.117
8 12.24 0.1393
9 13.6507 0.1629
10 15.1567 0.1864

However, these functions can be represented by a single function,
Avgct= f (BsizeCardsg) , per control system. The multiple coefficients of
determination indicate a loss of accuracy, but, they are still exceptionally high,
indicating a good fit of the model to the given data [see Table 5-5]. The two functions
were derived by multiple regression and can be used to calculate the average cycle

time dependent on the number of cards used and the batch size chosen.
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Table 5-5: The derived functions for CONWIP and Kanban to estimate the average
cycle time for given batch size and number of cards assigned to the system.

System Model R
CONWIP t—cyc,e =99.5873+89.290b - 2.608%? +2.8994 +17.183Dc 0.9996
Kanban i =z 0.9764

cycle —

x =5.6679+0.3204 -0.022%* + 0.010& + 0.0073c

The results for Kanban are visualized below. The graph gives an impression of
how the transformation influences the spread of data points [see Figure 5-14]. The
data can be considered a little blurred, reducing the distance between the data points,
especially for the larger values of the average cycle time. Furthermore, the good fit of

the model to the data can be seen.
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Figure 5-14: Three dimensional illustration of the In-transformed data points of the

average cycle time, dependent on the batch size and number of cards, and the data
points computed with the regression model for Kanban.

5.2.3Findings and Conclusions for Kanban and CONWIP

The models indicate the following:

Linear dependence between the number of cards assigned and the average cycle

time,

Small quadratic influence of the batch size on the average cycle time, and

Interaction of the batch size and the number of cards assigned.
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The following conclusions can be made:

1. The batch size has a higher impact on the average cycle time than the number of
cards assigned. This is true for the throughput as well, keeping the work in process
constant (Little’s Law).

2. For an increasing batch size, the increase in average cycle time increases for every
additional card assigned to the system [see Figure 5-14]. To keep the average
cycle time at a minimum the smallest batch size should be chosen.

3. The smaller batch size is superior to a larger one in every sense. The linear
function of the intercepts [see Table 5-2] proves this. In other words: for a fixed
amount of cards assigned the average cycle time increases with increasing batch
size. There are no identical data points, the lines do not cross over [see Figure
5-10], which can be derived from conclusion 2.

4. The results shown reveal the dependence of the batch size and number of cards.
Optimization should involve both parameters simultaneously. Here, a stepwise
approach could lead to an optimal allocation, when one of the parameters is held
constant as the gradients of the functions are positive in the given interval.

After showing the dependency of the average cycle time on the batch size and
number of cards assigned for Kanban and CONWIP, the discussion is continued for

MRP in the following chapter.



5.2.4MRP

The average WIP can not be controlled as easily by the push systems as by the
pull systems. As the batch size and the number of cards assigned increases, the WIP
increases by the same amount (CONWIP) or proportionally (Kanban). As the WIP
increases, the average cycle time increases, provided the throughput remains constant.
With MRP the WIP can only be controlled indirectly. An increase in WIP is achieved
by increasing the amount of material introduced to the system. This is controlled by

increasing the release rate or decreasing its inverse, the interarrival time. Figure 5-15
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shows the response of the WIP to the change in interarrival time.
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Figure 5-15: Work in process dependent on the interarrival time for different batch
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Modeling the ten machine line by a M/M/1 system, the following condition has to
be satisfied to reach a state of equilibrium [KLE75, p.95]:
A<y,

whereA is the birth rate or arrival rate apds the death rate or the inverse of the

atch
rocess’

theoretical batch process tinn%

i L ot > tbatch
t tbatch intarr process’
intarr process
wheret. _ is the interarrival time.

intarr
As the interarrival time approaches the batch process time,

t batch —_ bt

process process?

whereb is the batch size an ... is the process time of a single entity per machine,

the work in process approaches infinity. For a batch size of 10 the following condition

has to hold:

toar >10(20) < t,.., >200seconds. These are the values the hyperbolas approach to

the left in Figure 5-15. As the interarrival time approaches infinity, the WIP
approaches zero. Thus, the hyperbolas all have y = 0 as an asymptote and can be
elongated to the right. Assuming an interarrival time of 250 seconds, different WIP
levels are reached for the different batch sizes. This results in flexible combinations of
interarrival times and batch sizes to achieve certain WIP levels. However, the average
utilization of the machines in the system has to be kept in the realistic interval of
[0.65, 0.9] to make the findings relevant to practical application. Figure 5-16 shows
the almost linear response of the utilization to the interarrival time. A closer look

reveals a nonlinear influence of the interarrival time.
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Figure 5-16: The average utilization of the line dependent on the interarrival time of
the batches for MRP.

Thus, for the given utilization levels, and consequently the throughput, the
average cycle time is expected to respond similarly to the work in process (Little’s

Law). Figure 5-17 proves this expectation to be correct.
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Figure 5-17: The average cycle time per entity dependent on the interarrival time for
MRP.

However, the lowest cycle time per entity is dependent on the batch size. Thus,
the y-asymptotes can be considered functions of the batch size. The reason was given
at the beginning of chapter 5.2. The entities are introduced to the line in batches. The
last entity of each batch has to wait until the other entities in the same batch are
processed, increasing the average cycle time with increasing batch size.

A difference between MRP and the pull systems is the response of the average
cycle time to the batch size. The models constructed for Kanban and CONWIP
indicate a negative quadratic influence of the batch size [see Table 5-5]. As can be
seen in Figure 5-18, the average cycle time responds linearly to an increase in the
batch size. To determine this dependence, the throughput was held almost constant at
2.4 entities per minute or an average utilization of 0.8, keeping the theoretical

throughput of 3 entities per minute in mind.
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Figure 5-18: The average cycle time dependent on the batch size with a constant
throughput for MRP.

5.2.5Findings for MRP

The following points were observed:
1. If the interarrival time approaches the batch process time, the WIP-level increase

exponentially:

t |:| rrﬁg?%}s_) tbatch |:| Wlp . 0,

intarr process
The system becomes unstable [see Figure 5-15],

2. The throughput or average utilization decreases at first rapidly and then slowly
with increasing interarrival time,

3. The average cycle time decreases with an increasing interarrival time, but, it never
reaches zero,

4. The batch size influences the average cycle time linearly, and
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5. The average cycle time responds hyperbolically to the batch size, their asymptotes

are functions of the batch size and interarrival time.

These observations lead to the following conclusions:

1. As the batch size increases, the average cycle time increases. For a given
interarrival time, this is always true [see Figure 5-17]. The batch size should be
chosen as small as possible,

2. Once the batch size is set to greater than one, a zero average cycle time can never
be reached [see Figure 5-17, finding 5]. To ensure a high utilization of the line, an
interarrival time close to batch process time should be implemented [see finding
1].

After discussing the response of the systems in more detail on a lower level of

complexity, the following chapter continues the comparison of the systems on a

higher level of abstraction.

5.3Kanban, CONWIP, and MRP

In this section the performance of the different systems is briefly illustrated. At
this point only first impressions are given. As the realism of the simulated
configurations increases by adding setup times and failures, additional comparisons

will reveal more information about their characteristics.
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5.3.1Average Cycle Time Dependent on Work in Process

For the comparison the optimal configurations, resulting in the lowest average

cycle time, were extracted from the data set and illustrated [see Figure 5-19].
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Figure 5-19: The minimal average cycle time dependent on the average work in
process for the three control systems.

At this point maximum WIP and average WIP have to be clearly distinguished for

Kanban
CONWIP
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Average Wip [entities]

Kanban. As previously mentioned, the smaller batch size results in a better

performance of the system for a specific number of cards assigned, independent of the
control mechanism [see Figure 5-7 and Figure 5-10]. However, for the pull systems
the maximum WIP can be determined as a combination of batcliosael number

of cards assigned,:

WIP,..« = bc.

Thus, as the maximum WIP level increases, the number of possible combinations of

batch size and number of cards assigned increases.
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In Figure 5-10 a WIP level of 60 can be obtained from 6 combinations for

CONWIP. The extracted numbers are shown in Table 5-6.

Table 5-6: Combinations of batch size and number of cards for maximum WIP level
60 and the resulting average cycle times for Kanban and CONWIP.

Combination Batch Size Number of CONWIP Average  Kanban Average
Cards Cycle Time Cycle Time
1 1 60 1394518 1101.557
2 2 30 1399.522 1183.894
3 3 20 1443.929 1243.223
4 4 15 1488.523 1210.624
5 5 12 1537.916 1432.689
6 6 10 1621.982 1554.002

Figure 5-20 shows a plot of the data points from simulation and the regression

models. The difference between maximum WIP and average WIP can clearly be seen

as the average WIP is lower for Kanban resulting in a shorter average cycle time. For

a small batch size the model fits perfectly. Unfortunately, the quality of the fit

decreases with increasing batch size. Most importantly, the response of the cycle time

to the batch size is modeled well.
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Figure 5-20: The average cycle time dependent on different combinations of batch
size and number of cards assigned, simulation and regression model.

The term in the regression model expressing the interaction of the batch size and
number of cards assigned is kept constant, resulting in the following equation for
CONWIP:
fSomiP =11305793+89.290D - 2.608%? +2.8994 .

The influence of thi’-term is compensated by théerm, leaving the major
influence on the average cycle time to the linear component of the batch size. Thus,

the average cycle time increases with increasing batch size. The same

interdependence can be derived for Kanban with the following regression model:

t‘ Kanban

6.1059+0.3204Bsize-0.022Bsiz€ +0.010&
cycle .

e
In Figure 5-7 and Figure 5-10 the increase of the average cycle time with

increasing batch size can be seen. However, the smooth line is broken by an

exception. The combination batch size 4 and number of cards 15 is performing above

expectations. The alert reader may have noticed this abnormality earlier. Looking
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closely at Figure 5-11 reveals that 15 cards assigned outperforms 14 cards,
independent of the batch size. The clustering of data points for a specific batch size in
Figure 5-7 (1) underlines this fact. Interestingly, the 15 cards assigned do not break
the order of throughput. The throughput fits nicely between that of 14 and 16 cards
assigned, independent of batch size. Disregarding this outlier and a few other
exceptions that are dependent on batch size, an increase of average cycle time with an
increase of batch size can be assumed.

Consequently, CONWIP’s data extracted for Figure 5-19 represents the lowest
batch size possible for a specific maximum WIP. At certain WIP levels, the difference
in average cycle time between the combination with smallest batch size and the
combination with higher batch size [see Table 5-6] is smaller, than the difference in
average cycle time between two WIP lewalH? and WIP+1) for the same batch size
[see Table 5-7]. Adding another card to increase the WIP level of 77 to 78 results in a
higher jump of the average cycle time than keeping the WIP level of 78 constant by

decreasing the number of cards assigned while increasing the batch size.

Table 5-7: The increase in cycle time for increasing batch size and constant WIP.

Batch Size Work in Average Cycle
Process Time
1 77 1726.513073
1 78 1758.674835
2 78 1763.326356
3 78 1775.199725
1 79 1775.474382

In Table 5-7 the data points with higher batch sizes 2 and 3 and WIP 78 would be
dropped leaving the data point resulting from batch size one and WIP 78. Generally,

the data points with higher batch sizes would be dropped, leaving those with the



105

lowest cycle time. Thus, increasing the batch size (from 1 to 3) for a specific WIP
level constant and reducing the number of cards assigned (78 to 26) may not be as
harmful to the average cycle time as an increase in the WIP level by one (78 to 79).
Here, the smaller batch size could be replaced by the higher batch size without
considerable damage. This opportunity occurs at WIP 48 the first time. Batch size one
is replaced by batch size two at WIP level 100, as simulations were only carried out
for 100 or less cards assigned.

In Kanban batch size two outperforms batch size one at WIP level 49.46, where
32 cards are assigned. This card allocation seems to be superior in its WIP
environment. Although the difference is small, batch size two manages to outperform
batch size one for other card allocations as well.

MRP shows similarities to CONWIP. The smaller batch size outperforms the
larger batch size without exceptions.

As the systems are strongly constrained they have little freedom of outperforming
one another. Figure 5-19 shows almost no difference in performance for small work in
process. Taking a closer look at the lower WIP level shows that the systems’

performance is very much the same [see Figure 5-21].
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Figure 5-21: A closer look at the minimal average cycle time dependent on lower
average work in process for the three control systems.

Figure 5-21 indicates that MRP performs best, CONWIP second best, and Kanban
can be closely ranked on the third position for WIP levels less than 27. However, the
differences are minute and not really worth considering. At WIP level 28.76 MRP
introduces batch size 2, sacrificing its first position. The next data point with batch
size 1 is at WIP level 32.74. Interpolation would reveal MRP’s behavior between the
two WIP levels, suggesting MRP’s superiority. A regression analysis was performed

for batch size one to statistically verify this ranking [see Table 5-8].
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Table 5-8: The results for the regression analysis modeling the response of the
average cycle time to the WIP for a comparison between Kanban, CONWIP, and
MRP.

Formula
Avgct ~ WIP + Ic + Im + ICWIP + ImWIP
Residuals
Min 1Q Median 30 Max
-28.01 -3.477 0.239 3.05 19.11
Coefficients
Parameter Value Std.Error t-value Pr(>|t))
(Intercept) 195.0680 2.1733 89.7559 0.0000
WIP 19.8483 0.0638 310.9755 0.0000
Ic -16.1534 2.7468 -5.8807 0.0000
Im -26.3223 3.5145 -7.4896 0.0000
lewiIpP 0.2272 0.0695 3.2683 0.0013
ImwiIP 0.1573 0.1102 1.4266 0.1556

Residual standard error
6.906 on 163 degrees of freedom
Multiple R-Squared

0.9998

F-statistic
181500 on 5 and 163 degrees of freedom, the p-value is 0

The regression verifies the ranking abdeendim indicate the difference
between the intercept for Kanban and CONWH® §nd MRP Im). MRP has the
lowest intercept with a slightly higher gradient than Kanban. CONWIP has the second
highest intercept and about the same gradient as MRP, as the probability of failing to
reject the null hypothesis, stating a zero difference, is very high. The higher gradients
for MRP and CONWIP than for Kanban indicate, that the lines cross over at some
point. However, the difference is so small, that one can assume parallelism of the
lines.

Figure 5-22 illustrates average cycle times for higher WIP levels. As already
indicated in Figure 5-19 CONWIP performs best for the WIP levels from the upper

fifties up to 100. This is attributed to the fact, that for CONWIP up to 100 cards were
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allocated for batch size one. As the other two control systems make use of at least

batch size 2 at that level, they are outperformed by CONWIP. For WIP levels above

100 it becomes difficult to interpret the points attempting to rank the systems

according to their performance. The data points may be misleading due to several

factors:

» Different batch sizes are represented,

* Even though 10,000 units were produced narrowing the confidence interval on the
mean down tremendously, the variance influences the output, and

* The output is discrete and not continuous. The systems could be performing
equally well would their data points be in greater vicinity. As can be seen in
Figure 5-22, drawing a straight line through the data points would only give an

approximation.
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Figure 5-22: A closer look at the minimal average cycle time dependent on higher
average work in process for the three control systems.
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The previous investigation leads to the following conclusion: the smaller batch
size outperforms the bigger batch size independent of the control system. In other
words: although inferior to MRP, Kanban with batch size 3 would outperform MRP

with batch size 4 for a given WIP level.

5.3.2Conclusions

The observations lead to the following conclusions:
* For a given WIP level, an optimal configuration can be found for Kanban,
CONWIP and MRP. With this configuration the systems can be ranked according
to their performance:
1. MRP,
2. CONWIP, and
3. Kanban.
* For a given WIP level a lower batch size is always superior to a higher batch size.
This is true for all three control systems.
* The previous conclusion seems to hold even across manufacturing control systems
as the difference in performance between the systems is minute.
After discussing the influence of the batch size on the performance of the
manufacturing control systems, another parameter is added to increase the realism and
the practical applicability of the investigations. In the following chapter setup is

introduced.



