CATOLACCUS HUNTERI (HYMENOPTERA: PTEROMALIDAE),
A PARASITE OF ANTHONOMUS MACROMALUS
(COLEOPTERA: CURCULIONIDAE) IN SOUTH FLORIDA

ADRIAN G. B. HUNSBERGER AND JORGE E. PEÑA
Tropical Research and Education Center
University of Florida, IFAS
Homestead, Florida 33031

Acerola or Barbados Cherry, Malpighia glabra (L.) (=punicifolia L.), is a tropical
fruit native to the West Indies, Central America, and South America (Stahl et al. 1955,
Phillips 1991). The genus Malpighia is present from south Texas to Peru (Asenjo
1980). Recently, it has received world-wide attention as an exceptionally high natural
source of ascorbic acid (vitamin C) found in the cherry-like fruit, and its cultivation
has extended throughout the subtropics and tropics (Ledon 1958). Estimated com-
mercial acreage in the Caribbean region is over 400 acres with a potential crop value
of several million dollars (Melendez 1968, Gonzalez-Ibanez 1983). In Florida, acerola
is grown in the southern part of the state in homeowner’s yards and as a commercial
crop. Flowering and fruit set occur almost continuously from April through November
in Florida, and fruits mature in approximately 30 days (Stahl et al. 1955, Ledon
1958).

The major insect pests of acerola are comprised of a complex of weevils known col-
lectively as acerola weevils; Anthonomus sisyphus Clark identified from Mexico, A.
acerolae Clark from Brazil, A. tomentosus (Faust) from Trinidad and Venezuela, and
A. macromalus Gyllenhal (=A. flavus, =A. bidentatus, =A. malpighia) reported from
several islands in the Caribbean region and Florida (Clark & Burke 1985, Clark
1992). A. macromalus was first reported in Dade County, Florida, in 1972 (Stegmaier
& Burke 1974). This species appears to be native to the Neotropics, with reports from
Dade County, Florida (USA) and from many of the islands of the Caribbean Region
(The Dominican Republic, Puerto Rico, US Virgin Islands, Tortola, Guadeloupe, St.
Kitts, St. Lucia, Antigua, Martinique, the Grenadines, and Trinidad) (Clark & Burke
1985).

The biology of A. macromalus was reviewed by Stegmaier & Burke (1974), and
Ballof (1993). Adults deposit eggs on the anthers of flower buds or in immature frui-
ts. Acerola weevil larvae develop in the flowers and fruit causing extensive damage to
floral reproductive structures and to the flesh of the fruit. This damage results in re-
duced yields. To our knowledge, parasitoids have not been reported from this weevil.

Acerola fruit were collected in Dade County as part of a population dynamics study
to determine the presence and importance of natural enemies as mortality factors of
the acerola weevil. Collection sites were established at the University of Florida Trop-
ical Research and Education Center, Homestead, and at two commercial sites. One
commercial site was located 3.4 km west of the Education Center and the other was
adjacent to the east side of the Center. Random samples of immature (green) and ripe
fruits from each site were collected weekly from 7 April through 31 August 1995. The
mean number of fruit collected per site per date was 75.86 (S.E. 13.03, range 6-333).
Fruits were immediately placed in plastic bags and transported to the laboratory
where they were held in 30 cm³ plastic cages at 26 ± 1°C. The cages were checked daily
and insect emergence was recorded. When parasitoids were recovered, the percentage
parasitism was calculated as the ratio of the number of emerged parasitoids/(number
of emerged parasitoids + the number of emerged weevil adults) × 100.
The first parasitoid was observed on 21 April 1995 from Education Center acerola fruit. This wasp was identified by S. Heydon (Bohart Museum of Entomology, UC, Davis) as Catolaccus (Heterolaccus) hunteri Crawford (Hymenoptera: Pteromalidae). To the best of our knowledge, this is a new host for this species. No additional specimens of C. hunteri emerged from subsequent fruit collections from this site (Fig. 1). The percentage parasitism for the Research Center site was 0.042% (n = 1).

Catolaccus hunteri was recovered again from samples collected on 12 June 1995, and 26 June 1995, from the second and third sites, respectively. Catolaccus hunteri was continually collected from these sites during July and August (Fig. 1). Percentage parasitism was 0.986% (n = 17) and 0.603% (n = 42) from the second and third sites, respectively. It is probable that an extensive survey in Florida and the Caribbean Region would contribute new parasitoid records for A. macromalus and perhaps other species of Anthonomus.

Fig. 1. Monthly emergence of A. macromalus and C. hunteri from three sites in South Florida. Site 1 (Tropical Research and Education Center), sites 2 and 3 (commercial orchards).
The highest incidence of *C. hunteri* coincided with high host densities during the months of June and August (Fig. 1). This parasite acts as an ectoparasitoid of acerola weevil larvae (personal observation) and is a known larval ectoparasitoid of several anthonomids (Pierce 1908, 1910). *Catolaccus hunteri* is one of the major parasitoids of the cotton boll weevil, *Anthonomus grandis grandis* Boheman (Cate et al. 1990, Ramalho & Wandeley 1996). This parasitoid has a known host range of at least 13 other species of *Anthonomus* in the New World and occurs in Delaware, throughout the southern US (including Arizona and California), Mexico, Guatemala, Peru, Ecuador, Colombia, Brazil, and Hawaii (Townsend 1913, Muesebeck et al. 1951, Ramalho & Wanderley 1996). The biology of *C. hunteri* is described by Pierce et al. (1912) and Berry (1947).

Based on these findings, *C. hunteri* holds promise as a biological control agent against the acerola weevil. However, further studies such as the efficacy and timing of augmentative releases of *C. hunteri* need to be conducted.

We thank R. Irwin for collecting fruit and L. Miller for the use of his orchards. Thanks go to S. Heydon (Bohart Museum of Entomology, University of California, Davis, CA) and L. Stange (Florida Dept. of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL) for the identification of the pteromalid. Thanks also to A. Castineiras, M. Joyner, D. Seal, and R. Giblin-Davis for critical reviews of an earlier version of this manuscript. This is Florida Agricultural Experiment Station Journal Series No. R-05471.

SUMMARY

The parasite *Catolaccus hunteri* Crawford (Hymenoptera: Pteromalidae) is reported for the first time on *Anthonomus macromalus* Gyllenhal (Coleoptera: Curculionidae) in Florida. Percentage parasitism was found to be as high as 0.986% in acerola fruit.

REFERENCES CITED

