PREPARATION AND REACTIONS OF SOME FLUORINE CONTAINING SILANES

By
WARD HOPKINS OLIVER

A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA
December, 1964
ACKNOWLEDGMENTS

The author wishes to express his appreciation to those whose assistance, advice and encouragement have greatly contributed to the success of this research: To Dr. Paul Tarrant, director of this research and Chairman of the Supervisory Committee, whose creative ideas, assistance, and guidance were essential factors in the undertaking and completion of this work; to the members of the Supervisory Committee for donating their time, advice, and assistance; to Dr. Wallace Brey, for the interpretation of nuclear magnetic resonance spectra; and to the Army Natick Laboratories, for financial support of this research.

Special thanks are due to the author's wife, for her encouragement, understanding, and help in the preparation of this dissertation.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgments</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>v</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Discussion</td>
<td>10</td>
</tr>
<tr>
<td>Preparation of Compounds of the Type $\text{RMe}_2\text{SiCF}=\text{CF}_2$</td>
<td>10</td>
</tr>
<tr>
<td>Preparation of $\text{Me}_2\text{SiCH}_2\text{CF}=\text{CF}_2$</td>
<td>14</td>
</tr>
<tr>
<td>Preparation of Compounds of the Type $\text{RMe}_2\text{SiCH}_2\text{CH}_2\text{CF}=\text{CF}_2$</td>
<td>16</td>
</tr>
<tr>
<td>Preparation of Compounds of the Type $\text{RMe}_2\text{SiCH}_2\text{CH}_2\text{CH}_2\text{CF}=\text{CF}_2$</td>
<td>19</td>
</tr>
<tr>
<td>Reactions of $\text{Me}_2\text{SiCF}=\text{CF}_2$</td>
<td>22</td>
</tr>
<tr>
<td>Reaction of $\text{ClMe}_2\text{SiCF}=\text{CF}_2$ with Pentafluorophenylmagnesium Bromide</td>
<td>26</td>
</tr>
<tr>
<td>Reactions of $\text{Me}_2\text{SiCH}_2\text{CH}_2\text{CF}=\text{CF}_2$</td>
<td>27</td>
</tr>
<tr>
<td>Thermal Dimerization of $\text{ClMe}_2\text{SiCH}_2\text{CH}_2\text{CH}_2\text{CF}=\text{CF}_2$</td>
<td>29</td>
</tr>
<tr>
<td>Preparation of Fluoroisopropoxysilanes</td>
<td>29</td>
</tr>
<tr>
<td>Experimental</td>
<td>39</td>
</tr>
<tr>
<td>General</td>
<td>39</td>
</tr>
<tr>
<td>Preparation of Trifluorovinylsilanes</td>
<td>39</td>
</tr>
<tr>
<td>Preparation of $2,3,3$-Trifluoroallytrimethylsilane</td>
<td>43</td>
</tr>
<tr>
<td>Preparation of $(3,4,4$-Trifluoro-3-butenyl)silanes</td>
<td>43</td>
</tr>
<tr>
<td>Preparation of $(4,5,5$-Trifluoro-4-pentenyl)silanes</td>
<td>45</td>
</tr>
<tr>
<td>Reactions of Trifluorovinyltrimethylsilane</td>
<td>46</td>
</tr>
<tr>
<td>Preparation of $1,2$-Difluorocyclolefins from the Products of the Organolithium Reactions</td>
<td>50</td>
</tr>
</tbody>
</table>
Reactions of (3,4,4-Trifluoro-3-butenyl)trimethylsilane 52

Thermal Dimerization of (4,5,5-Trifluoro-4-pentenyl)dimethylchlorosilane 53

Preparation of Halogenated Isopropoxysilanes 54

SUMMARY 56

BIBLIOGRAPHY 58

BIOGRAPHICAL NOTE 61
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Olefins Prepared from $\text{Me}_3\text{SiCF}=-\text{CF}_2$ via Lithium Reagents</td>
<td>25</td>
</tr>
<tr>
<td>2.</td>
<td>Physical Properties of Compounds Prepared</td>
<td>34</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

The rapid advancement of technology during and since World War II has demanded the development of many materials that were not available twenty-five years ago. High performance aircraft and rockets require structural materials which are both light and strong; their engines require metals that will withstand extreme heat, as do their surfaces; they require fuels of very high energy content. Elastomeric materials are needed in many modern applications that maintain their properties over a wide temperature range, especially at low temperatures. In addition, very often they must be resistant to hydrocarbon solvents and harsh chemicals as well as different types of radiation.

It became evident soon after World War II that natural rubber could not be improved to meet the needs that further progress demanded. To meet the increasing need for new elastomers, the Office of the Quartermaster General established at the University of Florida and elsewhere in 1951 a long-range Arctic Rubber Program. Under this program, these laboratories, under the direction of Dr. Paul Tarrant, have been responsible for the synthesis of new monomers.

The discovery of Teflon, although not an elastomer, indicated the possible use of fluorine-substituted polymers. Its high thermal stability and resistance to chemical attack generated great interest. Subsequent work has proven quite fruitful, and the work in these laboratories has been centered predominately around synthesis of fluorine-containing monomers. Early interest centered around olefins and
dienes; thus Lovelace and Attaway (26) developed methods of preparing fluorine-substituted butadienes; Gray (4), Lutz (8), and Taylor (33) prepared fluorine-substituted isoprenes; Taylor (35) also prepared several isobutenes; and Warner (34) prepared new fluorocarbonyls by the reaction of Grignard reagents with simple fluorocarbonyls.

Polymers containing a large percentage of fluorine tend to lack flexibility. Since heteroatoms in the backbone or side chain of polymers can add flexibility, methods of preparing the appropriate monomers were studied. O'Connor (31) and Pisacane (15) prepared fluorine-containing nitroso compounds; Stump (32) prepared fluorine-containing unsaturated ethers; and Tomasino (36) prepared several silanes and siloxanes containing fluorocarbonyl groups.

Polydimethylsilicone rubber is known for its exceptional thermal stability and resistance to ozone. It has excellent electrical properties and very low water absorption. However, it is degraded by strong acids and bases, and is particularly prone to swelling in hydrocarbon solvents.

The thermal stability and inertness of fluorocarbons to chemical attack and to solvents recommended their incorporation into silicone rubber to improve its properties. Studies showed that fluorine on a carbon either α or β to the silicon atom decreased the stability of the molecule to both heat and strong base. Fluorine atoms three or more removed from the silicon atom, however, caused no decrease in stability.

As part of a broad program to develop new polymers, the Materials Laboratory of the Wright Air Development Center (WADC) undertook research to develop fluoro-silicone elastomers. Under this program
McBee (9) prepared the first difunctional fluorine-containing silane,
\[\text{CH}_3\text{Si(OCH}_3)_2\text{CH}_2\text{CH}_2\text{CF}_3 \] , by the reaction of \(\text{CF}_3\text{CH}_2\text{CH}_2\text{MgBr} \) with \(\text{CH}_3\text{Si-(OCH}_3)_3 \). His attempts to polymerize this material and to copolymerize it with dimethyl dichlorosilane yielded only viscous oils. However, at Dow-Corning (as part of the WADC project) an elastomeric polymer was achieved using \(\text{CH}_3\text{Cl}_2\text{SiCH}_2\text{CH}_2\text{CF}_3 \), a compound reported by Tarrant, et al. (27). This rubber, called Silastic LS-53, retained all of the exceptional high and low temperature properties of silicone rubber with the added feature of excellent fuel and oil resistance (16).

If an elastomer is to be produced in any quantity, it is necessary that the monomers be produced in good yield by an economical process. The more important general syntheses of silanes will be considered below:

1. The Direct Synthesis

The most important method of preparing organosilicon compounds is the direct reaction of an organic halide with elemental silicon. The reaction occurs when the halide vapors are passed over silicon at high temperatures in the presence of a metal catalyst. A mixture of products occurs.

\[
\text{CH}_3\text{Cl} + \text{Si} \xrightarrow{\text{Cu} \ 300-400^\circ} (\text{CH}_3)_x\text{SiCl}(4-x)
\]

but reaction conditions can be varied to favor a particular product. Copper is the preferred catalyst with alkyl halides, although several other metals can be used. Silver is the most effective catalyst with aryl halides.