CHAPTER 6
SETUP TIME

As mentioned earlier [see CHAPTER 5] batch size and setup are very much
related. As the batch size increases, the setup time per unit decreases. Thus, more
precisely, there is a trade off between the two parameters to optimize the performance
of the manufacturing lines.

Spearman and Hopp distinguish between internal setup and external setup.
Internal setup operations are those tasks that take place when the machine is stopped,
while external setup operations are those tasks that can be completed while the
machine is still running. Thus, the internal setup is disruptive to the production
process and deserves the most attention [HOP96, p. 158]. Monden identifies four
basic concepts to reduce setup:

1. Separate the internal setup from the external setup,

2. Convert as much as possible of the internal setup to the external setup,
3. Eliminate the adjustment process, and

4. Abolish the setup itself [MOD83].

Here, setup refers to the internal setup only.

Introducing setup to a system increases the variability. With similar reasoning as
in process times [see 5.1.1], the setup times are also chosen to be exponentially
distributed:t

~M(setup timepndt ~M(process time)whereM stands for

setup process

Markov. The setup can be viewed as another process step on a machine.

110



111

To begin with the actual processing of the first product, the machine has to wait for
the setup to be completed. In the mean time the machine is running idle. Furthermore,
the batch must be completed on the upstream machine before the setup on the
downstream machine can begin. Baker refers to this feature as attached setup time,
which can not be scheduled in anticipation of arriving work. The setups are classified
as separable (or detached) when scheduling in anticipation is possible. In his article
Baker considers the lot streaming model for a two-machine flow shop with setup
times, transfer lots of size one, and a makespan objective. He expects the two-
machine analysis to play a role in the development of heuristic procedures for the
generaim machine case, although he mentions that the efficient sequencing rules
developed for the two machines will generally not extend to three-machine problems
[BAK95]. Patterson focuses on constraint resources, building resources around
bottlenecks. He concludes from the results of his study that a critical piece of
information needed for finite scheduling is missing from the existing MRP database.
The missing data field is a code to represent a setup procedure. His case study
suggests that a setup procedure, and the required time, can be the same for multiple
inventory items. Identifying these procedures can lead to the preparation of finite
schedules that can improve due date performance and/or reduce overtime required to
meet promised ship dates [PAT93]. Afyonoglu assesses the performance of a five
machine line controlled by Kanban, CONWIP, and MRP with constant setup times.
He evaluates the systems by determining their total costs including setup costs,
inventory carrying costs, card costs, and penalty costs. His investigations result in

practical thumb-rules, beneficial to practical applications [AFY98].
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To express the availability of the machine, the setup time was simply added to the

batch process time resulting in a new and longer delay time, for which an

arriving entity has to wait in the queue to be processed:

tdelay =t +1 (6-1)

setup process?

wheret . andt refer to batch setup times and batch process times. As the

setup process
machine has to wait for the setup to be complete and can not process simultaneously,
the theoretical throughput [see 3.2.6] has to be adjusted with equation (5-1):

1 1
T = =
I«&heory t +1

tdelay setup process

This results in the following machine utilization:

u= Thavefage = Thaverage(tsetup + tprocess) ' (6_2)

Thheory

A new parameter is added to the models representing the setup while the other

parameters remain the same.

6.1 Parameters

To enable a comparison, the average utilization was held constant across the three
control systems. Furthermore, a low and a high utilization was chosen to illustrate the
performance of the systems under high and low demand conditions. The number of
cards assigned were held constant resulting in specific utilizations for varying batch
sizes and setup times. If these parameters were not held constant, too many factors

would have influenced the output and it would have become very difficult to unveil
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any dependencies. For MRP the interarrival time was adjusted to produce the
utilization levels resulting from the card allocation for the pull systems.
The batch size, as explained earlier [see 5.1.2], and the setup ratio were chosen as

the variable parameters.

6.1.1Setup Ratio

As the process time was held constant throughout all the simulations, the setup

time would have been a good parameter as well. However, the setup ratio,

rs — tsetup ,

th’OCESS
is an established parameter and has a higher information content as it expresses the
relative length of the setup time to the process time. Table 6-1 shows the setup times

and the corresponding ratios included in the simulations.

Table 6-1: The setup times and the corresponding setup ratios included in this study.

i 1 2 3 4 5 6 7 8 9 10 11 12

{ setup 2 10 20 40 60 80 100 120 140 160 180 200
r. 01 05 1 2 3 4 5 6 7 8 9 10

6.1.2Utilization

For the pull systems the number of cards allocated and for MRP the interarrival
time had to be determined resulting in the same utilization for all three control

systems. The introduction of setup times to the models resulted in a decrease of
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utilization. As the number of cards allocated to the manufacturing lines was kept in
the interval [10, 70] throughout all the experiments [see 5.1.3 Number of Cards, Card
Allocation for Kanban] conducted in this study the initial utilization level interval of
[0.65, 0.9] [see 5.2.1, p. 77] had to be altered to [0.55, 0.86]. Only more than 70 cards
assigned could raise the upper utilization level to 0.9. The resulting configurations are

presented in Table 6-2.

Table 6-2: Configuration chosen to establish high and low utilization levels.

Utilization Batch # of cards # of Cards

Level Size for Kanban for CONWIP
high 1 70 50
high 2 50 37
high 3 33 27
high 4 25 21
high 5,6,9, 10 20 17
high 7,8 20 18
low 1 14 10
low 2-10 13 10

The number of cards assigned for Kanban exceed those assigned for CONWIP as
for Kanban the number indicates the upper limit of WIP in the system, for CONWIP
the number indicates the exact number of WIP in the system [see 4.2.2]. The chosen
number of cards gave rise to certain utilization levels for the varying batch size and
setup ratio. To determine the interarrival time of batches for MRP, the following

calculations were done with equation (5-2):

_ _ u O
u= Thaverage(tsetup + tprocess) < Thaverage - (t +t ) H ( s)
setup proces: 0t - tsetup + tproce's
1 1 [l intarr — — —
verage intarr
’ tintarr Thaverage E



115

for a stable system. Thus, the interarrival time for MRP was calculated from the setup
time, process time, and average utilization. However, these were purely theoretical
terms, that needed some fine tuning.

The fine-tuning was done by interpolation. This could be done as the utilization,
or throughput, is linearly dependent on the interarrival time for most of the utilization
intervals priorly chosen. Once the interarrival time equals or exceeds the bottleneck
processing time (here, the theoretical average cycle time), the system’s WIP grows
exponentially [see Figure 5-15], finally resulting in an unstable system. Parallely, the
average throughput approaches the theoretical throughput while the utilization
approaches one. Here, linear interpolation would lead to the wrong results. The
following calculations were done:

intarr intarr intarr
t2 t1 — t2 tintarr t —_ (
=4 . —
— intarr —

-0, u-u, u,

tizntarr _tlintar"_) (U - L_,Iz) +ti2ntarl’ ,
where index 1 refers to the high level values and index 2 refers to the low level values
andu is the wanted average utilization resulting from the calculated interarrival time,

t Fortunately, it was found that the average cycle times resulting from simulating

intarr *
for 1,000 entities was very close to the actual value resulting from processing 10,000
entities. Thus, the fine tuning could be done in less time.

Another approach to find the right utilization levels could have been to run
simulations on intervals of interarrival times close to the computed theoretical value.
The major advantage of this approach would be that the simulations could be run
without attendance. Furthermore, no interpolation calculations would have to be done.

The additional simulation time would be only a few hours.
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The previous activities resulted in a data set based on roughly the same utilization
for the three control systems. A difference of 0.03 in utilization was exceeded in only

8 cases out of 242, as the pull systems result in discrete values, making it impossible

to obtain the exact same values [see Figure 6-1].

_

Utilization

offo 075 080 085 090 085 100

MRP
Kanban

CONWIP

Figure 6-1: The higher utilization level dependent on the setup ratio and the batch size
for Kanban, CONWIP, and MRP.

Although the graph appears to be overloaded with information, it gives a very
good impression of the output data. Furthermore, it is easily read, as the individual
data points for a given system are represented by two lines intersecting. To compare
the three systems for a given setup ratio and batch size, an imaginary vertical line can

be drawn through the three intersections and the data points can be read from top to
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bottom. Taking the data points for setup ratio 10 and batch size @.0/8,,,..) .

(10,9, Usopupe) » and10,9, T, 0 ) , reading from top to bottom, it can easily be seen,

that CONWIP has the highest value, MRP the intermediate value, and Kanban the
lowest value. Although the deviation is small (the average utilizations are 0.8110,
0.8048, and 0.7945) it can be distinguished in the graph. Table 6-3 exhibits the output
for the two-sided paired t-tests performed on the difference of utilization.

Table 6-3: Output for the paired t-tests on difference of high utilization including
setup for Kanban, CONWIP, and MRP.

Null Hypothesis

True mean of differences is equal to 0.

Output
Comparison t df p-value 95% Mean of differences
between Confidence Interval estimate
Kanban-CONWIP -12.8163 119 0 (-0.0117; -0.0086) -0.01016293
CONWIP-MRP 6.2253 119 0 (0.0053; 0.0102) 0.007766142
Kanban-MRP -2.3792 119 0.0189 (-0.0044; -0.0004) -0.002396792

The utilizations can not be considered the same, as zero is in none of the
confidence intervals. However, the differences are found to be very small, indicated
by the confidence interval and the estimate of the mean difference. The output data

shows the following order of utilization:

uCONWIP > U >u

MRP Kanban *

Keeping the setup ratio constant, the three systems unveil a linear response to the
batch size with a minimum for batch size 5, increasing for both an increasing or
decreasing batch size [see Figure 6-1]. The systems showed similar behavior not
including the setup [see Figure 5-7]. Note that the number of cards assigned is

constant, too. It is one of the fixed parameters mentioned earlier [see 6.1]. For an
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increasing setup ratio, the utilization decreases somewhat, while the increase to either
side of batch size five, per unit increase of batch size, becomes bigger.

Figure 6-2 illustrates the difference between the utilization and the throughput as
defined earlier [see 6.1.2]. The graph clearly indicates, that it is impossible to hold a
high throughput with increasing batch size [see Figure 5-6] and setup ratio. The
throughput does not incorporate the utilization of machine capacity for setup, which
the utilization does. Furthermore, the graph states that a comparison between the

different systems for a given setup ratio and batch size can be made, as the throughput

is almost identical, the surfaces lie very close together.

Throughput (entities/tnin)
db 04 08 12 16 20 24 28

Kanban

CONWIP

Figure 6-2: Throughput dependent on the setup ratio and the batch size for Kanban,
CONWIP, and MRP.
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For every batch entering a machine, the actual processing of the entities is delayed
for the time needed to set the machine up for individual requirements. Obviously, this
time has a great effect on the throughput when the batch size is small. For batch size
one, the machine has to be set up for every single entity, slowing down the process
and increasing the average cycle time tremendously. As the setup ratio increases, this
effect is multiplied reducing the throughput to a mere 0.23 entities per minute for

setup ratio 10. However, as the batch size increases, the influence of the setup time

decreases. The delay tim&> (b of)thelth entity is dependent on the batch dize

h |
tldelay (b) =St setup tiPFOCeSS , (6-3)
2T

whereh = %E is the number of setups prior to thie entity, t;**" is thejth setup

time, andt”"*****is the process time of entityAs the batch size decreases,

increases, increasing the amount of setups prior to the time when eeéithes the
machine. The setup time and the process time are entity dependent as they are
probabilistic variables. But, for a large number of entities processed, these variables
approach their expected value and can be assumed constant.

The throughput seems to respond quadratically to the setup ratio. As the ratio
increases from below one, the throughput quickly decreases, evening out for higher
setup ratios. The batch size has an inversely multiplicative effect on the increasing
throughput for a decreasing setup ratio.

Keeping one parameter, the utilization, constant for the three control systems,

their performance can easily be compared. The performance of the control systems is
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compared by analyzing the average cycle time for a high utilization level and for a

low utilization level.

6.2 Average Cycle Time (High Utilization)

To continue the discussion from previous chapters about the average cycle time,
its response to the setup ratio and batch size is illustrated below [see Figure 6-3]. For

a low setup ratio, the cycle time shows the patterns formerly discussed [see Figure

5-7].

A\

\

\

\

3000 6000 9000 12000 15000
\

Average Cycle Time (8)

Kanban
CONWIP

Figure 6-3: The average cycle time dependent on the setup ratio and the batch size for
Kanban, CONWIP, and MRP.
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The line shows a slight negative quadratic curvature with a dent for batch size five

continuously increasing with increasing batch size [see Figure 6-4].

—o— Setup Ratio 0.1

—+— Setup Ratio 1

—n— Setup Ratio 2

—— Setup Ratio 5
—o— Setup Ratio 10

Average Cycle Time [s]

0\\\\\\\\\\\
01 2 3 4 5 6 7 8 9 10 11

Batch Size [entities]

Figure 6-4: The average cycle time dependent on the batch size and setup ratio for
Kanban.

As the setup ratio increases, its influence on especially the smaller batch sizes
augments while shifting the lines up parallely. The lines start to curve up for batch
sizes smaller than five. As the setup ratio reaches ten, the cycle time for batch size one
surmounts the other batch sizes. The dent in the line for batch size five remains,
making it the superior configuration. This phenomenon can be easily explained with
the assistance of the formula for the delay time per entity given before [see equation
5-3 on p. 113]. The smaller the batch size, the more setups have to be performed for a
given amount of entities. As the setup time increases, the influence of these setups
grows.

After the discussion of the system behavior, a comparison of the performance

follows in the next section.
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6.2.1Comparison

Figure 6-3 reveals very similar behavior of the three systems. At first sight it is
impossible to determine the best performer. Especially for the lower setup ratios the
average cycle time seems to be almost identical. As the ratio increases, the systems
commence to distinguish themselves. Drawing imaginary lines, the cycle times unveil

the following order:

£ CONWIP + Kanban £ MRP
t >t >t e -
cycle cycle cycle

To prove this finding, paired t-tests were performed. The output is listed in Table
6-4.

Table 6-4: The output of the paired t-tests on the difference between the average cycle
times for Kanban, CONWIP, and MRP.

Null Hypothesis
True mean of differences is equal to 0.

Output
Comparison t df  p-value 95% Mean of diff.
between Confidence Interval estimate
Kanban-CONWIP  -8.7197 119 0 (-246.4751; -155.2500) -200.8625
CONWIP-MRP 9.2561 119 0 (295.6708; 456.5986) 376.1347
Kanban-MRP 45673 119 0 (99.2851; 251.2593) 175.2722

The tests support the former findings and permit the construction of the following
ranking:
1. MRP,
2. Kanban, and
3. CONWIP.

Figure 6-5 illustrates the mean of differences graphically.
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175.27s 376.13 s

200.86 s

Figure 6-5: The mean differences of the average cycle times between Kanban,
CONWIP, and MRP for the high utilization level.

Recalling the difference in utilization and the resulting relation,

uCONWIP > U >u

MRP Kanban

MRP is truly the best performer. The push system has the least average cycle times
although it has to settle with a higher utilization than Kanban. However, CONWIP

has the highest utilization which may result in the longest cycle times. Thus, position

2 and 3 can not be reliably stated. Table 6-5 shows the mean of the average cycle time
relative to the mean of the utilization for the three systems.

Table 6-5: The mean of the average cycle time relative to the mean of the utilization
for Kanban, CONWIP, and MRP.

SyStem E(tcycle) E(LI ) E(tcycle) / E(U )
Kanban 4913.26 0.85 5780.306
CONWIP 5114.12 0.86 5946.651
MRP 4737.98 0.85 5574.094

The calculations were done to standardize the average cycle times with the
expected utilization enabling a comparison. The numbers support the previous

ranking.
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6.2.2Conclusions

The following conclusions summarize the former discussions:

The influence of the setup time on the average cycle time increases with decreasing
batch size. Thus, for a big batch size an increase in setup time is not as detrimental for
the performance of a system as for a small batch size.

Batch size five separates the batch sizes into those with a higher sensibility to
change and those with a lower one. It encompasses the advantages of a small batch
size, viz. a lower average cycle time, and the good attributes of the big batch sizes,
viz. a lower reactivity to a change in setup time.

Observing the average cycle time dependent on the batch size and the setup ratio,
MRP outperforms the two pull systems. In contradiction with the previous findings

[see 5.3.2], Kanban shows a better performance than CONWIP.

6.3 Average Cycle Time (Low Utilization)

Although less relevant to its practical applicability, the average cycle time
resulting from the low utilization level is investigated briefly. Again, the utilizations

have to be compared. The output for the paired t-test is given in Table 6-6.
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Table 6-6: Output for the paired t-tests on difference of low utilization including setup
for Kanban, CONWIP, and MRP.

Null Hypothesis
True mean of differences is equal to 0.

Output
Comparison t df  p-value 95% Mean of diff.
between Confidence Interval estimate
Kanban-CONWIP  -5.6057 119 0 (-0.0057; -0.0027) -0.004232567
CONWIP-MRP -2.3045 119 0.0229 (-0.0045; -0.0003) -0.002426025
Kanban-MRP -9.2092 119 0 (-0.0081; -0.0052) -0.006658592

The p-value for comparing the average utilization of CONWIP and MRP is fairly
high indicating that the difference in utilization is very small. The mean of differences
estimate equals -0.002426025. As the difference is very small, one can assume equal
utilization for the three systems for the low level.

The average value for the low utilization level of 0.67 can be considered a fairly
relevant level, resembling a manufacturing system barely working at full capacity.
Figure 6-6 illustrates the resulting average cycle time planes for the two utilization

levels.
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Figure 6-6: The average cycle time dependent on the setup ratio and the batch size for
the high (0.85) and the low utilization level (0.67).

Naturally, there is a decrease in average cycle time for the lower utilization level,
as a lower throughput results in a shorter cycle time (Little’s Law). Interestingly, the
quadratic response of the cycle time to the batch size has vanished. A mere linear
dependency is the result. The average cycle time increases linearly with an increasing
setup ratio and an increasing batch size. Furthermore, a high setup ratio for a small
batch size does not have the immense impact as with a high utilization level. Note that
the utilization includes the setup as well. For an increasing setup time, the machines
decrease processing, which results in a throughput of 0.15 entities per minute for

setup ratio ten and batch size one. For this configuration the average cycle time
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closely surpasses 4,000 seconds per entity. These 4,000 seconds include 10 times
setup for 200 seconds, which adds up to 2,000 seconds. As the throughput indicates,
the system is fairly empty allowing the entities to pass through rather rapidly. Thus,
2,000 seconds remain for pure processing time, which sounds very reasonable. As the
batch size increases, the entities spend more time waiting for the other members of
their batch to be processed. Furthermore, more entities are pulled into the system, as
the number of cards stands for the amount of batches in the system. Seemingly, at this
utilization level, which counterbalances the increasing setup with a decreasing

throughput, the effects resulting from system congestion remain absent.

6.3.1Comparison

Understanding the system behavior better, the performance comparison remains.

Figure 6-7 illustrates the average cycle time planes for Kanban, CONWIP, and MRP.
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Figure 6-7: The average cycle time for the low utilization level dependent on the setup
ratio and the batch size for Kanban, CONWIP, and MRP.

Even a brief look at the graph reveals the superiority of MRP to the two pull
systems. As the batch size and the setup ratio increases, this domination becomes

more apparent. However, CONWIP manages to cling very close to its related pendant.

Although the order,
1. MRP,

2. CONWIP, and
3. Kanban,

was palpable, paired t-tests were performed to quantify the difference. The result is

illustrated in Figure 6-8.
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Figure 6-8: The mean differences of the average cycle times between Kanban,
CONWIP, and MRP for the low utilization level.

6.3.2Conclusions

The low utilization ranking differs from the high utilization ranking. However, it
corresponds to the ranking not incorporating setup [see 5.3.2]. MRP performs well,
outranking CONWIP and Kanban. CONWIP produces lower average cycle times than

Kanban, positioning this control system at number two.

6.4 Regression Models

The models reveal a very complex interdependency of the different variables. For
the regression, the fixed parameter, number of cards and interarrival time, were
introduced as variables as well. This resulted in more than 1,000 data points for the
pull systems and close to that number for MRP. In the model the average cycle time is
represented as a function of the batch size, number of cards assigned to the system or

the interarrival time for MRP, and the setup ratio [see Table 6-7].
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Table 6-7: The regression models for the average cycle time as functions of the batch
size, the number of cards assigned to the system or the interarrival time for MRP, and
the setup ratio and their corresponding multiple coefficients of determin&tion,

System Model R
Kanban = 0.9856

cycle

x = 0.4136 + 0.2492b+ 0.0093¢ 0.0355by +0.0066bck
0.0023cr + (0.0011b- 0.0002¢)? + (-0.0003¢+ 0.0008)b? +
0.0014¢ +0.0004b

CONWIP  f_ =1225767+97.8285, +64.739D + 2.15¢ - 3.358r, + 0.9998
17.0986c+20.0374r, +6.15217 - 0.372%°
MRP .. =806.2587+1501.8485r+1184.4921b- 44.1563f,,, 0.9818

+445,7524hr-14.7163bf,., -23.4810¢t, ., +419.7524f
+142.02086 -0.3793f,, - 2.9357¢

The multiple coefficients of variation indicate a good fit of the models.
Unfortunately, the cubic terms for modeling Kanban were needéd,vasuld
otherwise decrease by almost 2 percentage points. The residual plot indicated a cubic
response of the average cycle time for Kanban only. Introducing the cubic regressor to
MRP could not necessarily be derived from the residual plots. By stepwise regression
and trial and error, the mean square error could be reduced, simultaneously increasing
the multiple coefficient of determination while keeping the p-values all equal to zero.
CONWIP could easily be modeled with the findings derived from the former
analyses. No interaction between a quadratic regressor and a linear regressor could be
found for CONWIP and MRP in contrast to Kanban. As the utilization for MRP
increased and approached the theoretical maximum of one, the model was found not
to be representative anymore. The values resulting were categorized as outliers. Thus,

for very high utilization levels, the given model should not be applied.
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After investigating the influence of batch sizing and setup, another step is taken to
explore a manufacturing system’s behavior. The next step in improving the realism of

the simulated system is including machine failure.



CHAPTER 7
MACHINE FAILURE

In the previous experiments machines are assumed to be available full time.
However, realistic systems are imperfect, machines suffer break down obstructing the
flow of material in manufacturing. Thus, for every break down the availability of a
machine is reduced. Other unscheduled downtimes may result from shortages caused
by human failure. They result in the machine being inactive.The term failure will be
used to indicate the unavailability of a machine. The availability of the machine can
be calculated by the following formula:

t t

a=1- repair - — intfail '
trepair + tintfail trepair + tintfail
wheret .. is therepair durationandt,,, is theinterfailuretime Hopp and

Spearman refer to these times as mean time to failure and mean time to repair
[HOP96, p.261].

Figure 7-1 provides a dynamic graph of the state of an unreliable machine. The
failures occur at certain time instancesiftd t]. After a failure, it takes some time to
make the machine available for production again. This time inteyval[t will be
called therepair duration The time instance when the machine can continue
processing [ will be referred to aseactivation Finally, theinterfailure time

represents the time interval between reactivation and the next failutg. [t
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Failure Reactivation Failure
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>
to t t Time
< >« >
Repair Duration Interfailure Time

Figure 7-1: Resource states and their occurence times.

Here, it will be assumed that the product will not be damaged or scrapped if a
failure occurs. The machine will resume processing the entity as soon as it becomes

available again [see Figure 7-2].

Idle Busy Failed Busy Idle

Time

Figure 7-2: The effect of failure on the entity.

Gupta and Al-Turki explore the impact of sudden breakdown of a material
handling system on the performance of a traditional Kanban system (TKS) with
constant processing times. In addition, they also study a newly developed Kanban
system, which dynamically and systematically manipulates the number of kanbans in
order to offset the blocking and starvation caused by these factors during a production

cycle (FKS), under the same conditions. They compare the overall performance of the
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TKS and the FKS by considering a variety of cases. They come to the conclusion that
the overall performance of the FKS exceeds that of the TKS [GUP98].

Hopp and Spearman consider a tandem line with a CONWIP control strategy.
They also assume the processing times to be deterministic, but, machines are subject
to exponential failures and repairs: deterministic processing and random outages
(DPRO). They model the system as a closed queuing network and develop an
approximate regenerative model (ARM) for estimating throughput and cycle time as a
function of WIP level. Furthermore, Hopp and Spearman use an analytical alternative
to simulation, mean value approximation (MVA), for analyzing the system. For MVA
the processing times are chosen to match the mean processing times of the real
system. Their comparisons show that ARM is more robust than MVA. They also
observe that in order to get MVA to work significantly better than ARM, quite
unrealistic parameters have to be chosen. In their opinion the ARM approach to
approximating throughput in a DPRO system under a CONWIP control system
appears promising [HOP91].

Duenyas et al. model a CONWIP production line with deterministic processing
times and exponential failure and repair times as a closed queuing network as well.
They derive an approximation for the mean and variance of the output during a
specified interval and give computable conditions under which this approximation
performs well. They show through empirical tests that the approximation is robust and
illustrate its usefulness as the basis for a procedure for selecting an economic
production quota and card count for a CONWIP line. Duenyas et al. admit to the

simplicity of the system studied, consisting of a single product line of single machine
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work stations. In more realistic cases, with additional complicating factors, detailed
analysis of the quota and card count issue is likely to be integrated with analysis of
capacity and staffing issues, and as such are likely to require simulation [DUE93].

Tan determines the variance of the throughput dfrstation production line
with constant processing time, no intermediate buffers, and time dependent failures
analytically. Time to failure and time to repair distributions are assumed to be
exponential. Tan mentions that state-space based methods are very flexible allowing
various assumptions to be implemented in a model. However, these methods are
computationally very demanding. Instead, he applies an inflexible method, only
considering time dependent failures, which is computationally very efficient. With the
given procedure, a numerical result for a production line with a given number of
stations can easily be obtained [TAN97].

Unfortunately, all of the studies above use deterministic processing times. As
Duenyas et al. remarks, more realistic systems with additional complicating factors
including probabilistic processing times and setup times are likely to require
simulation. Here, simulation is applied to study the effects of failure on the

performance of the different control systems.

7.1 Parameters

To include failure in the system, the parameters discussed above were introduced
to the models:
1. Interfailure time and

2. Repair duration.



136

By manipulating these parameters, the performance of the three control systems
could be evaluated. Due to the growing number of parameters influencing the
systems, initial investigations were carried out for less complex cases. As previously,
the amount of cards assigned to the line was kept constant. Additionally, only one
machine was subjected to failure. To get better insight into the systems' behavior, the

observations were done dynamically.

7.2Dynamics of Failure

Instead of looking at the results at the end of each replication, the data was output
into a file continuously, revealing dynamic behavior. To unveil the reaction of the
systems to a failure, one single downtime was induced at a known time. This point in
time had to exceed the time instance for reaching steady state enabling an objective
comparison. The failure time was chosen such that 5,000 entities would have passed
through the system, resulting in the desired steady state and producing stable
statistics. A repair duration of 3,600 seconds or one hour would represent a realistic
event.

Good indicators had to be chosen to give unblurred information about the

systems’ behavior.

7.2.1Indicators

Cumulative average values would be blurred by the large amount of entities

produced prior to failure. Furthermore, data revealing the state of the entire line would
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be cumulative as well. The data on the individual machines would be accumulated,
loosing precious information. Thus, data based on individual entities would provide
the highest information content. This data could later be compressed to give insight
into the systems’ performance.

As throughput (utilization) was fixed, the WIP level and cycle time remained as
performance measures to compare alternatives. Generally, WIP is a difficult measure
to obtain in a real life setting. However, the cycle time is commonly available in a
shopfloor. Therefore, the cycle time was chosen as the performance indicator to
observe system behavior. The following information could be revealed from the cycle
time per entity:

1. The time spent at certain points in the system, and
2. The time taken by the system to recover from the disruption.
After deciding on the indicator, the following methods of data collection were

chosen to obtain the desired information.

7.2.1.1Time Spent in System

The cycle time per entity had to be collected at different points in the line only
after the failure occurred. Collecting the data before the occurance would result in
excess data irrelevant to the investigation. Machine 5 was designated as the machine
to fail as it is situated in the middle of the line. Consequently, the cycle time was

calculated at six different passing points, before each downstream machine and after
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the last machine in the line [see Figure 7-3]. These points would reveal the time spent

in every machine and the time of departure from the system.

Passing Passing Passing Passing Passing Passing
Point Point Point Point Point Point
6 7 8 9 10 11

¢ Machine ¢ Machine ¢ Machine ¢ Machine ¢ Machine ¢
|:> 6 |:> 7 |:> 8 |:> 9 |:> 10 |:>

Figure 7-3: The points of data collection for the investigation on the dynamics of
failure.

The passing points are named according to the machines they precede, making

them easy to locate. Passing point 11 allows the calculation of the departure time.

7.2.1.2Recovery Time

The average cycle time was determined prior to failure for 5,000 entities
processed. All entities trapped upstream from machine 5 would increase their cycle
time by at least the duration of failure. As these entities depart the system, the cycle
times approach their average and the system reestablishes steady state, indicating the
time of recovery. Looking at the individual cycle times would subject the
determination of the time of recovery to too much variability. Thus, the exponentially

smoothed cycle time,

£ = 0.5 ) +0.5(t

cyclei cyclei cyclei ) ’
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was computed for thigh entity departing the system, wheg,.; is the cycle time of
theith entity andt s, =t Starting with the first entity leaving machine 5 after

reactivation. The recovery timeg,,....» Was determined as the time taken until the

moving average of the cycle times exceeded the average cycle time by less than ten

percent:
tom <L1UE,..) - Given the variability of the cycle times the system was assumed to

have approached steady state once the exponentially smoothed cycle time was within

a 10% band of the average cycle time.

7.2.2Configuration

A configuration resulting in a high variability of the performance indicators would
test the systems ability to cope with even more unreliability best. However, to enable
a fair comparison, the system’s utilizations had to be nearly identical. These requests

resulted in the configurations given in Table 7-1.

Table 7-1: The configurations chosen for the investigation on the dynamics of failure.

System  Batch Size  Setup Time  Number of Cards Interarrival Time  Utilization

Kanban 5 200 15 - 0.6553
CONWIP 5 200 11 - 0.6504
MRP 5 200 - 456 0.6561

The following section covers observations for the time an entity spends at

different points in the system.
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7.2.3Time Spent in the System

The failure duration of one hour was chosen to possibly force the system to empty
the buffers of the machines downstream from the failed machine. A batch of five
entities would need on average 100 seconds to pass through one machine. For the
Kanban system at most eight batches would be present downstream during the
occurance of failure, resulting in 800 seconds. Adding the setup time of 200 seconds
per batch times eight batches to the 500 seconds would equal to 2,100 seconds on
average. As the process times and setup times are exponentially distributed, this sum
may easily double leaving a few entities in the system unlikely to obstruct the batches
that had to wait in the buffer of machine 5 for its reactivation.