2. The Organometallic Method
Grignard and organolithium reagents react with silicon halides, alkoxides, and hydrides to form compounds with new silicon–carbon bonds.

\[
\text{Me}_3\text{SiCl} + \text{C}_6\text{H}_5\text{MgBr} \rightarrow \text{Me}_3\text{SiC}_6\text{H}_5
\]

\[
\text{Me}_3\text{SiOEt} + \text{C}_6\text{H}_5\text{Li} \rightarrow \text{Me}_3\text{SiC}_6\text{H}_5 + \text{LiOEt}
\]

\[
(\text{C}_6\text{H}_5)_3\text{SiH} + \text{C}_6\text{H}_5\text{Li} \rightarrow (\text{C}_6\text{H}_5)_4\text{Si} + \text{LiH}
\]

The chlorides are more easily replaced than the alkoxides or the hydrides:

\[
\text{Cl}_2\text{Si(0Et)}_2 + 2\text{MeMgCl} \rightarrow \text{Me}_2\text{Si(0Et)}_2 + 2\text{MgCl}_2
\]

\[
\text{ClSi(Me}_2\text{)H} + \text{CF}_2=\text{C}\text{FMgBr} \rightarrow \text{CF}_2=\text{CFSi(Me}_2\text{)H} + \text{MgBrCl}
\]

Because of the availability of organosilicon chlorides, and the great variety of organometallic reagents, this is the most versatile method of preparing organosilicon compounds.

3. Addition of Olefins to Silicon Hydrides

Olefins (and alkynes) can be added to silicon hydrides in the presence of a catalyst such as peroxides, acids, metals, metal salts, ultraviolet light, or γ-rays. Chloroplatinic acid appears to be the most effective of these catalysts when u.v. light is not practical.

\[
\text{Cl}_3\text{SiH} + \text{CH}_2=\text{CHCH}_3 \xrightarrow[\text{H}_2\text{PtCl}_6\text{ or u.v.}]{\text{H}_2\text{PtCl}_6\text{ or u.v.}} \text{Cl}_3\text{SiCH}_2\text{CH}_2\text{CH}_3
\]

This reaction is general and is especially valuable in that a carbon–silicon bond can be formed without disturbing the
silicon-chlorine bond, as would be the case with organometallic reagents. This method has become a very important laboratory and industrial process.

4. Preparations from Carbon-Functional Organosilicon Compounds

Complex organosilicon compounds may be prepared by further reaction with a functional group already present in an organic substituent attached to a silicon atom. Many carbon-functional organosilicon compounds are readily prepared and are available commercially.

Silanes containing olefinic groups, such as vinyl and allyl groups, are perhaps the most important of these.

\[
\text{CH}_3\text{CH}_2\text{CHO} + \text{CH}_2=\text{CHSiMe}_3 \xrightarrow{(\text{CH}_2\text{COO})_2} \text{CH}_3\text{CH}_2\text{CCH}_2\text{CH}_2\text{SiMe}_3
\]

\[
\text{SiH}_4 + \text{CH}_2=\text{CHSiH}_3 \xrightarrow{\text{u.v.}} \text{H}_3\text{SiCH}_2\text{CH}_2\text{SiH}_3
\]

The halides are also useful:

\[
\text{Me}_3\text{SiCH}_2\text{Cl} + \text{CH}_3\text{COOK} \xrightarrow{\text{CH}_2\text{COOH}} \text{Me}_3\text{SiCH}_2\text{OCCH}_3
\]

\[
\text{Me}_3\text{SiCH}_2\text{Cl} \xrightarrow{\text{Mg}} \text{Me}_3\text{SiCH}_2\text{MgCl} \xrightarrow{\text{CH}_2=\text{CH}_2} \text{Me}_3\text{SiCH}_2\text{CH}_2\text{CH}_2\text{OH}
\]

These are very general examples. The reactions under this heading are very extensive, and with some notable exceptions, are the same as would be expected of the functional groups in hydrocarbon molecules.

All of the above methods have been used to prepare fluorine containing silanes. Haszeldine (5) was the first to report the successful
preparation by the direct method.

$$\text{CF}_3\text{I} + \text{Si} \xrightarrow{\text{Cu}} (\text{CF}_3)_x\text{SiI}(4-x)$$

This method has been used with other perfluoralkyl halides, but poor yields are generally obtained and thus the method is not of importance in monomer synthesis.

McBee's synthesis of the first difunctional fluorine-containing silane has already been referred to (9):

$$\text{CF}_3\text{CH}_2\text{CH}_2\text{MgBr} + \text{MeSi(OEt)}_3 \xrightarrow{\text{MeSOEt}} \text{MeSi(OEt)}_2\text{CH}_2\text{CH}_2\text{CF}_3$$

The organometallic method has been used very extensively to prepare fluorine-containing silicon monomers.

Tarrant and coworkers (27) were able to prepare a similar monomer to McBee's in a much more convenient reaction:

$$\text{CF}_3\text{CH} = \text{CH}_2 + \text{MeSiHCl}_2 \xrightarrow{\text{Pt/C}} \text{Me(Cl}_2\text{)SiCH}_2\text{CH}_2\text{CF}_3 \quad 60\%$$

The free-radical addition of perhaloalkanes to olefins is an important step in preparing silanes containing fluoroolefin groups. Tarrant (23) reported the following reactions:

$$\text{CF}_2\text{BrCFClBr} + \text{CH}_2=\text{CHSiMe}_3 \xrightarrow{\text{Bz}_2\text{O}_2} \text{CF}_2\text{BrCFClCH}_2\text{CHBrSiMe}_3$$

$$\xrightarrow{\text{KOH}} \text{CF}_2\text{BrCFClCH}=\text{CHSiMe}_3$$

In these laboratories Tomasino studied the free-radical addition of $\text{CF}_2\text{BrCFClBr}$ to a series of alkenyl silicon compounds. These compounds were vinylidimethylethoxysilane, vinylidimethylchlorosilane,
divinyltrimethylsilane, allyltrimethylsilane, diallyldimethylsilane, vinylpentamethyldisiloxane, and 1,3-divinyl-1,1,3,3-tetramethyldisiloxane. The addition products obtained were further dehalogenated and/or dehydrohalogenated to form new unsaturated compounds.

It was found that the normal addition products were obtained when \(CF_2\text{BrCFClBr} \) was reacted with the vinylsilanes. However, in the dehalogenation of these products with zinc and ethanol considerable reduction of the bromine on the carbon to the silicon took place. For instance, in the dehalogenation of \(CF_2\text{BrCFClCH}_2\text{CHBrSiMe}_3 \), a 43% yield of the expected \(CF_2=\text{CFCH}_2\text{CHBrSiMe}_3 \) was obtained, as well as an additional 21% of the reduced product, \(CF_2=\text{CFCH}_2\text{CH}_2\text{SiMe}_3 \). This phenomenon was noted in each of the compounds containing a bromine atom.

Reaction of \(CF_2\text{BrCFClCH}_2\text{CHBrSiMe}_3 \) with concentrated sulfuric acid gave \([CF_2\text{BrCFClCH}_2\text{CHBrSiMe}_2]_2\text{O} \) in 16% yield. This compound was then dehalogenated to give a mixture of unsaturated disiloxanes, including \([CF_2=\text{CFCH}_2\text{CH}_2\text{SiMe}_2]_2\text{O} \) in a 5% yield.

Reaction of \(CF_2\text{BrCFClBr} \) with allyltrimethylsilane did not give the expected \(CF_2\text{BrCFClCH}_2\text{CHBrCH}_2\text{SiMe}_2 \), but instead \(CF_2\text{BrCFClCH}_2\text{CH}=\text{CH}_2 \) was obtained in a 30% yield. This was undoubtedly formed from the expected addition product, since it is known that silanes containing a halogen to the silicon atom are quite unstable to heat and form terminal olefins (22). Diallyldimethylsilane, however, gave the desired monoaddition product, \(CF_2\text{BrCFClCH}_2\text{CHBrCH}_2\text{Si(Me}_2\text{)}\text{CH}_2\text{CH}=\text{CH}_2 \).

The first trifluorovinylsilane derivative was prepared by Knunyants (24). He reacted \(CF_2=\text{CFMgI} \) with \(\text{SiCl}_4 \) and obtained \(\text{Si(CF}=\text{CF}_2\text{)}_4 \) as the only product. It is interesting to note that no mixed products were obtained. Knunyants failed to obtain products when \(CF_2=\text{CFMgI} \) was
reacted with alkyl or phenyl substituted chlorosilanes.

Seyferth, however, was able to prepare $\text{Et}_2\text{SiCF}=\text{CF}_2$ from the reaction of Et_3SiCl with $\text{CF}_2=\text{CFMgBr}$ in THF (17) and $\text{Me}_3\text{SiCF}=\text{CF}_2$ from the reaction of Me_3SiCl with $\text{CF}_2=\text{CFLi}$ (21). He also prepared $\text{Me}_3\text{SiCF}=\text{CF}_2$ from $\text{CF}_2=\text{CFMgBr}$, but the product boils very close to THF (67°) and had to be brominated before it could be recovered.

Knunyants (24) found that all the Si—C bonds in $\text{Si(}\text{CF}=\text{CF}_2\text{)}_4$ were broken under the influence of aqueous base, yielding $\text{CF}_2=\text{CFH}$ quantitatively. Seyferth (18) obtained, in reacting $\text{Et}_3\text{SiCF}=\text{CF}_2$ with EtO\text{Na}, a 69% yield of $(\text{Et}_3\text{Si})_2\text{O}$ and only 28% of the expected $\text{Et}_3\text{SiCF}=\text{CFGC}_2\text{H}_5$. He further found in reacting phenyllithium with $\text{Et}_3\text{SiCF}=\text{CF}_2$ that the third mole of $\text{C}_6\text{H}_5\text{Li}$ cleaved the Si—C bond:

$$\text{Et}_3\text{SiCF}=\text{CF}_2 + \text{C}_6\text{H}_5\text{Li} \rightarrow \text{Et}_3\text{SiCF}=\text{CFGC}_2\text{H}_5 \rightarrow \text{Et}_3\text{SiCF}=\text{C} (\text{C}_6\text{H}_5)_2 \text{ or } \text{Et}_3\text{SiC}(\text{C}_6\text{H}_5)=\text{CFGC}_2\text{H}_5 \rightarrow \text{Et}_3\text{SiC}_6\text{H}_5$$

$$+ \text{C}_6\text{H}_5 \text{C} = \text{CC}_6\text{H}_5$$

These reactions indicate the instability of the Si—C bond in $\text{Si—CF}=\text{CFR}$ to basic media. Further, considering the failure to get mixed products in reacting $\text{CF}_2=\text{CFMgI}$ with SiCl_4, it is obvious that the presence of a fluorinated olefinic linkage α to a silicon atom renders the silicon atom more susceptible to nucleophilic attack. This can be explained quite readily, realizing that there is $p—\pi$ $d—\pi$ overlap between the unsaturated carbon atom and the silicon atom. The electron withdrawing effect of the fluorine atoms is transmitted to the silicon
atom through the empty d–orbitals, leaving it effectively electron
deficient. An electron–rich group could then readily attack the
silicon atom, displacing the trifluorovinyl group or other group with
its pair of electrons:

\[
X \rightarrow \begin{array}{c}
\text{Si} \\
\text{F} \\
\end{array} \\
\begin{array}{c}
\text{C} \\
\text{F} \\
\end{array} \\
\begin{array}{c}
\text{C} \\
\text{F} \\
\end{array} \\
\rightarrow X\text{Si} + :\text{CF} = \text{CF}_2 \rightarrow \text{CH} = \text{CF}_2
\]

or

\[
X \rightarrow \begin{array}{c}
\text{Cl} \\
\text{Si} \\
\text{Cl} \\
\end{array} \\
\begin{array}{c}
\text{C} \\
\text{F} \\
\end{array} \\
\begin{array}{c}
\text{C} \\
\text{F} \\
\end{array} \\
\rightarrow X\text{Cl} + \text{SiCF} = \text{CF}_2 + \text{Cl}^-
\]

No compounds of the type \(R_3\text{Si}–\text{CH} = \text{CF}_2 \) or \(R_3\text{SiCH}_2\text{CH}_2\text{CH}_2\text{CF} = \text{CF}_2 \)
have been reported.

On the basis of the previous work discussed here, it was proposed
to prepare new organosilicon monomers containing fluorine and to study
some of their reactions. The preparation of a series of silanes of the
general formula \(R – \text{Si}(\text{Me}_2)(\text{CH}_2)_n\text{CF} = \text{CF}_2 \) received primary consideration,
where \(n = 0, 1, 2, \) or \(3 \) and \(R \) represents a reactive group such as
ethoxide, chlorine or hydrogen.
II. DISCUSSION

In the course of this research, compounds of the type $R\text{Me}_2\text{Si}(\text{CF}_2)_n\text{CF=CF}_2$ have been prepared. R may represent a methyl group, chlorine, ethoxide, or the symmetrical disiloxane; and n may be 0, 1, 2, or 3. The compounds will be grouped for study according to the value of n, since each group required a different method of synthesis. The reactions will be considered separately.

In addition, a new method of preparing fluorine-containing alkoxides of silicon will be discussed.

Preparation of Compounds of the Type $R\text{Me}_2\text{SiCF=CF}_2$

The preparation of trifluorovinyl–Grignard (6,7,13) and –lithium (20,30) reagents made possible the incorporation of the trifluorovinyl group into many organic and organometallic compounds. However, at the beginning of this research, the only trifluorovinylsilanes reported were tetra–(trifluorovinyl)silane (24), trifluorovinyltrimethylsilane (17), and trifluorovinyltributylsilane (19). These were prepared via the Grignard reagent. Later, Seyferth (21) reported the preparation of trifluorovinyltrimethylsilane from trifluorovinylolithium. He prepared the lithium reagent by the metal exchange reaction between trifluorovinyltin compounds and phenyllithium, a process involving several steps and giving rise to low over-all yields.
SnCl$_4$ + 4CF$_2$=CFMgBr \rightarrow Sn(CF=CF$_2$)$_4$ PhLi \rightarrow

CF$_2$=CFLi + SnPh$_4$

\[\text{Me$_3$SiCl} \]

\[\text{Me$_3$SiCF=CF$_2$} \]

Tarrant, et al., had meanwhile discovered a facile method of preparing trifluorovinyl lithium via the halogen exchange reaction between bromotrifluoroethylene and alkyl lithium compounds at -78°. By this method, trifluorovinyltrimethylsilane [I] was prepared during this research in yields of 65% without the separation of intermediates.

MeLi + CF$_2$=CFBr \rightarrow CF$_2$=CFLi + MeBr

\[\text{Me$_3$SiCl} \]

\[\text{Me$_3$SiCF=CF$_2$} \]

[I]

The physical properties of this compound were consistent with those reported by Seyferth. It should be noted that the trifluorovinyl group in this compound shows absorption in the infrared at 5.83 microns, while the same group attached to carbon, hydrogen, bromine, or chlorine absorbs between 5.5 and 5.6 microns. Triphenyltrifluorovinyltin (prepared in this laboratory) absorbs at 5.88 microns, while tris-trifluorovinylboron absorbs at 5.95 microns (2). All of the metal compounds mentioned have empty p- or d-orbitals on the metal atom which are undoubtedly responsible for the large shift from the usual absorption frequency. As a matter of fact, the authors in the above reference use this shift as evidence for carbon-boron π-bonding.
It was anticipated that other compounds of this series could be prepared with R being a functional group, such as chlorine or the ethoxide. As mentioned in the Introduction, Knunyants (24) found that only the tetra-substituted product was obtained when CF2=CFLi was reacted with SiCl4. It was hoped that ClMe2SiCF=CF2 could be prepared by reacting CF2=CFLi with Me2SiCl2 in a 1:1 ratio. However, only the di-substituted product was obtained:

$$\text{CF}_2=\text{CFLi} + \text{Me}_2\text{SiCl}_2 \rightarrow (\text{CF}_2=\text{CF})_2\text{SiMe}_2$$ \[\text{VII}\]

Elemental analysis, MrD data, and infrared data were consistent with this structure.

The alkoxy silanes undergo approximately the same reactions as the chlorosilanes. Both, for instance, can be displaced by a Grignard or lithium reagent. However, the chlorosilanes are somewhat more reactive toward these reagents than the alkoxy silanes. Thus, ClSiMe2CC2H5 was prepared from Me2SiCl2 and C2H5OH in triamylamine. This compound then reacted with CF2=CFLi to form C2H5OSiMe2CF=CF2, and the chlorosilane was then prepared by reaction with PCl3:

$$\text{Me}_2\text{SiCl}_2 + \text{EtOH} \xrightarrow{\text{NR}_3} \text{EtOSiCl} \xrightarrow{\text{CF}_2=\text{CFLi}} \text{ClSiCF=CF}_2$$ \[\text{II}\]

$$\text{EtOSiCF=CF}_2 \xrightarrow{\text{PCl}_3} \text{ClSiCF=CF}_2$$ \[\text{III}\]

The compounds were identified by elemental analysis, MrD data, and their infrared spectra.
Compounds such as II and III might be of interest as crosslinking agents in polymers or intermediates in preparing other trifluorovinyl-silicon derivatives.