Figure 7-4 shows 20 replications for the first entity passing through the
downstream half of the line after the reactivation of machine 5 for Kanban. The
average of the time after failure for passing point six for the 20 replications is
3,851.96 seconds, with a standard deviation of 159.66 seconds. For replication 16 the
time after failure is minimal with a length of 3,616.73 seconds [see Table 7-2]. It thus
takes the first entity 3,616.73 — 3,600 = 16.73 seconds after failure to depart machine
5. Either this entity was worked on before the failure occurred and it took 16.73
seconds to complete processing or the process time was shorter than the mean of 20
seconds. The maximum is 4,446.35 seconds for replication 10. This entity was
delayed 846 seconds at machine five, a truly long period of time, which can most
probably be associated to the random number given by the exponential distribution.
As the entity continues travelling through the downstream half of the line, the

coefficient of variation increases from 0.05 to 0.10. This can easily be seen in the
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graph comparing the local maxima and minima and their difference. For passing point

11 or the system departure, this difference equals to 1,889.25 seconds or half an hour.

Time After Failure

Figure 7-4: 20 replications showing the first entity passing through the downstream
half of the line after the reactivation of machine 5 for Kanban.

CONWIP shows similar patterns [see Figure 7-5]. Replication 11 reveals an
extremely early departure time from machine 5. Only 3,604.558 seconds after the
failure of the machine, the entity passes through passing point 6, indicating a process
time of 4.558 seconds [see Table 7-2]. This short time may be due to processing of the

entity before the failure occurred. However, the value could have been generated by

the random distribution as well.
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Time After Failure (8)

Figure 7-5: 20 replications showing the first entity passing through the downstream
half of the line after reactivation of machine 5 for CONWIP.
As usual, MRP shows a somewhat different pattern [see Figure 7-6]. The variation

increases tremendously resulting in a maximum of 7,624.563 seconds, which is about

1,200 seconds higher than Kanban’s maximum [see Table 7-2].
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Figure 7-6: 20 replications showing the first entity passing through the downstream
half of the line after reactivation of machine 5 for MRP.

The coefficients of variation of the time after failure for MRP are clearly higher

than those for Kanban of CONWIP [see Table 7-2].

Table 7-2: The coefficients of variation, the minimal and the maximal times after the
failure of machine 5 for Kanban, CONWIP, and MRP.

Passin ~ ~ = min min min max max max
POintg CKanban CCONWIP CMRP tKanban tCONWIP tMRP tKanban tCONWIP tMRP

0.0477 0.0611 0.0399  3616.07 3604.56 3639.90 4446.35 4761.03  4276.69
0.0672 0.0670 0.0890  3732.42 3694.91 3704.37 465295  4931.82 5226.18
0.0732 0.0732 0.1041  3799.85 3936.57 3828.04  4982.78 5414.80 5847.88
0.0765 0.0826 0.1091  3890.76  4210.94 3942.76  5396.01 5790.14  6255.38
0.0967 0.0961 0.1150 4065.97  4385.84  4097.58 6217.88 6359.00 7060.23
0.0959 0.0928 0.1191  4521.75  4474.03 4224.08 6411.00 6786.05  7624.56

PP
PFEBoo~o
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Figure 7-7 gives a comparative view of the three control systems and their average
times after failure. The average was calculated for 30 replications ensuring a half-
width of less than 10% of the mean [see 8.4.1 Dynamics of Failure, Time Spent in the
System]. According to the data points in the graph, Kanban outperforms the other two
systems at nearly every passing point. As the variability of the times increases,
Kanban maintains its superior performance. This can be explained by pointing to the
fact that MRP and CONWIP continue sending units into the system during repair

whereas Kanban terminates the entry of new batches into the system.

6000.00
5500.00 //
5000.00 —
= o Kanbar
4500.00 —o— CONWIP
// —x—MRP
4000.00

3500.00

Average Time After Failure [s]

3000.00 ‘ T T T \
6 7 8 9 10 11

Passing Point

Figure 7-7: The average time after failure at the passing points for Kanban, CONWIP,
and MRP.

The paired t-test for the time after failure at the passing point 11 indicates, that
there is no significant difference between CONWIP and MRP [see Table 7-3]. Even

for Kanban and CONWIP or MRP the confidence interval of the two sided test



145

includes zero, indicating that there is no significant difference. The p-values support

this finding.

Table 7-3: The results of the paired t-test for the time after failure at passing point 11
or departure of the system for Kanban, CONWIP, and MRP.

Null Hypothesis
True mean of differences is equal to 0.

Output
Comparison t df  p-value 95% Mean of diff.
between Confidence Interval estimate
Kanban- -1.7553 30 0.0894  (-524.2984; 39.6207) -242.3388

CONWIP
CONWIP-MRP  0.5156 30 0.6099 (-232.3546; 389.2861) 78.4657
Kanban-MRP -1.5290 30 0.1368  (-382.7632; 55.0169) -163.8731

Thus, it can not be stated with a high confidence that Kanban outperforms the
other two systems. More replications would have to be run to narrow the confidence
intervals down. It is very likely, that zero will drop out of the interval for a
comparison between Kanban and CONWIP or MRP, as the given intervals are shifted
to the left around the negative mean values.

At first the individual entity was observed as it passed through the system. The
performance of the control system was judged by the time taken for the first entity to
depart the line after reactivation of the failed machine. A second investigation looks at
the system with a higher degree of abstraction. The performance will be rated

according to the time the system takes to recover from the failure.
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7.2.4System Recovery

As described earlier, the exponentially smoothed time taken to depart the line is
calculated and scaled with the time taken for the smoothed time to get within a 10%
range of the average cycle time. Figure 7-8 illustrates the exponentially smoothed
cycle time versus the time after the failure occurred for 15 replications, where

Kanban, CONWIP, and MRP are represented by five replications each.

Exponentially Smoothed CycleTime ()

Kanban
CONWIP
------- MRP

Figure 7-8: The moving average of the cycle time dependent on the time after failure
for five replications per Kanban, CONWIP, and MRP.
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A quick look reveals that it takes MRP very much longer to approach the average
cycle time than it takes the pull systems. A closer look unveils that the curves have
different shapes, too. With Kanban and CONWIP controlling the manufacturing line,
a negative quadratic shape can be seen. The first entity can pass through the
downstream half of the line fairly quickly without much obstruction. The second
entity has to wait until the first one is processed resulting in an increase of its cycle
time. Thus, the exponentially smoothed time increases incorporating the increased
cycle times. Depending on the exponentially distributed process times, another peak
may occur in the lines. As the amount of entities trapped in the system is limited to
the number of cards assigned to the upstream half of the line, a decrease of the
moving average can soon be expected. The decrease is caused by the entities entering
the system after the failure and passing through unobstructedly.

With MRP the situation looks somewhat different. As the entities are constantly
introduced to the system, independent of failure, a fairly big amount of material builds
up during failure. A large amount of entities with high cycle times resides in the
system waiting to be processed. These entities have similar cycle times only slightly
differing in their process history. The sum of process times and setup times adds up to
about half of the average cycle time, about 2,500 seconds. The repair duration of
3,600 seconds is added to this amount making up more than half of the total.
Consequently, several long cycle times influence the moving average resulting in
several peaks. The peaks occur randomly and not necessarily soon after the
reactivation of the failed machine [see Figure 7-8, replications 10 to 15]. A quadratic

structure can not be discerned, rather a steady decrease.
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A regression analysis was performed to support the findings. The resulting

multiple linear regression models are shown in Table 7-4.

Table 7-4: Output for the multiple linear regression models fitting the moving average
cycle time dependent on the time after failure for Kanban, CONWIP, and MRP.

Model
e —_ 2 2
tsr;]gt\(l-;"l_ BO + Blt + ﬁi+lI i + Bi+k I it + BZ(k+1)t + Bi+2(k+l) I it
System i k R Bintercept Blineart [ quadratic t
Kanban 1,2,..,29 29 0.826 (-32425.30;15218.36) (-3.850; 9.571) (-0.007; 0.006)
CONWIP 1,2,..,29 29 0.819 (-25573.86;227.67) (-0.039;6.525)  (-0.004; 0)
MRP 1,2,..,34 34 0.881 (-4659.49;: 8471.05)  (-0.479; 0.690) 0

Multiple regression models were chosen to compensate for the differences in
intercept, slope and curvature per replication. A simple model would have required an
enormous amount of data to describe the response of the system to failure as the
variability is quite big. The individual intercepts per replication reflect the time of
departure for the first entity after failure. These times were found to be quite variable.
The same behavior was found for the curvature. The p-values for the t-test calculating
the significance of the individual regressors range from very low to very high,
indicating that a difference of intercept, slope, and curvature could not always be
found between the individual replications. However, the multiple coefficients of
determination are fairly high, which can not be ascribed to the high number of
observations, indicating a good fit of the model.

Interpreting the output data in Table 7-4, the following can be stated:

1. Kanban has a higher variability than CONWIP judged by the coefficient intervals.

The variability is not necessarily comparable with MRP, as MRP produced a

much higher amount of data points due to the long time of recovery.
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2. The gradients indicate, that Kanban recovers faster than CONWIP, which in turn
recovers faster than MRP.

3. For MRP no curvature can be measured, due to the frequent peaks or local
maximums in the moving average time line [see Figure 7-8]. Kanban even shows
a positive quadratic response, indicating that the peak is reached early and the
moving average decreases faster at the beginning and slower as it approaches the
average cycle time.
These findings were verified with the calculated means of the time after failure

when the exponentially smoothed average of the cycle times exceeded the average

cycle time by less than 10% [see Figure 7-9].

25000.00 -
21700.08
20000.00 -
O Time after Failure [s]
& 15000.00 ~
> 11180.64 @ Exponentially Smoothed Cycle Time
g 9921.55 [s]
 10000.00 - W Average Cycle Time [s]
5197.16 5320.28
5000.00 -
5108.54 4930.32
0.00 -

Kanban CONWIP MRP

Figure 7-9: The time after failure for which the exponentially smoothed average of the
cycle times exceeds the average cycle time by less than 10% for Kanban, CONWIP,
and MRP.

To calculate the means, 20 replications sufficed for the pull systems. For MRP 40
replications were needed to meet the 10% criterion for the half-width of the

confidence intervals [see 8.4.1 Dynamics of Failure, Recovery Time]. Figure 7-9
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clearly illustrates the superiority of the pull systems over the push system. As
expected, Kanban performs best, taking on average 9,921.55 seconds after failure to
enter the 10% band width of the average cycle time. As moving average of cycle time
is the biggest of the three control systems, 5,373.84 seconds, Kanban naturally takes a
shorter time to meet the stop criterion. This may be the main reason, why CONWIP is
clearly outperformed, needing 11,180.64 seconds to come within 10% of its average
cycle time. CONWIP has the shortest moving average, which is almost 200 seconds
shorter than the shortest time for Kanban. MRP shows an easily noticeable difference
in time after failure from its pendants. It takes nearly twice as long as the pull systems
to approach the average cycle time. This can be ascribed to the enormous buildup of
WIP during failure. Similarly, CONWIP builds up more WIP than Kanban, as the
cards are not bound to specific machines, accumulating entities in front of the failed
machine. Theoretically, Kanban keeps only about half of the total WIP in the
upstream half of the line, being able to quickly reduce the moving average with short

cycle times produced by entities entering the system after failure.

7.2.5Conclusions

The following conclusions can be made from the investigations above:
1. Looking at the time spent in the system the ranking,

1. Kanban,

2. MRP, and

3. CONWIP,
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can be derived. However, the ranking can not be stated with high confidence for
the number of replications completed, as the differences in the time spent in the
system are not highly significant.
2. Acloser look at the time needed for recovery after failure reveals the following
order:
1. Kanban,
2. CONWIP, and
3. MRP.
This order can be ascribed to the amount of WIP accumulating in front of the
failed machine increasing the cumulative cycle time. This amount is the largest
for MRP.
After investigating the dynamic response of the manufacturing systems to failure,
the influence of machine failure on the performance of a system in steady-state is

observed next.

7.3 Failure in Steady-State

In comparison to the simulations carried out to observe the dynamic response
where failure was induced at one machine only, in this section all the machines were
caused to fail at exponentially distributed time instances lasting for exponentially
distributed time durations. A large number of entities was processed to reach a steady-
state for which the indicators could be estimated fairly accurately on a 95%

confidence level [see Table 8-16].
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The previous models were altered to represent more realistic systems with
machine failure, including the old set of parameters as well as the additional

parameters introduced above [see 7.1].

7.3.1Parameters

The parameters

* Process time,

* Number of cards for the pull systems,

* The interarrival time for MRP,

» Setup ratio, and

» Batch size

were kept from the previous models constructed for experiments including setup time
[see 6.1]. The simulations were performed with the same levels. Additionally,

* The interfailure time and

* The repair duration

were introduced.

Realistic machine availability had to be determined to ensure the practical
applicability of the performed simulations. A range of availability was established,
that would keep the machine utilization fairly high. As the card configurations chosen
for setup were kept for the current experiments, very low availability would reduce

the machine utilizations to unacceptable low values.
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However, the availability had to be represented by specific interfailure times and
repair durations. These parameters should represent different scenarios to consider
minor failures, which can be resolved within minutes, and major failures, that may
take several hours to repair. Thus, short interfailure times with short repair durations
as well as long interfailure times with longer repair durations should be taken into
account. Unfortunately, the influence of the length of failure and its frequency on the

system’s performance was not well understood. These influences were studied first.

7.3.2Influence of Interfailure Time and Repair Duration

For the investigations on the influence of interfailure time and repair duration a set
of experiments was performed using CONWIP. At that point in time, CONWIP
seemed to unite characteristics from both Kanban and MRP.

As the influence of the availability on the average utilization was unknown, a

fairly low availability was chosen:

a= ﬂ = 0923,
7200+ 600

where the interfailure time equals 7,200 seconds or two hours and the repair duration
600 seconds or 10 minutes, thus, both values being easily divisible by 60. The
availability was kept constant and the interfailure time and the repair duration were

increased resulting in the combinations given in Table 7-5.
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Table 7-5: Combinations of interfailure time and repair duration resulting in a
constant availability.

Configuration 1 2 3 4 5 6 7 8 9 10 11

Interfailure Time 7200 8640 10080 11520 12960 14400 15840 17280 18720 20160 21600
Repair Duration 600 720 840 960 1080 1200 1320 1440 1560 1680 1800

Furthermore, the simulations were run for low and high utilization levels, keeping
the amount of cards assigned constant. The setup time was kept constant at 2 seconds,
not to distort the output data even more. The batchlsizegs alteredh =1, 2, ...,

10. This resulted in

n=n,n,n, =11(2)(10) =220

simulations, wheren, is the number of combinations of interfailure time and repair
duration,n, is the number of utilization levels, high and low, agdis the number of

different batch sizes chosen. The batch size was altered rather than running several
replications with a fixed size, as its influence on the performance was not known and
the results were supposed to reveal information generally applicable. The average
utilizations were then averaged for a given availability combination and utilization

level:

for theith configurationj = 1, 2, ..., 11, and thi¢h utilization level] = low, high,

whereU; stands for thgth average utilization per batch size and replication. The

resulting data is illustrated in Figure 7-10.
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Figure 7-10: The average of the average utilizations per batch size and replication
versus the configuration for increasing interfailure times and repair durations.

The graph clearly illustrates the decrease in utilization with increasing interfailure
times and repair durations. To observe the availability closely, the state of the
machines was determined every twenty seconds to calculate the average availability.
The average availability throughout the entire simulation time was given as an output
at the end. This output proved the availability to be almost constant across the
different configurations.