The symmetrical disiloxane is another di-functional compound in the series under consideration. The compound \(\text{CF}_2=\text{CFSiMe}_2\text{OSiMe}_2\text{CF}=\text{CF}_2 \) could undoubtedly have been prepared readily from either II or III, but was actually prepared by another method before II and III were synthesized. The compound \(\text{ClSiMe}_2\text{OSiMe}_2\text{Cl} \) was prepared by the method of Patnode and Wilcox (14). This dichlorodisiloxane was then reacted with \(\text{CF}_2=\text{CFLi} \) to prepare IV:

\[
\begin{align*}
2\text{Me}_2\text{SiCl}_2 + \text{H}_2\text{O} & \rightarrow \text{ClSiOSiCl} + 2\text{HCl} \\
2\text{CF}_2=\text{CFLi} & \rightarrow \text{CF}_2=\text{CFSiOSiCF}=\text{CF}_2
\end{align*}
\]

[IV]

Elemental analysis, i.r. spectra, and \(\text{Mr}_D \) data were consistent with the assigned structure.

Another interesting compound of this series was prepared where \(R \) represents hydrogen. The reactivity of the silicon-hydrogen bond was discussed in the Introduction. Trifluorovinyltrimethylsilane was prepared by the reaction of dimethylchlorosilane with trifluorovinylmagnesium bromide:

\[
\begin{align*}
\text{Me} \quad \text{Me} \\
\text{HSiCl} + \text{CF}_2=\text{CFMgBr} & \rightarrow \text{Me} \\
\text{Me} & \quad \text{Me} \\
\text{HSiCF}=\text{CF}_2 & \quad \text{Me} \\
\text{Me} & \quad \text{Me}
\end{align*}
\]

[V]
Elemental analysis and MrD data were consistent with this structure. In addition to infrared absorption at 5.83 microns for the CF₂=CF group, a strong absorption at 4.65 microns was present which indicates the Si—H bond. Two later attempts to prepare this compound using CF₂=CFLi failed. A brown tar was obtained in each reaction.

Preparation of Me₂SiCH₂CF̵̵=CF₂

Tarrant and Warner (34) discovered that Grignard reagents would substitute organic groups for fluorine in fluorodlefins. Dixon (3) discovered that lithium reagents would likewise substitute, and that they gave somewhat greater yields of the new olefins than the Grignard reagents:

\[\text{RMgX} + \text{CF}_2=\text{CX}_2 \rightarrow \text{RCF} = \text{CX}_2 + \text{MgFX} \]

\[\text{RLi} + \text{CF}_2=\text{CX}_2 \rightarrow \text{RCF} = \text{CX}_2 + \text{LiF} \]

With tetrafluoroethylene, Grignard reagents give, in general, mono-substituted products. Lithium compounds, aryllithium compounds in particular, tend to give di-substituted products:

\[\text{PhLi} + \text{CF}_2=\text{CF}_2 \rightarrow \text{PhCF} = \text{CF}_2 + \text{PhCF=CFPh} \]

mostly

It was hoped that 2,3,3-trifluoroallytrimethylsilane could be prepared from the Grignard reagent of chloromethyltrimethylsilane:

\[\begin{align*}
\text{Me}_3\text{SiCH}_2\text{Cl} + \text{Mg} & \rightarrow \text{Me}_3\text{SiCHMgCl} & \begin{array}{c}
\text{CF}_2=\text{CF}_2
\end{array} \\
\text{Me}_3\text{SiCH}_2=\text{CF} = \text{CF}_2
\end{align*} \]
This reaction was run both by allowing a cold solution of Grignard reagent and CF$_2$=CF$_2$ to warm to room temperature and by shaking the mixture in a sealed tube for several days. In neither case was any reaction observed.

The lithium reagent was prepared by reacting lithium with bromo-methyltrimethylsilane. A cold solution of the lithium compound and CF$_2$=CF$_2$ was allowed to warm to room temperature. An exothermic reaction took place and most of the material was lost. Recovered material gave a product boiling about 100° which showed no infrared absorption that would indicate a fluorodolefin. The tetrafluoroethylene was probably lost when the reaction heated.

The reaction was repeated in a sealed tube. The CF$_2$=CF$_2$ was condensed into the tube at liquid nitrogen temperature, and the tube placed in an ice bath. After two days, the tube was opened and the desired compound was obtained.

\[\text{Me}_2\text{SiCH}_2\text{Li} + \text{CF}_2\text{=CF}_2 \rightarrow \text{Me}_2\text{SiCH}_2\text{CF}=\text{CF}_2 \] [VIII]

Elemental analysis, infrared spectra, and μ_D data all support the structure as shown. It should be noted that the i.r. absorption due to the double bond is at 5.83 microns. There is no shift observed due to the silicon atom in the allylic position.

Other compounds of this series were not prepared. It is not likely that a lithium reagent of the type RMe$_2$SiCH$_2$Li could be prepared where R is a functional group of interest in this series. The chemistry of VIII was not investigated at length.
Preparations of Compounds of the Type \(\text{H}_2\text{SiCH}_2\text{CH}_2\text{CF=CF}_2 \)

Tomasino (36), in his studies of some fluorine-containing organosilicon compounds, prepared the first compound of this series. He added \(\text{CF}_2\text{BrCFClBr} \) to \(\text{CH}_2=\text{CHSiMe}_3 \), and then dehalogenated the product with zinc to obtain the olefin. He found that a considerable amount of the bromine on the carbon atom adjacent to the silicon atom was reduced:

\[
\text{CF}_2\text{BrCFClBr} + \text{CH}_2=\text{CHSiMe}_3 \rightarrow \text{CF}_2\text{BrCFClCH}_2\text{CHBrSiMe}_3
\]

\[
\text{CF}_2\text{BrCFClCH}_2\text{CHBrSiMe}_3 \xrightarrow{\text{Zn, EtOH}} \text{CF}_2=\text{CFCH}_2\text{CHBrSiMe}_3
\]

\[
+ \text{CF}_2=\text{CFCH}_2\text{CH}_2\text{SiMe}_3
\]

Thus it is obvious that the \(\alpha \)-bromine atom is readily reduced. Since this reduced product was desired in this research, it was anticipated that the yield could be increased by the addition of concentrated hydrochloric acid to the reaction mixture, containing excess zinc, when the dehalogenation was complete:

\[
\text{CF}_2\text{BrCFClCH}_2\text{CHBrSiMe}_3 \xrightarrow{\text{Zn, EtOH}} \text{products} \xrightarrow{\text{HCl, H}_2\text{O}} \text{CF}_2=\text{CFCH}_2\text{CH}_2\text{SiMe}_3
\]

\[
\text{65}\% \text{[IX]}
\]

This compound had the same properties as reported by Tomasino. It should be noted that the yield is almost exactly the same as Tomasino's total for the two compounds, indicating that reduction of the bromide is quantitative.
Another compound desired in this series, the symmetrical disiloxane, was also prepared by Tomasin. However, it was also a by-product obtained in low yield:

\[
\begin{align*}
\text{CF}_2\text{BrCFCICBr} + (\text{CH}_2=\text{CHSi})_2\text{O} & \rightarrow (\text{CF}_2\text{BrCFCICCH}_2\text{CHBrSi})_2\text{O} \\
16\% \\
\text{Zn} & \xrightarrow{\text{EtOH}} (\text{CF}_2=\text{CFCCH}_2\text{CHBrSi})_2\text{O} + (\text{CF}_2=\text{CFCCH}_2\text{CHSi})_2\text{O} \\
20\% & \quad 5\%
\end{align*}
\]

Since the first step in this reaction gave only a 16% yield of the desired intermediate, a different approach was sought to prepare the disiloxane.