The decrease in utilization has a logical explanation. The downstream buffers
must be maintained at all times to provide protection against the loss in throughput.
However, long repair durations starve the machines downstream for a considerable
amount of time resulting in empty buffers and possibly a production stop. It takes
quite some time to replenish this WIP. Shorter failures can rather be viewed as long
process or setup times, momentarily creating a vacuum of WIP at certain places in the

manufacturing line. The downstream buffers may still be able to provide the starved
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part of the line with enough material to continue processing. Hopp and Spearman

discuss a one machine line example revealing similar behavior [see HOP96, p. 263].

7.3.3Conclusions for Interfailure Time and Repair Duration

As the interfailure times and the repair durations increase, keeping the availability
constant, the average utilization decreases. Thus, it seems to be of advantage to
implement preventive maintenance done frequently with a shorter duration. Waiting
for the failure to occur resulting in bigger damage and longer repair times can reduce
the performance of a system.

As the length of the interfailure time, the length of the repair duration, and the
degree of machine availability influence the performance of the system, two
experiments were conducted:

1. the interfailure time was increased while the repair duration was held constant,
and

2. the interfailure time was held constant while the repair duration was decreased

to reach certain degrees of availability. The resulting scenarios are shown in Table

7-6.
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Table 7-6: The interfailure times and repair durations in different time units
representing the scenarios for the range of availability simulated.

Scenario tinfail [S] tinfail [h] tinfail [d] trepair [S] trepair [min] Ava”ab”ity

1 28200 7.83 0.33 1800 30 0.94
2 34200 9.50 0.40 1800 30 0.95
3 43200 12.00 0.50 1800 30 0.96
4 58200 16.17 0.67 1800 30 0.97
5 88200 24.50 1.02 1800 30 0.98
6 178200 49.50 2.06 1800 30 0.99
7 86400 24.00 1.00 5515 91.91 0.94
8 86400 24.00 1.00 4547 75.79 0.95
9 86400 24.00 1.00 3600 60 0.96
10 86400 24.00 1.00 2672 44.54 0.97
11 86400 24.00 1.00 1763 29.39 0.98
12 86400 24.00 1.00 873 14.55 0.99

Thus, the availability was kept within the interval [0.94; 0.99]. The repair time
makes up at most 6% of total time. Here, this means that for scenario 1 28,200
seconds or 0.33 hours after every reactivation of a machine a failure occurs, which
takes 1,800 seconds or 30 minutes to repair [see Table 7-6].

As before, the utilization was kept constant across all the manufacturing lines

controlled by the three different control mechanisms.

7.3.4Utilization

The number of cards allocated to the systems, resulting in a high and a low
utilization level, was retained throughout the simulation studies. As more variability
was introduced to the systems, including setup time and machine failure, the

minimum utilization level decreased to an unrealistic level [see Table 7-7]. This was
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accepted as a consequence of the trade-off between a low variation of the parameter

levels and the realism of the systems.

Table 7-7: The minimum, mean, and maximum values for the low and high utilization
levels as a summary for the simulations completed, including machine failure for
Kanban, CONWIP, and MRP.

System Utilization Level Min Mean Max
Kanban low 0.318 059 0.753
CONWIP low 0.31 0.60 0.741

MRP low 0.31 0.60 0.741
Kanban high 0.445 0.66 0.866
CONWIP high 0.46 0.68 0.872

MRP high 0.46 0.68 0.87

However, the response within the utilization interval [0.65; 0.9] was observed to
be almost linear, making the results obtained here for the higher utilization level only
transformable to utilization levels within an interval. Table 7-8 lists the output for the
paired t-test to establish the difference in utilization between the three control

systems.

Table 7-8: The output for the paired t-test to establish the difference between the
utilization including machine failure for Kanban, CONWIP, and MRP.

Null Hypothesis

True mean of differences is equal to 0.

Output

Comparison Level t df p-value 95% Mean of diff.
between Confidence Interval estimate

Kanban-CONWIP  Low -23.5278 1199 (-0.00947, -0.00801) -0.00874
CONWIP-MRP Low 18.9 1199 (0.00035, 0.00043) 0.00039
Kanban-MRP Low -22.3771 1199 (-0.00908, -0.00762) -0.00835
Kanban-CONWIP  High -44.2013 1199 (-0.02358, -0.02158) -0.02258
CONWIP-MRP High  12.7387 1199 (0.00033, 0.00045) 0.00039
Kanban-MRP High -43.3191 1199 (-0.02319, -0.02118) -0.02219

cNeoloNoNeNo)
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For the high utilization level the difference between Kanban and CONWIP is
much greater than for the low utilization level. The relative difference between the

control systems Kanban and CONWIP can be calculated with the following formula:

i 7 — Uconwip ~ Ukanb
a‘IKanban(uCONWIP) - — — )
uKanban
whereu,,.., IS the average utilization for Kanban aug,,» is the average

utilization for CONWIP, hereXi, ... (@conme) = 0.0342, 3y, pan(Tyre ) = 0.0336,
and M oyyp (Tyre ) = 0.00006.

The small difference between CONWIP and MRP is a result of adjusting MRP’s

interarrival time to the utilization obtained for CONWIP. The resulting relation

uCONWIP > U >u

MRP Kanban
agrees with the relation obtained for the systems with batch size and setup time
included and machine failure excluded [see 6.1.2].

The cycle time is investigated to establish the influence of machine failure on the
performance of the control systems. Initially, the average cycle time is discussed.
Then, the maximum cycle time and the standard deviation of cycle time are taken into

consideration.

7.3.5Average Cycle Time

As the reduction of machine availability decreases the utilization (the throughput)
of the manufacturing line, it has an increasing effect on the average cycle time. Figure

7-11 illustrates the response of the average cycle time to the batch size, the setup ratio
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and the availability level for the high utilization level. Different availability levels

form layers of the response surface and the average cycle time increases with
decreasing availability. Thus, looking at a vertical data point row in Figure 7-11 the
availability decreases from bottom to top. The individual layers resemble the response
surfaces shown for the models including batch size and setup time only [see Figure
6-1]. The surfaces lie nearly parallel to one another, the gradients increase slightly for
decreasing machine availability. As the batch size and the setup ratio increase, the

variance of the average cycle time increases. The data points are spread further apart

for higher values of batch size and setup ratio.

20000

Average Cycle Time (8)
5000 10000 415000

Figure 7-11: The average cycle time versus the batch size and the setup ratio for the
six availability levels for Kanban.
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Figure 7-12 reveals the response of the average cycle time to the batch size, setup
time and availability level for CONWIP. The reason for displaying the graph is to
illustrate the difference in variance between Kanban and CONWIP. The data points
are spread further apart for CONWIP than for Kanban. Further, observing the average
cycle time for a batch size of one and a setup ratio of ten, CONWIP unveils a spread
of data points above the 15,000-second mark. This makes an overall increase of

average cycle time for CONWIP in comparison to Kanban discernible.
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Figure 7-12: The average cycle time versus the batch size and the setup ratio for the
six availability levels for CONWIP.

Figure 7-13 shows the response of the average cycle time to the batch size, the

setup ratio and the different availability levels for MRP. The increase in variance can
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easily be seen. Further, the unequal spread of data points for a fixed batch size and
setup ratio indicates a non-linear response of the average cycle time to the availability.
Drawing an imaginary vertical line through a given combination of batch size and

setup ratio reveals unequal distances between the data points on that line. The average
cycle time for a batch size of one and a setup ratio of one even exceeds the 20,000
second mark, indicating the inferiority of the pull system, MRP, to the push systems,

that stay close to the 15,000 mark for the lowest availability of 0.94.
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Figure 7-13: The average cycle time versus the batch size and the setup ratio for the
six availability levels for MRP.

The three graphs shown above reveal the response of the cycle time to the batch

size, setup time and availability level for the high utilization level that results from



163

higher card assignments to the line for the pull systems and from a lower interarrival
time for the push system, MRP. The low utilization level is not investigated in detail,
as its mean below 0.65 makes the results hardly applicable to reality. For the low
utilization level, the response surfaces resemble the surface obtained for setup and
batch size experiments [see Figure 6-3]. The variance of the data points for given
combinations of batch size and setup ratio was found to be less than the variance
obtained for the higher utilization level. Henceforth, only the output data for the high
utilization level will be discussed.

Table 7-9 provides a short summary of statistics on the average cycle time for
Kanban, CONWIP, and MRP.

Table 7-9: A summary of statistics on the average cycle time for Kanban, CONWIP,
and MRP including machine failure.

Control System Minimum 1. Quartile Mean Median 3. Quartile Maximum

Kanban 1888.96 4681.02 6298.4 618548 7768.58 14116.33
CONWIP 2101.54 5129.98 6959.04 6762.1 8513.11 16456.66
MRP 245791 6292.81 8469.86 7959.91 10107.02 20555.58

The output for the paired t-test performed to establish the difference between the
means of the average cycle times for the three control systems given in Table 7-10

supports the data given above [see Table 7-9].
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Table 7-10: The output for the paired t-test to establish the difference between the
average cycle time including machine failure for Kanban, CONWIP, and MRP.

Null Hypothesis
True mean of differences is equal to 0.

Output
Comparison t df p-value 95% Mean of diff.
between Confidence Interval estimate
Kanban-CONWIP  -55.001 1199 0 (-684.2086 ,-637.0774) -660.643
CONWIP-MRP -30.057 1199 0 (-1609.433, -1412.199) -1510.816
Kanban-MRP -39.698 1199 0 (-2278.777, -2064.141) -2171.459

The 95% confidence intervals for the difference between Kanban and CONWIP
and for the difference between Kanban and MRP are narrow, their half-width is below
10% of the estimate of the mean of difference, indicating an accurate estimation of the
true difference.

The results are not surprising at all and can be explained by looking at the WIP in
the line. For Kanban the material is assigned to certain machines with the number of
cards as an upper bound. During a machine failure, the material downstream the failed
machine is pulled out of the system, while the material trapped upstream the failed
machine is limited to a fixed amount. The total number of cards assigned to the line
provides an upper limit to the WIP trapped in the system. For CONWIP, the material
accumulates in front of the failed machine, as the material pulled out of the system is
replaced by new releases at the beginning of the line [see 2.3.1]. The amount trapped
upstream the failed machine may amount to the total number of cards assigned to the
line, provided the repair duration is long enough for the entities downstream the failed
machine to pass out of the system to be replaced by new releases. For MRP no upper
limit exists, the releases are controlled by the interarrival rate of raw material to the

line. Independent of a machine failure, new orders are released at the beginning of the
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line. During a machine failure the material is trapped in front of the failed machine for
the entire repair duration. The material downstream the failed machine passes through
the line, however, depending on the repair duration, the amount trapped upstream may
result in a high WIP level for the entire line.

Thus, the amount of material trapped in the system during failure is the smallest
for Kanban, followed by CONWIP. For MRP, the WIP level is the highest, primarily
limited due to the fact that the utilization level is synchronized for all three systems.

As the number of entities trapped in the system during failure increases, the influence
of their cycle time on the average cycle time increases. This results in the highest

average cycle time for the biggest average amount of WIP trapped during failure.

7.3.6Conclusions for Average Cycle Time

The following relation summarizes the information obtained from the graphs and

tables above:

£ MRP £ CONWIP + Kanban
tcycle > tcycle > tcycle

Assuming equal utilization for the three control systems, Kanban clearly outranks its

pendants. However, the relation

uCONWIP >u > U

MRP Kanban

indicates, that the line controlled by Kanban had a smaller utilization and thus a
smaller throughput than the lines controlled by the other two systems. A two percent
difference may well influence the performance. However, assuming an almost linear

response of the average cycle time to utilization may result in a difference of about



166

300 seconds, a difference of 660 [see Table 7-10] is found to be most unlikely. MRP
shows a definite inferiority to the pull systems, responding with an average cycle time
of more than 1,500 seconds.

The resulting ranking illustrates the superiority of Kanban over the other systems,
even though the difference between Kanban and CONWIP is not as obvious as that
between the pull system and the push systems:

1. Kanban,
2. CONWIP, and
3. MRP.

The average cycle time represents a good indicator for the performance of a
manufacturing system. Other indicators should be considered as well to obtain a better
understanding for a mechanism’s characteristics. The maximum of the cycle time and

the standard deviation of cycle time give more insight into a system’s behavior.

7.3.7The Maximum Cycle Time

A low average cycle time is an indication for a good performance of a control
system. However, a low average may result from a majority of short cycle times and a
minority of very long cycle times. Assuming that an important order is trapped in the
manufacturing system resulting in a very long cycle time with a first come first serve
scheduling policy, the due date can not be made. As a consequence, the customer may

be lost. Thus, knowledge on the maximum cycle time may prevent such unfortunate
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situations. Table 7-11 summarizes statistics on the maximum cycle times for the

simulations completed.

Table 7-11: Statistics on the maximum cycle time including machine failure for

Kanban, CONWIP, and MRP.

Control System Minimum 1. Quartile Mean Median

3. Quartile Maximum

Kanban 5865.9 17880.6 27091.8 23073.8
CONWIP 5939.3 19132.7 28202.8 24698.4
MRP 8928.2 24941.4 36361.3 30514.8

31693.5 88870.4
33690.3  98645.7
425451 116682.2

The box plots in Figure 7-14 illustrate the data from Table 7-11. The small

difference between the first quartile and the median and the large distance between
the median and the third quartile indicate a concentration of data below the median.
There are no outliers below the first quartile. On the other hand, the maximum values
for the maximum cycle times can be classified as outliers indicating a minority of data

points with extremely large values. The interquartile range for the pull systems is far

less than the range for MRP. The small difference between Kanban and CONWIP

does not have a notable effect on the customer satisfaction concerning on time

delivery.
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Figure 7-14: Box plots of the maximum cycle time including machine failure for
Kanban (1), CONWIP (2), and MRP (3).

The large values for the maximum cycle time result from a low availability and
unfortunate variability in the manufacturing system. The maximum cycle time
decreases with increasing availability. The decrease is most predominant for MRP.
The paired t-test performed on the maximum cycle times for the 1,200 configurations
simulated reveals a significant (on a 95% confidence level) difference between the

manufacturing lines controlled by the three mechanisms [see Table 7-12].



169

Table 7-12: The output for the paired t-test on the maximum cycle time including
machine failure for Kanban, CONWIP, and MRP.

Null Hypothesis
True mean of differences is equal to 0.

Output
Comparison t df p-value 95% Mean of diff.
between Confidence Interval estimate
Kanban-CONWIP  -5.4447 1199 0 (-1511.4478, -710.7101) -1111.079
CONWIP-MRP -33.2093 1199 0 (-8640.428, -7676.457) -8158.442
Kanban-MRP -38.3098 1199 0 (-9744.237, -8794.805) -9269.521

Although the p-value of zero indicates a significant (95% confidence level)
difference between the maximum cycle times for Kanban and CONWIP, the small t-
value of —5.447 indicates a lesser significance on a higher confidence level. Further,
the difference of 1,111.079 between the two systems looks rather small when set

relative to the mean:

t max —t max

& max ( max ) __ cycle CONWIP cycle Kanban

cycle Kanban\"cycle CONWIP/ — max <
tcycle Kanban

max [, max _28202.8 27091.8
&cycle(tcycle, CONWIP) - 27091.8 A

Ot gy (tc"ﬁfe CONWIP) =0.041,

cycle
a relative improvement of less than 5%. The difference between the pull systems and
the push system would certainly influence the business of a manufacturing company,

considering the relative increase of the maximum cycle time of

BT a7 e ) = 0.342 and

cycle Kanban

&crgil); CONW|P(tcr;gIXe MRP) =0.289.
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The result is not surprising. In an MRP controlled manufacturing line a large
amount of material is trapped upstream the failed machine [see 7.3.5, p. 160]. The last
entity in the queue in front of the failed machine has to wait until all the other entities
have been processed. The waiting time increases with an increasing amount of
material waiting in the queue. As the queue is expected to be longer for CONWIP

than for Kanban, CONWIP results in slightly higher maximum cycle times.

7.3.8Conclusions for the Maximum Cycle Time

Summarizing the information above and assuming an almost linear response of
the maximum cycle time to utilization, the following ranking results:
1. Kanban, closely followed by
2. CONWIP, and
3. MRP.
The last aspect of cycle time investigated is the standard deviation of cycle time

for the number of entities processed per configuration.

7.3.9Standard Deviation of Cycle Times

Both the average cycle time and the maximum cycle time indicate the
performance of the manufacturing control systems by measuring the central tendency
of the data distribution. They do not indicate the variation or spread of data, revealing

the dynamic behavior of a system. The standard deviation of cycle time enables the



171

estimation of how the manufacturing process varies resulting in different cycle times
for the entities leaving the system. Table 7-13 summarizes the statistics on the
standard deviation of cycle time for the 1,200 simulations run per control system.

Table 7-13: Statistics on the standard deviation of cycle time including machine
failure for Kanban, CONWIP, and MRP.

Control System Minimum 1. Quartile Mean Median 3. Quartile Maximum

Kanban 512.75 1510.77 2451.14 217226  2930.1 6765.17
CONWIP 461.95 1690.82 2762.69 2422.58 3259.18  7797.59
MRP 1155.77 3155.76 4754.63 3837.42 5786.49 12874.55

Figure 7-14 visualizes the behavior of the standard deviation of the cycle time for
Kanban (1), CONWIP (2), and MRP (3). The box plots display the most obvious

differences between the three control systems.
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Figure 7-15: Boxplots of the standard deviation of cycle time including machine
failure for Kanban (1), CONWIP (2), and MRP (3).
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For the pull systems the plots reveal a fairly symmetric distribution of data points
around the median between the first and the third quartile. The median for MRP lies
in the lower half of the box denoting the first and third quartile. Thus, the lower half
of the data is more condensed than the upper half of the data, indicating a few
configurations with quite a big standard deviation in cycle times. Further, the data
points for MRP lie further apart. Considering the slightly bigger minimum value as
well, the process unveils a much higher variability than its pendants. As with the
maximum cycle time, the mean of the standard deviation of cycle times for the
different configurations lies above the median [see Table 7-13], denoting a few
configurations with exceptionally high outputs.

Figure 7-15 does not show the big difference in mean between Kanban and
CONWIP. The medians for the two systems are almost the same. Thus, CONWIP
produces more extreme outliers increasing the mean. A paired t-test reveals a
significant (95% confidence level) difference between the two pull systems [see Table
7-14].

Table 7-14: The output for the paired t-test for the standard deviation of cycle time
including machine failure for Kanban, CONWIP, and MRP.

Null Hypothesis
True mean of differences is equal to 0.

Output
Comparison t df p-value 95% Mean of diff.
between Confidence Interval estimate
Kanban-CONWIP -30.2428 1199 0 (-331.7594, -291.3373) -311.5483
CONWIP-MRP -55.745 1199 0 (-2062.049, -1921.836) -1991.943
Kanban-MRP -56.8838 1199 0 (-2382.939, -2224.043) -2303.491

Table 7-15 shows the relative increase of standard deviation of cycle time. The

values are high in comparison to the average cycle time and the maximum cycle time.
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Table 7-15: The relative increase of the standard deviation in cycle time including
machine failure for Kanban, CONWIP, and MRP.

Indicator Value
& stdev (t stdev ) 0.127
cycle Kanban \"cycle CONWIP
& stdev (t stdev ) 0.721
cycle Kanban \"cycle MRP

X stdev (t stdev ) 0.940
cycle CONWIP \*cycle MRP

The standard deviation of cycle time increases by as much as 94% if MRP is
chosen instead of Kanban. Even the increase between the two pull systems reaches

12.7%, a notable difference.

7.3.10Conclusions for the Standard Deviation of Cycle Times

The difference in standard deviations of cycle times between the three control
systems is considerable resulting in the following ranking of the mechanisms:
1. Kanban,

2. CONWIP, and
3. MRP.

The initial investigation in the response of the cycle time to varying batch size,
setup time and machine failure were done to primarily compare the performance of
the three control systems. The regression analysis in the next subchapter provides
more information on the individual systems as it reveals quantitative dependencies

between the parameters and the indicator average cycle time.
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7.3.11Regression

The models were constructed with the aim to enable the calculation of the
expected average cycle time with the help of the following parameters:
* Amount of cards assigned for the pull systems,

* Interarrival time for MRP
» Batch size,

e Setup ratio,

* Machine availability,

* Interfailure time, and

* Repair duration.

Either both the availability and the repair duration (for Kanban and CONWIP) or
both the availability and the interfailure time (for MRP) were included in the models
to take the decrease of utilization for an increase in interfailure time and repair
duration, while keeping the availability constant, into consideration [see 7.3.2].

Further, the models were expected to show significant (on a 95% confidence
level) regressors and interactions of regressors to provide more insight into the
influence of the different parameters on the performance of the control systems. By
doing simple arithmetics, the effect of the individual regressors was approximated to
establish the most influential parameter or interaction of parameters. A model

validation was performed to reveal the correctness of the regression models.
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7.3.11.1Models

Table 7-16 lists the regression models for Kanban, CONWIP, and MRP. The
coefficients of determination indicate a good fit as all three exceed 0.97. The models
were constructed by including regressor terms by trial and error. The best model given

by the software’s stepwise regression algorithm was found to represent the data points

insufficiently.

Table 7-16: The regression models for the average cycle time including machine
failure for Kanban, CONWIP, and MRP.

System Model R2
Kanban fcycle =e* 0.9833
X = 6.2202+0.245', +0.4542> +0.0436 +0.0011,,, -
0.0014t,,,, +0.004%r, +0.003bc-0.313%b - 0.0005br, -
0.0038cr, —0.0137%2 —0.010* - 0.0007%* +0.0004 +
0.0004° + yc®
y <0.0000
CONWIP £ = €" 0.9919
x =145216~8.709% +0.0002,,,, —0.0002at,,; +
0.250&r, +0.001bc+0.1694ab+ 0.0582ac - 0.000Dbcr, -
0.0097abr, - 0.00652 - 0.003% - 0.000%>
MRP i =x2 0.9712

cycle

x =17851101+0.1648, . —10.4123_ +7.448( +
0.0103,,., —31320306a-0.0103t, ., +22.7093r, +
0.004&t . —0.4997at . —0.00brt, . +0.00022,, +

intarr
1383787%° —0.0494°

The models were assembled from regressors, which were found to be significant
on a 99% confidence level. The probability for the t-value being greater than the

tabled value were lower than 0.01 for the t-tests performed on the coefficients. The p-
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value for the F-test was zero for the three models obtained. Naturally, the models
given in Table 7-16 are not necessarily optimal, but, they seem to represent the data
set quite well.

After transformation, the residuals were found to be independently and normally
distributed with a fairly equal variance. The most significant outliers were identified,
to analyze the influence of the data points on the model. Figure 7-16 shows the
Cook’s distance [see 4.3.8] versus the index of the data points, the twenty most

notable outliers are labeled.
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Figure 7-16: The Cook’s Distance versus the index of the data points for the
regression model for Kanban, including machine failure.

Eleven of the twenty outliers were identified as data points with an index ending
on 01. Tracing the data points back to the output data, revealed configurations with

batch size one, setup ratio one and the smaller number of cards assigned. These
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configurations resulted in unusually short average cycle times. However, the
throughputs or utilizations were found to be exceptionally small as well, making these
configurations not applicable to reality. For the other outliers an obvious pattern could

not be distinguished.

7.3.11.2Effects of the Regressors

A small coefficient does not necessarily indicate, that the corresponding regressor
has a small effect on the response variable. The domain of the regressor has to be
taken into consideration as well. Suppose regressor A has a coefficient of 1, but
represents values in the domain [1,000, 2,000]. On the other hand, regressor B has a
coefficient of 1,000, but represents values in the domain [0.1, 0.2]. Multiplying the
coefficient with the average of the lower and upper bound of the given domains,
results in 1,500 for A and 150 for B. Thus, although the coefficient of B is much
higher than the coefficient of A, A has a greater effect on the response variable. For
the example, only two levels were taken to calculate the average of the values in the
domain. 2,400 replications were used to construct the models. Thus, the averages

were calculated from 2,400 values using the following formula:

1 2400 m;
Average = ——

24002[['“

wherel; stands for the level of théh variable in theth regressor term in replication

i. Table 7-17, Table 7-18, and Table 7-19 list the domain for the regressor terms, the
average of the levels for the regressor and the corresponding effects on the average

cycle time for Kanban, CONWIP, and MRP, respectively.
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Table 7-17: The domain and the corresponding effects for the regressor terms
including machine failure for Kanban’s regression model.

Regressor Domain of Regressor Average Coefficient  Effect

trepair [873, 5515] 2480.833  0.0011  2.728917
b [1,10] 5.5 0.4542 2.4981
re [1, 10] 5.5 0.245 1.3475
c [13,60] 20.95 0.0436  0.91342
cr, [13, 600] 115.225  0.0049  0.564603
bc [13, 600] 98.75 0.0031  0.306125
r [1, 1000] 302.5 0.0004 0.121
b® [1, 1000] 302.5 0.0004 0.121
abr, [0.94, 99] 29.1936  -0.0005  -0.0146
r2 [1, 100] 38.5 -0.0102  -0.3927
c? [169, 3600] 596.55  -0.0007 -0.41759
acr, [12.22, 594] 111.2066  -0.0038  -0.42258
r2 [1, 100] 38.5 -0.0137  -0.52745
ab [0.94, 9.9] 5.307979 -0.3139 -1.66617
at e (820, 5460) 2380.847 -0.0011 -2.61893

For Kanban, the repair time and the batch size show a considerable positive effect
on the response variable [see Table 7-17]. Considering all the terms including the
setup ratio leaves a positive effect on the average cycle time. An increase in the setup
ratio results in an increase of the average cycle time. The amount of cards assigned to
the entire line is positively influential on the response variable, too. The average cycle
time increases with an increasing number of cards allocated to the line. However, the
square term of the same variable has a fairly large negative effect on the indicator,
neutralizing the positive effect to some extend. The interaction term of the repair
duration and the availability have a negative influence on the indicator. This indicates

the decrease of cycle time for an increase in availability. The least influence is
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subjected by the interaction of availability, batch size and setup ratio, which has a low

information content in any case.

Table 7-18: The domain and the corresponding effects for the regressor terms
including machine failure for CONWIP’s regression model.

Regressor Domain of Regressor Average Coefficient  Effect

ar, [0.94, 9.9] 5.307716 0.2508  1.331175
ac [0.94, 44) 16.06885 0.0582  0.935207
ab [0.94, 9.9] 5.307818 0.1694  0.899144
trepair [873, 5515] 2480.833  0.0002  0.496167
bc [10, 440] 80.65 0.0011  0.088715
c? [100, 1936] 16.65  -0.0005  -0.00833
ber, [10, 4400] 443575  -0.0001  -0.04436
b2 [1, 100] 38.5 -0.0038  -0.1463
r2 [1, 100] 38.5 -0.0065 -0.25025
abr, [0.94, 99] 20.19294 -0.0097  -0.28317
at oo (820, 5460) 2380.664 -0.0002 -0.47613
a [0.94, 0.99] 0.965053 -8.7099  -8.40552

The most influential parameters for CONWIP are the interaction terms of the
availability with the setup ratio, the number of cards, and the batch size [see Table
7-18]. The average cycle time increases with an increasing setup ratio, number of
cards assigned, and batch size. The repair duration has a fairly strong positive
influence on the average cycle time as well. As with Kanban, an increasing
availability decreases the indicator, expressed by the large negative coefficient of the
main availability term. The interaction terms including availability are not influential

enough to compensate for the strong negative effect of the main availability term.
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Table 7-19: The domain and the corresponding effects for the regressor terms
including machine failure for MRP’s regression model.

Regressor Domain of Regressor Average Coefficient  Effect

a2 (0.88, 0.98) 0.964983 1383.788 1335.332
to [28200, 178200] 79050  0.0103  814.215
t [48, 927] 379.0517 0.1648  62.46771

b [1, 10] 5.5 7.448 40.964
{2, [2304, 859329] 167781  0.0002  33.5562

Intarr

ar, [0.94, 9.9] 0.964983 22.7093 21.91409
bt, .. [48, 9270] 5.5 0.0048  0.0264

b2 [1, 100] 5.5 -0.0494  -0.2717

brt,... [48, 92700] 14457.09  -0.001  -14.4571

r, [1, 10] 5.5 -10.4123  -57.2677
at. (45, 918) 364.9666 -0.4997 -182.374
at.. [26508, 176418]  76668.18 -0.0103  -789.682

a [0.94, 0.99] 0.964983 -3132.03 -3022.36

As the model for MRP only required square root transformation and not a natural
logarithm transformation, the effects are much bigger for MRP’s model [see Table
7-19]. As before, the machine availability has a big effect on the average cycle time.
The negative influence is stronger than the positive influence of the parameter, taking
the main effect, the effect of the square term and the effects of the interaction terms
into consideration. MRP is outranked by the pull systems, only when machine failure
(availability) is introduced to the models. The regression analysis thus supports the
strong influence of this parameter on the performance of the push system. Further, the
interfailure time influences the average cycle time positively. The utilization
decreases with increasing interfailure time [see 7.3.2], resulting in longer average
cycle times. As expected, the interarrival time has a negative effect on the response

variable. The average cycle time increases with a decreasing interarrival time.
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Looking at the output data immediately reveals the higher average cycle time for the
shorter interarrival time. Unexpectedly, the setup ratio shows a negative effect on the
indicator. Although, the negative influence is compensated by the interaction term of
the setup ratio and the machine availability, the sum of the effects results in an overall
negative effect on the average cycle time for the parameter setup ratio. Most
importantly, the batch size does not strongly effect the average cycle time. In practice,
the batch size is considered an influential factor, which has a linear effect on the
performance of a manufacturing system. For MRP, the machine availability seems to
influence the performance more significantly, demoting the batch size to a less

significant factor.

7.3.11.3Model Validation

In the previous section, the effect of the regressors on the response variable was
compared to the theoretical expectations. All of the expectations with one exception
were satisfied. The only unexpected effect was found for the setup ratio in the MRP
model [see Table 7-19].

Further, new data was collected to check the models and its predictive ability.
Values within the parameter domains [see Table 7-17, Table 7-18, and Table 7-19]
produced a good fit of the models. Unfortunately, the above regression models were
found to produce unsatisfactory results for predicting average cycle times with
parameter levels outside the given intervals. Input values close to the given parameter

domains resulted in somewhat representative output data. However, the fit of the
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predicted values worsened with an increasing distance of the input values from the

given domains.

7.3.12Conclusions

The following summarizes the information obtained from constructing regression
models for the three control systems:

* The machine availability has a strong negative influence on the average cycle
time.

* The number of cards assigned to the line, the interarrival time, the interfailure
time and the repair duration, keeping the availability constant, have a strong
positive effect on the average cycle time.

» The batch size has only a small positive effect on the average cycle time. The
effect was expected to be more significant for this parameter. The setup ratio has a
positive effect on the performance of the pull systems, while the regression model
for MRP indicates a negative effect of the setup ratio on the average cycle time.
The next chapter covers the variability of the performance indicators and

summarizes the calculations done on confidence intervals to ensure accurate

computation of estimated values.



CHAPTER 8
CONFIDENCE

To ensure a statistically sound interpretation of the observations, all the data was
tested on a 95% confidence interval. The half-width [see 4.2.1] of the confidence
interval of the point estimate was maintained below the 10% fraction of the mean as a
measure of accuracy:
h<yX(n),
wherey is the given parametgr0.1.