The reaction of silicon hydrides with olefins, discussed in the Introduction, generally goes in very good yields:

\[
\begin{align*}
\text{R}_3\text{SiH} + \text{CH}_2=\text{CHR'} & \xrightarrow{\text{H}_2\text{PtCl}_6 \text{ or u.v.}} \text{R}_3\text{SiCH}_2\text{CH}_2\text{R'} \\
\end{align*}
\]

\[
\begin{align*}
\text{CF}_2\text{BrCFCICCH}_2 & \text{CH}_2 \text{ClSiMe}_2\text{H} \text{ are both commercially available. It was found that their reaction product gave a very desirable intermediate:}
\end{align*}
\]

\[
\begin{align*}
\text{Me} + \text{CF}_2\text{BrCFCICCF}_2\text{Br} & \xrightarrow{\text{H}_2\text{PtCl}_6} \text{Me} \\
44\% & \quad \text{[X]}
\end{align*}
\]
Elemental analysis and Mr_D data support this structure. This reaction gave the desired product in an acceptable yield. Other products were obtained, but dimethyldichlorosilane was the only one identified. Another product, which appeared to have no hydrogen but considerable carbon and fluorine, was obtained, but could not be separated from the reaction mixture in sufficient purity to be identified.

Compound X could then give the desired disiloxane by two possible pathways:

Pathway A was attempted, using THF as a solvent. The dehalogenation appeared to proceed normally. Since the chlorosilane was desired at this step, hydrolysis to remove the zinc halides could not be used. Upon distillation a reaction took place in the distilling flask and a two phase product was obtained, which proved to be a complex mixture that could not be separated. The contents of the distilling flask became very black.

Pathway B, however, went with no difficulty. The yield in the dehalogenation step can probably be improved considerably, since no attempt was made to find optimum conditions. The properties of XIII agree with those reported by Tomasino.
An attempt to prepare \(\text{ClMe}_2\text{SiCH}_2\text{CH}_2\text{CF} = \text{CF}_2 \) directly by adding dimethylchlorosilane to 1,1,2-trifluoro-1,3-butadiene in a sealed tube with \(\text{H}_2\text{PtCl}_6 \) at 70° resulted in an explosion. Irradiation of dimethylchlorosilane and 1,1,2-trifluoro-1,2-butadiene in a sealed tube in sunlight gave a white polymer characteristic of the polymer obtained by irradiation of the butadiene alone.

Preparation of Compounds of the Type \(\text{ClMe}_2\text{SiCH}_2\text{CH}_2\text{CF} = \text{CF}_2 \)

The preparation of a silane of the type \(\text{R}_3\text{SiCH}_2\text{CH}_2\text{CF} = \text{CF}_2 \) required some special considerations. Tomasino had attempted to prepare an analogous compound by the addition of \(\text{CF}_2\text{BrCFClBr} \) to \(\text{CH}_2 = \text{CHCH}_2\text{SiMe}_3 \). He obtained, however, cleavage products of his desired intermediate:

\[
\text{CF}_2\text{BrCFClBr} + \text{CH}_2 = \text{CHCH}_2\text{SiMe}_3 \rightarrow [\text{CF}_2\text{BrCFClCH}_2\text{CHBrCH}_2\text{SiMe}_3] \\
\rightarrow \text{Me}_3\text{SiBr} + \text{CF}_2\text{BrCFClCH}_2\text{CH} = \text{CH}_2
\]

It could not be determined if the addition product actually formed, or whether the intermediate radical form cleaved:

\[
\text{CF}_2\text{BrCFClCH}_2\text{CHCH}_2\text{SiMe}_3 \rightarrow \text{CF}_2\text{BrCFClCH}_2\text{CH} = \text{CH}_2 + \cdot \text{SiMe}_3
\]

If the addition product were formed, it would not be expected to be stable at the reaction temperature, because \(\beta \)-halo silanes cleave at around 80–90° to form alkenes and the halo silane (22):

\[
\text{Et}_3\text{SiCH}_2\text{CH}_2\text{Cl} \rightarrow \text{Et}_3\text{SiCl} + \text{CH}_2 = \text{CH}_2
\]

Tomasino was successful in obtaining an addition product with diallyldimethylsilane, but HBr was lost during distillation:
It was concluded that this method would be useless in the preparation of the desired series of compounds. A possible method that was considered, but never tried, was the use of the Grignard or lithium reagent of the appropriate silane with tetrafluoroethylene.

\[\text{Me}_3\text{SiCH}_2\text{CH}_2\text{M} + \text{CH}_2=\text{CF}_2 \rightarrow \text{Me}_3\text{SiCH}_2\text{CH}_2\text{CHF}=\text{CF}_2 + \text{NF} \]

This method involves the use of pressure vessels because of the boiling point of the CF\(_2=\text{CF}_2\). Also, yields are often quite low in such reactions, and the incorporation of a functional group on the silicon atom would be difficult.

The method finally chosen to prepare the RMe\(_2\)SiCH\(_2\)CH\(_2\)CH=CF\(_2\) compounds was the addition of dimethylchlorosilane to CF\(_2=\text{CFCH}_2\text{CH}=\text{CH}_2\), a compound prepared in fair yields by Tarrant and Gilman (28):

\[\text{CF}_2\text{BrCFClBr} + \text{CH}_2=\text{CHCHCl} \rightarrow \text{CF}_2\text{BrCFClCH}_2\text{CHBrCH}_2\text{Cl} \]

\[\text{Zn} \quad \text{alcl} \quad \text{CF}_2=\text{CFCH}_2\text{CH}=\text{CH}_2 \]

The possibility of addition to either end of the diene is obvious. At the time of this research, no study of the relative reactivity of
fluoroolefins and hydrocarbon olefins in such reactions had been made. Concurrently with this research, in these laboratories Muramatsu and Tarrant (11) studied the relative reactivity of this pentadiene toward the free-radical addition of CCl$_3$Br. They found that after 6 days irradiation, attack on the hydrocarbon vinyl group was predominant. After 11 days a mixture of the two products was obtained. After 25 days, addition to both double bonds of the fluoroolefin was complete.

\[
\text{CCl}_3\text{Br} + \text{CH}_2=\text{CHCH}_2\text{CF} = \text{CF}_2 \xrightarrow{\text{6 days}} \text{CCl}_3\text{CH}_2\text{CH}_2\text{CF} = \text{CF}_2
\]

\[
\xrightarrow{\text{u.v.} \text{ 25 days}} \text{CCl}_3\text{CH}_2\text{CH}_2\text{CF} = \text{CF}_2 \text{CF}_2 \text{CCl}_3
\]

Thus, it is obvious that a free radical attack would take place preferentially at the hydrocarbon vinyl group. While the Si–H group can be readily added across an olefin by free radical initiation, addition by means of metal chloride catalysis is generally considered to be an ionic process (23). It was decided to run the reaction using H$_2$PtCl$_6$ as a catalyst:

\[
\text{Me} \quad \text{ClSiH} + \text{CH}_2=\text{CHCH}_2\text{CF} = \text{CF}_2 \xrightarrow{\text{H}_2\text{PtCl}_6} \text{Me} \quad \text{ClSiCH}_2\text{CH}_2\text{CH}_2\text{CF} = \text{CF}_2
\]

85%

[XIV]

or

\[
\text{Me} \quad \text{ClSiCF}_2\text{CF} = \text{CHCH}_2\text{CH} = \text{CH}_2
\]

The reaction was carried out in a sealed glass tube due to the low
boiling point of the diene (38°). The solution was heated at about 75° overnight and conversion was essentially quantitative. The distilled product showed only one infrared absorption which could be attributed to a carbon–carbon double bond. This was at 5.52 μ, which indicated a trifluorovinyl group. Thus addition was to the hydrocarbon vinyl group to give XIV. Elemental analysis and MrD data also support this structure.

The preparation of the trimethyl derivative was accomplished by reacting XIV with the methyl Grignard reagent. While the fluoroolefin might also be expected to react with the Grignard reagent, the much greater reactivity of the silicon–chlorine bond led to the desired product in good yield:

$$\text{Me}_{3} \text{ClSiCH}_{2}\text{CH}_{2}\text{CF} \text{CF} \to \text{Me}_{3} \text{SiCH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CF} \text{CF} + \text{MeMgBr}$$

85%

[XV]

Structural proof was by elemental analysis, infrared spectra, and MrD data.

The disiloxane was readily prepared by reacting XIV with water:

$$\text{Me}_{3} \text{ClSiCH}_{2}\text{CH}_{2}\text{CF} \text{CF} + \text{H}_{2}\text{O} \to \text{Me}_{3} \text{O(SiCH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CF} \text{CF)} \text{CF}$$

Reactions of $\text{Me}_{3} \text{SiCF} \text{CF}$

Seyferth, in his studies of the vinyl derivatives of metals, has investigated the addition reactions of trifluorovinyltriethylsilane (19)
and the reaction of nucleophilic reagents with trifluorovinyltriethylsilane (18). The reactions of trifluorovinyltriethylsilane would be expected to be similar to those of the triethyl compound, and for this reason the addition reactions were not studied.