As the most variable configurations were unknown, confidence tests were done
before and after the simulations.

The transient behavior of the systems was investigated prior to the experiments.
Then, a 95% confidence interval was calculated for the configuration assumed to have
the highest variability to guarantee the desired accuracy.

The configuration with the highest variability could only be determined by
reasoning prior to a set of replications. The actual configuration was found after
completing the experiments by analyzing each replication. If the configuration
assumed to have the highest variability was found to actually produce the highest
variability for an experiment, no additional calculations were performed. Otherwise,

the confidence interval was recalculated.

183
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The coefficient of variation for the cycle timg,., was computed for every

replication:
6 _ \ 52 (tcycle)
| Y |
oo E(tcycle)

as the ratio between the sample standard deviation and the expected value of the cycle
time. The half-width of the confidence interval of the configuration with the highest
coefficient of variation was computed and assured to be below the 10% value of the

expected value. This procedure was ensued for all replications done.

8.1 Transient Behavior

The transient behavior of the three control systems was primarily investigated to
reveal the duration needed to produce stable statistics [see 4.1]. Furthermore, as most
of the simulations were run for a non-terminating system, it was worth finding out,
whether the statistics should only be initialized after a warm-up period. This would
reduce the number of entities sent through the system and reduce the experimentation
time. Table 8-1 lists the configurations for the analysis of the transient behavior for

Kanban, CONWIP, and MRP.

Table 8-1: The configurations for the analysis of the transient behavior for Kanban,
CONWIP, and MRP.

System Batch Size Number of Cards Interarrival Time
CONWIP 1 10 -

Kanban 1 10

MRP 2 42
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At a glance, the graphs [see Figure 8-1, Figure 8-2, and Figure 8-3] indicate that
Kanban and CONWIP show very similar patterns, MRP reveals a very interesting
behavior. For Kanban and CONWIP the transient phase ends after only 1,000 entities
produced as the average cycle time evens out. For MRP it takes about 3,000 entities
before the steady-state is approached. One could argue that it takes even longer as the

average cycle time line starts to really even out only after more than 10,000 units have

been processed.
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Figure 8-1: Cycle time and average cycle time dependent on the number of processed
entities for CONWIP.
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Figure 8-2: Cycle time and average cycle time dependent on the number of processed
entities for Kanban.

Kanban has a few increases in the average cycle time for quite a big number of
entities, finally reaching the steady state close to 15,000 entities. CONWIP has only a
few minor bumps in the average cycle time line. For both these systems, the changes
can most probably be attributed to the random generator. However, as the number of
produced entities increases, the average no longer shows disturbances by the

generated input values.
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Figure 8-3: Cycle time and average cycle time dependent on the number of processed
entities for MRP.

MRP exhibits a very different pattern. The cycle times increase and decrease
almost cyclically. As the times differ so very much in length, the average cycle time is
influenced even for a high amount of entities produced. This cyclic behavior can most
likely be blamed on two factors: the random number generator and the build up of
work in process [see 7.2]. As the random number generator calculates longer process
times, the constant interarrival time keeps pushing the same amount of entities into
the system. However, the entities ahead of them block their passage and trap them in
the system, raising their cycle time. In comparison to the pull systems, the amount of
entities prevented from passing through with the same average time is not limited.
This results in quite a big number of entities with long cycle times, representing a

large weight in the calculated average. This is true for the short cycle times as well.
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Only when this weight decreases relative to the number of processed entities, the

average cycle time will remain constant.

As the analysis revealed short transient times [see 4.1] for all the systems, 10,000
entities produced were thought to be sufficient to provide an accurate estimation of
the statistical indicators of performance. The computations done on the confidence
interval disclosed this assumption as truthful. These calculations are shown in the
following sections.

However, one important issue remains: the warm-up period. Several points lead to
the dismissal of taking warm-up into account:

» The configurations change considerably resulting in different steady-state times,
the warm-up periods would have to be estimated for a large number of
replications or chosen very long,

» The duration of one replication for producing 10,000 entities was about two
minutes on average, not making time an issue, and

» Calculations of the confidence interval with a warm-up period didn’t show a great

improvement of the confidence interval without one.

8.2Batchsize

8.2.1Prior to Simulations

The standard deviation is dependent on the work in process in the system and
increases with increasing WIP. Thus, WIP should be maximum to obtain a maximal

standard deviation. As the WIP increases, the average cycle time increases, resulting
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in a decrease of the coefficient of variation. Assuming the average cycle time
increases faster than the standard deviation, the smallest WIP, and consequently, the
smallest batch size and the least amount of cards, should be chosen. Table 8-2 shows
the configuration chosen and its output.

Table 8-2: Configuration for Kanban and CONWIP to determine confidence interval

prior to simulation and the corresponding utilization and coefficient of variation as the
output.

System Batch Size  Number of Cards  Utilization c

cycle

Kanban 1 10 0.4297 0.2007
CONWIP 1 10 0.5276 0.2279

CONWIP’s utilization was taken to calculate the interarrival time for MRP [see

5.2.1]:
Thheory = tpr:;essg . E
. Theege BU = Thyyeraget process = TMverage = tpTcess g . tprocess,
Thheory E . . B u
Thyerage = . bintarr = m %
20 20

t = =37.9075.

" Ueonup 05276

This resulted in the configuration and output given in Table 8-3.

Table 8-3: Configuration for MRP to determine confidence interval prior to
simulation and the corresponding utilization and coefficient of variation as the output.

System  Batch Size Interarrival Time Utilization Ecyde
MRP 1 38 0.5280 0.2384
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To calculate the confidence interval on the expected value of the average cycle
time, the cycle time for every entity leaving the system was saved in a file. This data
was analyzed according to the Method of Batch Means [see 4.2.2 Analysis for Non-
Terminating Simulations, The Method of Batch Means]. Here, batch refers to data
accumulations, allowing an unbiased statistical analysis of their means. It should not
be confused with the system parameter influencing the performance of a control
system. A correlation analysis then provided the lag length for greatest independence

of data between two batches [see Figure 8-4].
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Figure 8-4: Correlogram for MRP indicating the correlation dependent on the lag
number.

The amount of batches resulting is given in Table 8-4 as number of observations.
It can clearly be seen that for Kanban a greater correlation of the data than for
CONWIP existed, resulting in larger batches and a smaller number of observations.
MRP showed the highest correlation of the data. Unfortunately, the correlation did not
decrease with the assignment of different random number strings to the individual

machines.
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Table 8-4: Output for confidence interval calculations for CONWIP, Kanban, and
MRP.

Identifier ~ Average  Standard 0.95 C.L Minimum  Maximum Number of
Deviation  Half Width Value Value Observations
CONWIP 381 71.3 3.43 217 706 1666
Kanban 349 435 3.41 228 532 625
MRP 357 41.5 5.79 277 492 200

The half-widths for the different systems are well below the 10% accuracy
requirement. In the case of Kanban and CONWIP, they are even below a 1% accuracy
level. Thus, producing 10,000 entities would result in a high confidence. To ensure
that this was true for all the replications, the runs with the highest coefficient of

variation were determined from the output data.

8.2.2Succeeding Simulations

The output data indicated the configurations in Table 8-5 to have the highest

coefficients of variation.

Table 8-5: Configuration for CONWIP, Kanban, and MRP resulting in the highest
coefficient of variation of all the simulations run.

System Batch Size Number of Cards Interarrival Time Ecycle
CONWIP 1 10 - 0.2279
Kanban 1 11 - 0.2144
MRP 1 - 38 0.2384

The initial configuration chosen for CONWIP and MRP were confirmed to have
the highest coefficient of variation. For Kanban a slightly higher coefficient was
found for eleven instead of ten cards being assigned. This deviation was classified as

not substantial. No additional calculations were done.
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Table 8-6 exhibits the configurations for the minimal coefficients of variation.
Comparing the values given in Table 8-5 and Table 8-6 reveals higher coefficients in
general for the push system, MRP. This can most probably be attributed to the
behavior described earlier in this chapter [see 8.1, Figure 8-3].

Table 8-6: Configuration for CONWIP, Kanban, and MRP resulting in the lowest
coefficient of variation of all the simulations run.

System Batch Size  Number of Cards  Interarrival Time Coycle

CONWIP 9 20 - 0.0751
Kanban 10 19 - 0.0756
MRP 10 - 252 0.0803

Table 8-6 unveils a minimal coefficient of variation for a batch size of 9 for
CONWIP instead of a batch size of 10. This is due to the fact that simulations were
only run for 17 cards with a batch size of 10. Every additional card would have
resulted in a lower coefficient of variation. Comparing Table 8-5 and Table 8-6
reveals a decrease of the coefficient of variation for an increase in WIP for the pull
systems. MRP shows the same behavior for an increase in WIP due to an increase in
batch size. However, the response of the coefficient of variation to an increase in WIP

due to a decrease in interarrival time changes for different batch sizes.
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Figure 8-5: The coefficient of variation dependent on the interarrival time for MRP.

Figure 8-5 shows an increase of the coefficient of variation for an increase in
interarrival time, resulting in a decrease in WIP, for a batch size of one. As the batch
size increases, the decrease in the coefficient of variation for an increase in
interarrival time, resulting in a decrease in WIP, becomes more evident. Thus, for
MRP the standard deviation of cycle time increases as fast as the average cycle time
with increasing WIP, for a given batch size. For the pull systems, the average cycle
time increases faster than the standard deviation of cycle time, resulting in a decrease

of the coefficient of variation for an increase of the WIP, for a given batch size.
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8.3 Setup

8.3.1Prior to Simulations

Assuming that the systems including setup time would behave as the systems
without setup, similar initial configurations were chosen. For Kanban 10 cards were
assigned, as the increase of the coefficient of variation for 11 cards was considered a
unique phenomenon. As the coefficients tended to decrease for increasing throughput,
the longest setup time was chosen, resulting in a low throughput [see Table 8-7].
Table 8-7: Configuration for Kanban, CONWIP, and MRP including setup time to

determine confidence interval prior to simulation and the corresponding throughput
and coefficient of variation as the output.

System Batch Setup Number of Interarrival Throughput c

cycle

Size Time Cards Time
Kanban 1 200 10 - 0.1503 0.1936
CONWIP 1 200 10 - 0.1503 0.2192
MRP 1 200 - 399 0.1503 0.2151

Table 8-8 exhibits the results of the calculations done. Again, the half-widths lie
well below the 10% value of the average, indicating a very accurate calculation of the
expected value. The major difference between this and the previous results are the
number of observations. While the number has decreased for the two pull systems, it
has increased for MRP, allowing more accurate calculations [compare with Table
8-4]. Generally speaking, the correlation of the output data has increased by the

introduction of setup.



195

Table 8-8: Output for confidence interval calculations including the setup time for
CONWIP, Kanban, and MRP.

Identifier Average Standard  0.95 C.I. Minimum  Maximum Number of
Deviation Half Width Value Value Observations
CONWIP 4.02e+003 347 34.1 3.18e+003 4.92e+003 400
Kanban 3.65e+003 408 35.8 2.7e+003 5.22e+003 500
MRP 3.76e+003 520 56 2.65e+003 5.64e+003 333

Although the half-widths were found to easily satisfy the 10% criterion, an

analysis of the output data was performed.

8.3.2Succeeding Simulations

The coefficients of variation were analyzed after the completion of 4,626
replications. Table 8-9 lists the three configurations with the highest coefficients.
Table 8-9: Configuration for Kanban, CONWIP, and MRP including setup time to

determine confidence interval succeeding the simulations and the corresponding
throughput and coefficient of variation as the output.

System  Batch Setup  Number of Interarrival  Throughput c

Size Time Cards Time cycle
Kanban 1 200 12 - 0.1366 0.2027
CONWIP 1 200 10 - 0.1492 0.2181
MRP 1 200 - 271 0.2208 0.2403

Comparing the configurations found with the highest coefficients of variation to
the configurations determined prior to the replications [see Table 8-7], no major
deviations could be discerned. The batch size and setup time were equal. For
CONWIP a small change in the number of cards assigned occurred. MRP showed an

unexpected increase in variability for a decrease in interarrival time. Figure 8-6
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illustrates the unusual behavior of the configuration. Although the utilization
decreases steadily with an increasing interarrival time, the variability of the specific
interarrival time shows an extraordinary jump. However, disregarding the exceptions,
the expected increase of variability with a decreasing utilization for batch size one can

be discerned in the graph.
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Figure 8-6: The coefficient of variation and the utilization dependent on the
interarrival time for MRP with batch size one and setup time 200.

The extraordinarily high variation for the interarrival time of 271 can most
probably be ascribed to the random generator, as the utilization does not show an
unusual behavior. A jump in the utilization would have been most unlikely for a

constant interarrival time resulting in a predetermined throughput and utilization.
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Table 8-10: The coefficients of variation prior to the simulations and succeeding the
simulations and their difference including setup for Kanban, CONWIP, and MRP.

System = prior ~ succeeding ~
y Ccycle Ccycle ACcycle

Kanban  0.1936 0.2027 0.0091
CONWIP 0.2192 0.2181 -0.0011
MRP 0.2151 0.2403 0.0252

The confidence intervals were not recalculated for the differing configurations, as
the differences in the coefficients of variation for the cycle times,,. , were

considered to be negligible [see Table 8-10]. The half-widths calculated prior to the

bulk of the simulations were sufficiently small to allow small deviations.

8.4 Failure

With a new source of variability added to the models, the machine failure, the
amount of entities processed to ensure an accurate calculation of the indicators had to
be reevaluated. The small half-widths determined for setup indicated some tolerance
for increasing variability. However, especially the variability for MRP was expected
to increase tremendously, as a large amount of entities would be trapped in the
manufacturing line during repair.

Parallel to CHAPTER 7 incorporating the discussions on the influence of machine
failure on the performance of the manufacturing system, the dynamic response is dealt

with first, followed by the response to machine failure in steady-state.
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8.4.1Dynamics of Failure

The confidence on data for the two areas of investigation, the time spent in the

system [see 7.2.3] and the time to recover after failure [see 7.2.4], is given below.

8.4.1.1Time Spent in the System

To enable a comparison of the three manufacturing systems observing their
dynamic behavior to failure, 20 replications were completed. The calculated half-
width of the 95% confidence intervals of their mean was found to exceed the 10%
limit. Additional 10 replications were run and the t-test was repeated for the passing
point 11 [see 7.2.3]. The coefficients of variation for the data collected at this passing
point were very close to the highest for Kanban and CONWIP and the highest for
MRP. The output of the computations is given in Table 8-11.

Table 8-11: The output for t-tests done for the time after failure at passing point 11 for
Kanban, CONWIP, and MRP.

Null Hypothesis
True mean of differences is equal to 0.

Output
System t df  p-value 95% 95% C.I. Mean
Confidence Interval Half-width estimate
Kanban 29.1104 30 0 (4763.814; 5482.668) 359.427 5123.241
CONWIP 28.8857 30 0 (4986.223; 5744.937) 379.357 5365.580
MRP 27.8355 30 0 (4899.202; 5675.026) 387.912 5287.114

The half-widths clearly meet the 10% requirement, ensuring statistically confident

observations.
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8.4.1.2Recovery Time

To ensure an accurate estimation of the mean times, only 20 replications were
needed for the pull systems and double the amount was needed for MRP [see Table
8-12]. This immediately indicates the greater variability of the push system, which
can primarily be attributed to the high level of work in process accumulating in the

system during failure.

Table 8-12: The results for the calculation of the confidence intervals for the time
after failure and the moving average of the cycle times for Kanban, CONWIP, and
MRP.