In his studies of nucleophilic reactions, the trifluorovinyl group underwent, in general, the normal reactions of fluorodienes. An exception was the reaction of the silane with sodium ethoxide in ethanol, where the major product was triethylsiloxysilane, and in a lesser yield the displacement (or addition-elimination) product, Et₃SiCF=CPh₂. This is consistent with the instability of the trifluorovinyl-silicon bond in base. He found, however, that organometallic compounds, and metal alkoxides in nonprotonic solvents, gave good yields of the displacement products. Thus, reaction with various Grignard and lithium reagents, as well as sodium alkoxides, phenolates, and mercaptides gave products of the type Et₃SiCF=CH₂. He also studied the reaction of the silane with excess phenyllithium, and found that the third mole of phenyllithium broke the carbon-silicon bond:

\[
\begin{align*}
\text{Et}_3\text{SiCF} = \text{CP}_2 + \text{PhLi} & \rightarrow \text{Et}_3\text{SiCF} = \text{CPh} && \text{PhLi} \\
\text{Et}_3\text{SiCF} = \text{CPh}_2 \quad \text{or} \quad \text{Et}_3\text{SiCPh} = \text{CPh} & \downarrow \text{PhLi} \\
\text{Et}_3\text{SiPh} + \text{LiCF} = \text{CPh}_2 & \downarrow \text{PhLi} \\
\text{Et}_3\text{SiPh} + \text{LiCPh} = \text{CPh} & \quad \text{PhC=} \text{CPh} + \text{LiF}
\end{align*}
\]

The instability of (CF₂=CF)₄Si to base, already discussed, and the instability of Seyferth's compound to a third mole of phenyllithium,
prompted a further study of the nucleophilic reactions of SiCF=CF₃. As anticipated, it was found that lithium reagents could be easily used to form compounds of the type Me₂SiC=CF₃ if no excess lithium were used. Of the lithium reagents used, only ferrocenyldimethyl- and lithium failed to give adducts. In both cases it is very doubtful if the desired lithium compound was actually formed.

Adducts were formed where R represents methyl, n-butyl, phenyl, m-trifluoromethylphenyl, 1-naphthyl, 2-thiophenyl, allyl, and vinyl. The yields in the cases of the methyl, allyl, and vinyl products were poor.

It is obvious that, if the silicon-carbon bond is as subject to basic hydrolysis in compounds of the type SiCF=CF₃ as in the trifluoro-vinylsilanes, this would represent a general method of preparing 1,2-difluoroolefins.

Each of the Me₂SiCF=CF₃ adducts was reacted in alcoholic KOH solution. Good yields of the desired olefins, CH₃=CHF, was obtained in the cases of the n-butyl, phenyl, m-trifluoromethylphenyl, and 1-naphthyl adducts. In the cases of the methyl, allyl, and vinyl adducts, insufficient starting material (Me₂SiCF=CF₃) was available. In each case a small amount of olefin was obtained, but not enough for positive identification. In the case of the 2-thiophenyl compound, the product obtained decomposed into a black tar in about 48 hours. While the infrared spectra was consistent for SF₂H₂CF=CHF, the elemental analysis was somewhat off from the calculated values. Since the compound had appeared pure by vapor phase chromatography, the compound had probably decomposed too much by the time the elemental analysis was run.

The olefins prepared by this method and the intermediates are listed in Table 1.
<table>
<thead>
<tr>
<th>Lithium Reagent</th>
<th>Method of Preparation</th>
<th>Intermediate Product</th>
<th>Final Olefin</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$Li</td>
<td>a</td>
<td>Me$_3$C=CH$_2$</td>
<td>d</td>
</tr>
<tr>
<td>n-C$_4$H$_9$Li</td>
<td>a</td>
<td>Me$_3$C=CH$_2$</td>
<td>C$_6$H$_5$C$_3$H$_5$</td>
</tr>
<tr>
<td>C$_6$H$_5$Li</td>
<td>a</td>
<td>Me$_3$C=CH$_2$</td>
<td>3,5-Me$_2$C$_6$H$_3$</td>
</tr>
<tr>
<td>CF$_3$C$_6$H$_4$Li</td>
<td>b</td>
<td>Me$_3$C=CH$_2$</td>
<td>3,4-Me$_2$C$_6$H$_3$</td>
</tr>
<tr>
<td>1,2,3,4-naphthalene</td>
<td>b</td>
<td>Me$_3$C=CH$_2$</td>
<td></td>
</tr>
<tr>
<td>C$_3$S$_2$Li</td>
<td>b</td>
<td>Me$_3$C=CH$_2$</td>
<td>d</td>
</tr>
<tr>
<td>CH$_2$=CHCH$_2$Li</td>
<td>c</td>
<td>Me$_3$C=CH$_2$</td>
<td>d</td>
</tr>
<tr>
<td>CH$_2$=CHLi</td>
<td>c</td>
<td>Me$_3$C=CH$_2$</td>
<td>d</td>
</tr>
</tbody>
</table>

a. Prepared directly: RLi + LiBr \rightarrow LiLi + LiBr
b. Prepared by halogen-lithium exchange: RBr + BuLi \rightarrow RLi + BuBr
c. Prepared by tin-lithium exchange: RSn + 4PhLi \rightarrow RLi + Ph$_3$Sn
d. The desired olefin was not positively identified.
Another common reaction of fluoroolefins is the thermal dimerization reaction to give cyclobutanes. Trifluorovinyltrimethylsilane was heated for two days at 200° in a sealed tube to give a very small yield of a product tentatively identified as the dimer:

\[
2\text{Me}_3\text{SiCF}=\text{CF}_2 \xrightarrow{200°} \text{Me}_3\text{Si}-\text{CF}_2 \quad \text{Me}_3\text{SiCF}-\text{CF}_2
\]

While the amount obtained was insufficient for complete analysis, the elemental analysis and infrared analysis was consistent for the dimer. The remaining black, viscous liquid indicated that much decomposition had taken place.

An attempt to prepare either the Diels–Alder product or the vinylcyclobutane with 1,3-butadiene failed. Only a hard, black solid product and a thick oil were formed. No volatile products were obtained.

Reaction of ClMe₂SiCF=CF₂ with Pentafluorophenylmagnesium Bromide

As an example of the use of ClMe₂SiCF=CF₂ [III] as an intermediate in the synthesis of other silanes, III was reacted with pentafluorophenylmagnesium bromide:

\[
\text{MgBr} + \text{ClMe}_2\text{SiCF}=\text{CF}_2 \rightarrow \text{Me}_3\text{Si}-\text{CF}_2
\]

[VI]

Having noted the instability of the silicon–carbon bond to base in the fluoroolefin derivatives previously discussed, it was desired to find if the pentafluorophenyl group would be stable under similar
conditions. The above compound [VII] was reacted in alcoholic KOH, producing CHF=CF₂ as gas, presumably CHF=CF₂, but evolved. If the carbon—silicon bond was stable to base, one would expect to find 1,1,2-trifluorobenzene and 1,1,2,2-tetrafluorodisiloxane among the products formed. If the bond were not stable to base, pentafluorobenzene (identified by comparison of infrared spectra and v.p.c. retention time with those of an authentic sample) was present.

\[
\text{[VII]}
\]

\[
+ \text{CF}_2=\text{CF}_2 + \text{cyclic siloxane}
\]

Reactions of \((\text{CH}_3)_3\text{SiCH}_2\text{CH}_2\text{CF}=\text{CF}_2\) [VIII] for two days at 200° in a sealed tube gave the dimer in 33% yield:

\[
2(\text{CH}_3)_3\text{SiCH}_2\text{CH}_2\text{CF}=\text{CF}_2 \xrightarrow{200^\circ} (\text{CH}_3)_2\text{SiCH}_2\text{CH}_2\text{CF}=\text{CF}_2 + \text{CF}_2=\text{CF}_2
\]

Unreacted starting material was recovered, which indicates the stability of both the olefin and the product at this temperature. Some discoloration was apparent.
reacted and believed to be either

\[\text{MeSiCH-CH=CF-Cl} \]

was obtained. Elemental analysis was correct for either compound, and infrared spectra indicated the presence of a vinyl group. However, before analysis was complete, the sample was lost.

Another interesting compound was prepared from VIII by the action of HCl:

\[\text{MeSi(CH}_2)_2\text{Cl} \rightarrow \text{MeSi(CH}_2)_2\text{Cl} \]

Elemental analysis and n.m.r. data indicated that this product was formed. The deep blue color characteristic of aliphatic nitroso compounds was present.

\[(\text{CH}_3)_2\text{SiCH}_2\text{CH=CHF} \rightarrow (\text{CH}_3)_2\text{SiCH}_2\text{CH=CHF}\]

was found to be quite unstable to nucleophilic reagents. Refluxing sodium azide in ethanol failed to attack the olefin in a period of 20 hours. The same reaction was run in a sealed tube at 500° for 12 hours without success. Tarrant and Heyes (29) found that BrCH\text{ClCH=CHBr} would not react with CH\text{ClCH=CHCl}, whereas perhalo fluorodifins gave fair to good yields in all cases. This would indicate that hydrocarbon substituents on fluorodifins decrease their activity toward nucleophilic compounds.

Phenyllithium, on the other hand, reacted with VIII to give the substitution product in good yield:
Elemental analysis and infrared spectra agree with the proposed structure.

The only reaction attempted with the pentenyl derivatives was thermal dimerization of XIII:

\[
\text{PhCF}=\text{CFCH}=\text{CH} \cdot \text{SiMe} \quad \text{PhCF}=\text{CFCH}=\text{CH} \cdot \text{SiMe}
\]

Elemental analysis is consistent with this formula. The compound, a solid, was obtained in 42% yield. It is interesting to note the possibility of forming a polymer which would contain the cyclobutyl group in the backbone of the chain.

No further reactions were attempted with the \(\text{Ph}_{2}\text{SiCH} \cdot \text{CH} \cdot \text{Cl} \cdot \text{CF}=\text{CF}_{2} \) compounds. There is no reason to expect them to differ from the reactions of the next lower members of the homologous series.

Preparation of Fluorinated Silicones

Galas and Duffant (1) found that trichlorosilane and triphenylsilane added to aliphatic ketones to form the corresponding alkoxides when irradiated with ultra violet light. Having two fluorinated acetones \((\text{CF}_{3}\text{CCF}_{3} \text{ and CF}_{2}\text{CClCCF}_{2}\text{Cl} \) available, it was decided to attempt...
The reaction of methyl halides with the silanes might be complicated by the presence of perhaloacetones, which can compete with the addition of the silanes. Possible pathways were envisioned. First, no reaction might take place, the silane might add as in acetone:

\[
\text{MeSiH} + \text{Cl}_2 \overset{\text{Cl}}{\longrightarrow} \text{Cl} \quad \text{MeSiCl}_2
\]

Third, a competing reaction might occur, in which the perhaloacetones are known to be cleaved by ultraviolet light (32):

\[
\text{CF}_3\text{CO}^+ \overset{\text{hv}}{\longrightarrow} \text{CF}_3 + \text{OF}^- \quad \text{CF}_2\text{OF} \quad \text{CF}_2\text{OF} = \text{CF}_2
\]

Other reactions would lead to similar products. Various products would be expected, as the free radicals would be able to abstract a hydrogen from the silane as well as to combine to form hexafluorocarbon.

Fourth, addition across the carbon-carbon bond might go in the opposite direction from the product obtained with acetone. DuPont chemists, working with perfluorothioacetones, found addition reactions to go differently from the hydrocarbon analogs (10):

\[
\text{CF}_3 \overset{\text{S}}{\longrightarrow} \text{Xe}_{2}\text{HCSO}_3 \quad \overset{\text{CF}_3}{\longrightarrow} \text{CF}_3 \quad \text{Xe}_{2}\text{HCSO}_3
\]

While:
This can readily be explained by the greater electronegativity of the fluorine atom:

\[
\begin{align*}
\text{F}_3 & \rightarrow \text{F}_2 + \text{F} \\
\text{Cl}_2 & \rightarrow \text{Cl}_2 + \text{Cl}
\end{align*}
\]

Oxygen, however, is much more electronegative than sulfur. The effect of the trifluoromethyl group would not be as great in the ketone as in the thioketone. But, if inverse addition were to take place, it would be a new method of forming a carbon-silicon bond:

\[
\text{Me}_{3} \text{SiCl} + \text{Cl}_2 \rightarrow \text{Me}_{3} \text{SiCl}_2
\]

The reactions were run by suspending the silicon containing gases in sealed tubes in sunlight. Mass spectra of the normal addition products were obtained with both hexafluorocyclopentene and tetrafluoro-dichlorocyclobutene:

\[
\begin{align*}
\text{MeClH} + \text{Cl}_2 \rightarrow \text{MeClH} \cdot \text{Cl}_2 \\
\text{CH}_3 \quad \text{Cl} \quad \text{Cl}_2
\end{align*}
\]

[XXXII]

Elemental analysis and NMR data concur with this structure. Infrared spectra shows no absorption due to an OH group, and data agree with an Si-O bond.
Chemical reactions involving alkyl chlorides.

Some reactions were performed under vacuum to indicate that some of the alkyl chlorides will react with the alkyl possibility.

Each of the aqueous reactions are summarized as follows: to make the alkyl cholate:

\[
\text{RCl + Sodium} \rightarrow \text{ROH} + \text{NaCl}
\]

(Eq. 1)

\[
\text{HCl + Sodium} \rightarrow \text{H}_{2}\text{O} + \text{NaCl}
\]

(Eq. 2)

Elemental analysis, infrared of P4-Bu, and H4-Bu were done.

Theoretical analysis included reactions with symmetrical to nonsymmetrical. In all cases, reactions were completed, but base was used to avoid unsymmetrical bases, which were used, hydrolysis would become very slow as the solution became slightly acidic. This indicated the possibility of preparing a chiral polycrystal from the isopropylmethyl dichlororilane. Both forms of chiral gasses
The isopropoxy groups probably cleaved slowly to give cross-linking and form the hard, brittle solid which resulted on standing.
<table>
<thead>
<tr>
<th>Compound No.</th>
<th>Compound</th>
<th>% Yield</th>
<th>b.p. °C/\text{mm}</th>
<th>(n^0_{D20})</th>
<th>(d^0_{20})</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXVIII</td>
<td>CF=CHF</td>
<td>83</td>
<td>69/1</td>
<td>1.5975</td>
<td>1.224</td>
</tr>
<tr>
<td>XXIX</td>
<td>(CH(_3))(_3)SiCH(_2)CH(_2)CF=CF(_2)</td>
<td>33</td>
<td>70/0.8</td>
<td>1.4059</td>
<td>1.069</td>
</tr>
<tr>
<td>XXX</td>
<td>(CH(_3))(_3)SiCH(_2)CH(_2)CF=CF(_2)</td>
<td>69</td>
<td>90/2</td>
<td>1.4990</td>
<td>1.007</td>
</tr>
<tr>
<td>XXXI</td>
<td>Cl(CH(_3))(_2)SiCH(_2)CH(_2)CH(_2)CF=CF(_2)</td>
<td>42</td>
<td>145/5 (m.p. 53-56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cl(CH(_3))(_2)SiCH(_2)CH(_2)CH(_2)CF=CF(_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cl(CH(_3))(_3)SiOCH</td>
<td>63</td>
<td>94</td>
<td>1.3333</td>
<td>1.439</td>
</tr>
</tbody>
</table>
III. EXPERIMENTAL

General

All temperatures reported are uncorrected and are given in degrees Centigrade. Molar refraction (MR_D) data were calculated from bond refraction values reported by Warrick (38). It was found that the experimental MR_D values were always somewhat higher than the calculated values when a fluorine atom was on an aromatic ring or on an olefin conjugated with an aromatic ring. The experimental value was also high in the butadiene, $Me_3SiCF=CFCH=CH_2$. No general correction could be calculated, so these values are not reported.

Refractive indices were determined with an Abbe refractometer at 20 degrees Centigrade, densities were determined at 20 degrees Centigrade using either a 5 milliliter or 1 milliliter pycnometer.

Infrared spectra were obtained using a Perkin-Elmer Infracord. Only absorption peaks indicative of the structure are reported.

Analyses were performed by Galbraith Laboratories, Knoxville, Tennessee.

Preparation of Trifluorovinylsilanes

The trifluorovinylsilanes, with the exception of dimethyltrifluorovinylsilane, were prepared by adding the appropriate chlorosilane to a solution of trifluorovinyl lithium at -78°. The trifluorovinyl lithium was generally prepared as follows:
acetone
bath
and
condensed in a cold
... turned dark blue after about 30
about two hours.