System  Indicator t Df p-value 95% C.I. Half-Width Mean

Kanban tow 24221 19 0 (9064.196; 10778.908)  857.356  9921.552

Kanban f;ﬁes 142.1707 19 0 (5294.726; 5452.952) 79.113 5373.839
CONWIP tow 31.4352 19 0 (10436.21; 11925.08) 744,435  11180.64
CONWIP f;ﬁes 81.5805 19 0 (5063.826; 5330.502) 133.338  5197.164

MRP o 23.4124 39 0 (19825.32; 23574.83)  1874.755 21700.08
MRP fexps 451.5923 39 0 (5296.451; 5344.110) 23.8295 5320.28

cycle

The half-widths for the confidence intervals calculated for the time after failure,

t .., meet the 10% criterion, while those calculated for the exponentially smoothed

now’

cycle times,t > indicate a very accurate estimation of the mean [see Table 8-12].

cycle?

8.4.2Machine Failure in Steady-State

As done previously, the configuration with the highest variability had to be

determined to enable accurate calculations of the expected values for the indicators. In
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a first step, the influence of the interfailure time and the repair duration on the
performance of the manufacturing control system was investigated. Then the levels
for the relevant parameters could be set with the information gained by constructing

regression models.

8.4.2.1Influence of Interfailure Time and Repair Duration

The influence of increasing interfailure time and repair duration for a constant
availability can be seen in Table 8-13 for a low utilization level and in Table 8-14 for
a high utilization level. The regression was performed for eleven combinations of
interfailure time and repair duration and varying batch size from size one to size ten
[see Table 7-5].

Table 8-13: The response of the average utilization to different combinations of

interfailure time and repair duration and varying batch size for a small number of
cards [see Table 6-2]assigned to a line controlled by CONWIP.

Formula
Ul ~ Bsize + Bsize”2 + Combination
Coefficients
Identifier Value Std. Error t-value Pr(>[t))
(Intercept) 0.2799 0.0048 58.4823 0.0000
Bsize 0.0439 0.0018 24.6760 0.0000

I(Bsize™2) -0.0021 0.0002 -13.2893 0.0000
Combination ~ -0.0061 0.0004 -16.9164 0.0000

Residual Standard Error
0.01202 on 106 degrees of freedom

Multiple R-Squared

0.9679

F-Statistic
1066 on 3 and 106 degrees of freedom, the p-value is 0
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Table 8-14: The response of the average utilization to different combinations of
interfailure time and repair duration and varying batch size for a large number of
cards [see Table 6-2] assigned to a line controlled by CONWIP.

Formula

Uh ~ Bsize + Combination
Coefficients

Identifier Value Std. Error t-value Pr(>|t|)
(Intercept) 0.5451 0.0055 99.4371 0.0000
Bsize 0.0111 0.0007 16.6929 0.0000
Combination ~ -0.0094  0.0006 -15.6008  0.0000

Residual Standard Error
0.02 on 107 degrees of freedom
Multiple R-Squared

0.8299

F-Statistic
261 on 2 and 107 degrees of freedom, the p-value is 0

In both cases, for the low and high average utilization level, the combination has a
significant effect on a high confidence level on the average utilization. The negative
gradient of the combination indicates, that the average utilization decreases with an
increasing interfailure time and repair duration. However, the small coefficient for the
combination in comparison to the coefficient for the batch size indicates a minute
effect on the average utilization and thus on the performance of the manufacturing
line [see Figure 7-10].

Comparing the low and high utilization levels, the sensitivity of the average
utilization to an increasing interfailure time and repair duration increases from the low
level to the high level. The decrease of the coefficient of determination indicates an
increase of variance with increasing utilization. The model provided is not able to

describe the interdependence of the regressors with the response sufficiently.
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After constructing the models and observing a significant effect (on a 95%
confidence level) of the increase in interfailure time and repair duration on the

utilization, the levels for the relevant parameters could be set.

8.4.2.2Prior to Simulations

With the aim to determine the configuration with the highest variability before the
experiments were carried out, the negative correlation between utilization and
variability lead to the following interdependence:

The lower the utilization, the higher the variability.

However, not all of the variability can be derived from the utilization level. The
amount of material trapped in the system during repair plays a significant role on a
system’s performance as well. As the number of entities in the system increases
during machine failure and repair, the number of entities with a longer cycle time
increases and consequently, the average cycle time increases. Once the entities held in
the line upstream from the failed machine pass out of the system, the average cycle
time decreases rapidly. This increases variability on the average cycle time. Thus,
there exists a trade-off between low utilization, which results from a low WIP level,
and the high WIP level during the repair time. The setup time manipulates both
factors. As the setup time increases, the utilization decreases. On the other hand, an
increase in setup time decreases the reactivity of the system to failure as it takes
longer for each entity to pass through the system. The material trapped upstream the

failed machine is not built up as fast during failure. Furthermore, with increasing
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setup time, keeping the batch size constant, the average time spent in the system
increases as well, making a fairly short repair duration less effectual.

Keeping the trade-off in mind and judging by the results obtained from previous
experiments, the parameters were set at the following levels:
« Small number of cards assigned to the line,
* Small batch size,
* small setup time,
* Low availability.
The influence of the interfailure time and the repair duration was not taken into
account. Table 8-15 lists the resulting configurations.

Table 8-15: The configurations for Kanban, CONWIP, and MRP including machine
failure prior to simulations.

System Batch Setup Interfailure  Repair  Number of Interarrival Ecycle

Size Time Time Duration Cards Time
Kanban 1 20 28200 1800 13 - 1.199
CONWIP 1 20 28200 1800 10 - 1.261
MRP 1 20 28200 1800 - 71 1.082

Calculations done for 10,000 entities processed, revealed large half-widths.
Consequently, the number of entities passing through the manufacturing line was
increased until the half-width easily met the 10% criterion. The number of entities
processed was increased by additional units to buffer unexpected variability. Table
8-16 shows the resulting amount of entities processed to ensure adequate accuracy for

the calculation of the expected values.
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Table 8-16: The amount of entities processed to ensure good estimation of indicators
including machine failure.

Control System Amount of Entities Processed
Kanban 15,000
CONWIP 20,000
MRP 100,000

The computations resulted in the numbers illustrated in Table 8-17.

Table 8-17: Output for confidence interval calculations including machine failure for
Kanban, CONWIP, and MRP.

Identifier Average Standard  0.95 C.I. Minimum  Maximum Number of
Deviation Half Width Value Value Observations
Kanban 1.06e+003 839 52 476 8.77e+003 1000
CONWIP 1.08e+003 820 56.9 523 6.14e+003 800
MRP 1.05e+004 2.5e+003 292 6.06e+003 1.87e+004 285

8.4.2.3Succeeding Simulations

Fortunately, the number of entities processed was chosen fairly high. The
difference between the coefficients of variation for the configurations chosen prior to
the bulk of simulations [see Table 8-15] and the highest coefficients for all
configurations simulated were tremendous. Table 8-18 illustrates the configurations
with the highest coefficient of variation for the average cycle time.

Table 8-18: The configurations for Kanban, CONWIP, and MRP including machine
failure succeeding the simulations.

System Batch  Setup Interfailure Repair Number of Interarrival c

Size Time Time Duration Cards Time cycle
Kanban 1 20 86400 5515 14 - 1.929
CONWIP 1 20 86400 5515 10 - 2.365

MRP 1 20 86400 3600 - 99 1.344
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Table 8-19 shows the outputs for the calculations on the confidence interval.
Unfortunately, the 10% criterion was not met for CONWIP. However, there were
only two configurations out of 2,400, for which the coefficient of variation of the
average cycle time exceeded a tolerable value. Thus, the output data could be
regarded as a good estimation of the true indicators. The fairly small half-width for
MRP indicates, that it was unnecessary to produce as many as 100,000 entities, which
resulted in long simulation times. A smaller number would have sufficed.

Table 8-19: Output for confidence interval calculations including machine failure for
Kanban, CONWIP, and MRP succeeding the simulations.

Identifier Average Standard 0.95C.I. Minimum  Maximum Number of
Deviation Half Width Value Value Observations
Kanban 1.12e+003 1.47e+003 105 506 1.68e+004 750
CONWIP 1.2e+003  1.47e+003 130 573 1.34e+004 500
MRP 2.82e+003 1.88e+003 185 599 1.48e+004 400

The above investigation reveals a strong increase in variability for increasing
failure time and repair duration. Looking at the half-width, the output data becomes
almost double as variable for the same machine availability [compare Table 8-17 and
Table 8-19].

The last chapter gives an overview of the conclusions made throughout prior

discussions.



CHAPTER 9
CONCLUSIONS

9.1 Summary

In this thesis the performances of Kanban, CONWIP, and MRP were evaluated for
a ten identical machine tandem line with respect to parameters including batch size,
setup time, and machine failure. The utilization (throughput) was kept constant for all
control systems. The parameters were introduced to the models one at a time, thereby
increasing the realism and the variability of the manufacturing line. Thus, the
performances of the three control mechanisms were explored on three levels of
complexity. Initially, only the influence of batch size on the performances of the
control systems was investigated. Then, the setup time was taken into consideration in
addition to the batch size. Last, the machine failure was introduced to the models to
augment the realism of the models resulting in a higher practical applicability. On
each level, the performances were evaluated for steady-state, assuming the
manufacturing line would run indefinitely. In addition, the response of the
performance to machine failure was observed dynamically while keeping batch size

and setup time constant.
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Conclusions for the models including batch size variations only [see 5.2.3]:

There is a linear dependence between the number of cards assigned and the
average cycle time. The batch size influences the average cycle time non-linearly
while the batch size and the number of cards interact. Thus, the batch size has a
higher impact on the average cycle time than the number of cards assigned to the
line.

For an increasing batch size, the increase in average cycle time increases for every
additional card assigned to the system.

For a fixed number of cards allocated to the line, the average cycle time increases
with increasing batch size.

For a batch size greater than one, the average cycle time is always greater than
zero. For a batch size of one, the average cycle time approaches zero as the WIP
level approaches zero.

For a given WIP level, an optimal configuration can be found for Kanban,
CONWIP, and MRP resulting in the following ranking of their performance:

1. MRP,

2. CONWIP, and

3. Kanban.

For a given WIP level a lower batch size always results in a smaller average cycle
time than a higher batch size, which seems to hold across all manufacturing

control systems.



208

Conclusions for the models including both batch size and setup time variations

[see 6.2.2 and 6.3.2]:

* The influence of the setup time on the average cycle time increases with
decreasing batch size. Thus, for a big batch size an increase in setup time is not as
detrimental for the performance of a system as for a small batch size.

» Batch size five separates the batch sizes into those with a higher sensitivity to
change and those with a lower one. As a medium batch size, it encompasses the
advantage of a small batch size and the good attributes of a big batch size. A small
batch size results in a lower average cycle time, a big batch size has a lower
reactivity to a change in setup time.

» Observing the average cycle time dependent on the batch size and the setup ratio,
MRP outperforms the two pull systems. In contradiction with the previous
findings , Kanban shows a better performance than CONWIP. Therefore, the order
is:

1. MRP,

2. Kanban, and

3. CONWIP.

Conclusions for the models looking at the dynamic response to machine failure

[see 7.2.5]:

* Time spent in the system by the first entity trapped upstream the failed machine,
the control systems can be ranked in the following manner:

1. Kanban,
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2. MRP, and
3. CONWIP.

* However, this ranking can not be stated with high confidence, as the differences in
the time spent in the system are not highly significant.

» A closer look at the time needed for recovery after failure reveals the following
order:

1. Kanban,

2. CONWIP, and

3. MRP.

Conclusions for the models combining batch size, setup time, and machine failure

variations [see 7.3.3]:

* As the interfailure time and the repair duration increase keeping the availability
constant, the average utilization decreases. Thus, it seems to be of advantage to
implement preventive maintenance done frequently with a shorter duration.
Waiting for the failure to occur resulting in bigger damage and longer repair times
can reduce the performance of a system.

» Looking at the average cycle time as an indicator of performance, Kanban
outperforms the other systems. The difference between Kanban and CONWIP is
not as obvious as that between the pull system and the push systems. Therefore,
the order is:

1. Kanban,
2. CONWIP, and

3. MRP.
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» Table 9-1 lists the optimal configurations for the minimal average cycle time for

Kanban, CONWIP, and MRP.

Table 9-1: The optimal configurations for the minimal average cycle time for Kanban,
CONWIP, and MRP.

SyStem r‘s b c/ tintarr tintfail trepdur a tcycle
Kanban 1 1 60 178200 1800 0.99 1888.963
1
1

CONWIP 1 44 86400 873 0.99 2101.542
MRP 1 48 86400 873 0.99 2457.908

* The same ranking results for the maximum cycle time as an indicator.
» Table 9-2 shows the optimal configurations for the minimal maximum cycle time

for Kanban, CONWIP, and MRP.

Table 9-2: The optimal configurations for the minimal average cycle time for Kanban,
CONWIP, and MRP.

clt t t t

b intarr
Kanban 1 2 50 86400 873 0.99 5865.879
CONWIP 1 2 37 86400 873 0.99 5939.28
MRP 1 4 120 86400 873 0.99 8928.158

System I intfail  ‘repdur & cycle

» The difference in standard deviation of cycle time between the three control
systems is considerable, resulting in the following ranking of the mechanisms:
1. Kanban,
2. CONWIP, and

3. MRP.
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» Table 9-3 illustrates the optimal configurations for the minimal standard deviation

of cycle time for Kanban, CONWIP, and MRP.

Table 9-3: The optimal configurations for the minimal average cycle time for Kanban,
CONWIP, and MRP.

SyStem r‘s b c/ tintarr tintfail trepdur a tcycle
Kanban 1 4 25 86400 873 0.99 512.7491
2
6

CONWIP 1 37 86400 873 0.99 461.947
MRP 2 196 86400 873 0.99 1155.772

* The following summarizes the information obtained from constructing regression
models for the three control systems with the average cycle time as the response
variable:

» The machine availability has a strong negative influence on the average cycle

time.

* The number of cards assigned to the line, the interfailure time and the repair

duration have a strong positive effect on the average cycle time.

* The setup ratio, the batch size and the interarrival time have only a small effect

on the average cycle time.

Summarizing the above observations, MRP does not perform inferior to pull
systems for a manufacturing line with reliable machines, when the release rate is
selected judiciously. In fact, MRP tops the list on several experimental settings. Only
in experiments with unreliable machines, the MRP system shows inferiority. For the
more realistic setting, Kanban performs best, closely followed by CONWIP. MRP is

placed third with a significant difference in performance.
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9.2 Future Work

Although the realism was augmented throughout this study, the models could be
improved further by introducing the following parameters:
» Transportation,
» Varying process times,
» different product types,
* move batches unequal to process batches, and
» irregular demand and supply.

Further, the parameter levels could be increased. Factor analysis instead of
regression analysis could be applied to study the effect of the different parameters on
the performance of the system, as the regression models were found to insufficiently

predict performance outside the given intervals.
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Machine availability

Batch size

Regression model coefficients
Number of cards assigned to line
Coefficient of variation

Coefficient of variation for cycle time

Excess amount of data

Expectation of the random variable X

Regression model random error

Half-width of confidence interval

Percentage increase in throughput

Exponential distribution

Resultant moment around beginning of line for card allocation rules
Resultant moment around median of line for card allocation rules

Multiple coefficient of determination
Setup ratio

Sample standard deviation
Sample variance

Sum of square errors
Average cycle time

Exponential smoothing of cycle times
Delay time

Throughput
Average throughput

Theoretical throughput
Interarrival time
Interfailure time
Process time

Batch process time
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trecover Recover time

tepair Repair duration

teewp Setup time

u Utilization

u Average utilization

WIP Work in process

WIP Maximal work in process

max

X Sample mean
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