Trims thylchloro...

stirred solution of trifluorovinyl
at —73°. The reaction mixture was
allowed to come to room temperature slowly.
The mixture was then hydrolyzed and dried
over CaCl₂.

Distillation at 67°, n²D 1.3580, i.r. absorption at 5.83 μm.

65°, n²D 1.3569, i.r. absorption at 5.83 μm.

Tri trifluoro vinyl dimethylethylene

Dinethylchylene

distilled absolute ethanol to

amylamine with stir.
yielding ox

about 0.01 of the desired product. The mixture of the enantiomers of
distilled compounds was isolated.

Distillation, melting point, i.r., and n.m.r. analyses were carried out to verify the purity and identity of the isolated compound.
Trifluorovinyldiethylchlorosilane (II) (50 g.), b.p. 103°, \(d^o \) 1.028, \(\mu \) 1.3612, \(N \) found 0.3.

Anal. Calcd. for \(C_{n}H_{m}ClFSi \): C, 39.12; H, 6.02; F, 30.9%.

Found: C, 38.90; H, 6.26; F, 31.05.

Trifluorovinyldimethylethoxysilane (III) (55 g.), b.p. 87°, \(d^o \) 1.361, \(\mu \) 1.369, \(N \) found 34.7.

Anal. Calcd. for \(C_{n}H_{m}F_{2}Si \): C, 27.51; H, 3.86; F, 32.64.

Found: C, 27.74; H, 3.68; F, 32.81.

1,1,1-Trimethyltrifluorovinyldiamino (IV) by adding water slowly to a solution of dichlorodimethylsilane in ether in the manner described by Ollis and Villet (14). This compound (11.5 g., 0.056 mole) was then added to a stirred, cooled, and tri-1,1,1-trifluorovinyllithium (0.12 mole) at -73°. The mixture was allowed to come to room temperature, where it was added, and the product isolated, recrystallized, and dried. Distillation gave 4.3 g. 2L (50%), b.p. 55-56°/20mm, \(n^20 \) 1.5641, \(d^20 \) 1.153, \(\mu \) 1.39 calcd. 57.0, found 58.3.

Anal. Calcd. for \(C_{n}H_{m}F_{2}Si \): C, 32.50; H, 4.23; F, 32.46.

Trifluorovinyltrichlorosilane (V)

Bromotrifluoroethylene was bubbled into a 300 ml. baffled flask containing 150 ml. THF and 5 g. (0.2 mole) magnesium. When the reaction
One mole of dimethylsilane \(\text{CH}_3\text{SiH}_2 \) and \(1.35 \text{摩尔} \) trifluoroacetic acid \(\text{CF}_3\text{COOH} \), were added to a solution of lithium \(\text{Li} \) in \(\text{dichloroethane} \) at \(-75^\circ\text{C}\). The mixture was allowed to come to room temperature. The lithium halide was filtered off and the filtrate was treated with water. The only product, in addition to recovery of dichlorodimethylsilane, was \(30.5 \text{克} \) of \(\text{CF}_3\text{CO}_{2}\text{H} \), b.p. 98°, n\(_D^0\) 1.3633, d\(_1\) 1.272, Mr\(_C\) 152.1 found: C, 38.5; H, 2.7; F, 51.7. Anal. for C, 32.7; H, 2.7; F, 51.7. Found: C, 32.4; H, 2.9; F, 51.48.
Preparation of 2,3,3-Trifluoroallytrimethylsilane [VIII]

Bromomethyltrimethylsilane (8.4 g., 0.05 mole) was reacted with an excess of dispersed lithium in 50 ml. ether. The lithium reagent formed was filtered to remove the remaining lithium and added to a 100 ml. thick-walled glass tube. Tetrafluoroethylene (6 g., 0.06 mole) was condensed into the tube at liquid nitrogen temperature. The tube was evacuated and sealed and left in an ice bath overnight, and at room temperature for 12 hours. The tube was opened and all volatile materials were transferred into a cold trap via an aspirator to separate them from the solid residue. Distillation of the ether solution gave 3.6 g. (42%) VIII, b.p. 89°, \(n^2_0 \) 1.3745, \(d^2_0 \) 0.949, \(Mr^D \) calcd. 39.2, found 40.4.

Anal. Calcd. for \(C_{6}H_{11}F_{3}Si \): C, 42.84; H, 6.59; F, 33.89. Found: C, 43.16; H, 6.61; F, 33.49.

Preparation of (3,4,4-Trifluoro-3-butene)silanes

(3,4,4-Trifluoro-3-butene)trimethylsilane [IX]

A 500 ml. 3-necked flask was fitted with a stirrer, condenser, and dropping funnel. A stirred mixture of isopropyl alcohol (200 ml.) and zinc dust (130 g., 2 moles) was heated to reflux. (1,4-Dibromo-3-chloro-3,4,4-trifluorobutyl)trimethylsilane (188 g., 0.50 mole) was added at a rate to maintain reflux without added heat. After the last of the silane was added the mixture was refluxed for an additional hour. The heat was then removed and 100 ml. of 38% HCl was slowly added. Upon completion of the reaction, the mixture was filtered to remove the zinc. The two liquid phases were added to a 1 l. separatory funnel and water and ether added. The water layer was discarded; the ether layer was
washed twice more with water and dried over CaCl₂. Distillation yielded 68.5 g. (75%) [IX], b.p. 112–114°, nD²⁰ 1.3808. Tomasino reported b.p. 114°, nD²³ 1.3790.

(3,4,4-Trifluoro-3-chloro-4-bromobutyl)dimethylchlorosilane [X]

A solution of dimethylchlorosilane (25 g., 0.37 mole), 3,4,4-trifluoro-3-chloro-4-bromo-1-butene (57 g., 0.26 mole) and 1/2 ml. 1 M solution of H₂PtCl₆ in isopropyl alcohol was refluxed in a 200 ml. flask for 24 hours. Distillation of the products gave 11 g. dimethyldichlorosilane and 35.8 g. X (44%), b.p. 205°, nD²⁰ 1.4400, d²⁰ 1.513, MrD calcd. 56.4, found, 56.0.

Anal. Calcd. for C₆H₁₀BrCl₂F₃Si: C, 22.65; H, 3.16; F, 17.91.
Found: C, 22.69; H, 3.57; F, 18.97.

(3,4,4-Trifluoro-3-chloro-4-bromobutyl)methyldichlorosilane [XI]

A solution of methyldichlorosilane (23 g., 0.020 mole), 3,4,4-trifluoro-3-chloro-4-bromo-1-butene (40 g., 0.18 mole), and 1/2 ml. 1 M H₂PtCl₆ solution in isopropyl alcohol was refluxed 24 hours. Distillation gave 45 g. (71%) XI, b.p. 220°, nD²⁰ 1.4451, d²⁰ 1.6076, MrD calcd. 56.1, found 56.0.

Anal. Calcd. for C₅H₇BrCl₂F₃Si: C, 17.74; H, 2.08; F, 16.84.
Found: C, 17.92; H, 2.23; F, 17.09.

Attempted Dehalogenation of X

X (7 g., 0.03 mole) was slowly added to a refluxing mixture of zinc (5 g.) and THF. The reaction appeared to proceed smoothly with evolution of heat. The mixture was then distilled without further treatment, due to the reactivity of the silicon chloride. As the THF was removed and the flask temperature increased, the residue quickly
turned black and a two-phase mixture was distilled. The products were not separated and identified, but no olefinic group showed in the i.r. spectra.

1,3-Bis(3,4,4-trifluoro-3-chloro-4-bromobutyl)-1,1,3,3-tetramethyldisiloxane [XII]

(3,3,4-Trifluoro-3-chloro-4-bromobutyl)dimethylchlorosilane (36 g., 0.11 mole) was heated with stirring overnight in 25 ml. water. The organic layer was separated and dried over CaCl$_2$. Distillation yielded 23 g. (82%) XII, b.p. 125°/mm, n_D^{20} 1.4345, d_D^{20} 1.4712, M_D calcd. 101.9, found 102.7.

1,3-Bis(3,4,4-trifluoro-3-trifluoro-3-butenyl)-1,1,3,3-tetramethyldisiloxane [XIII]

XII (22 g., 0.045 mole) slowly added to a refluxing mixture of 10 g. zinc in isopropyl alcohol. Water was added and the product extracted with ether. The ether layer was washed twice and dried over CaCl$_2$. Distillation yielded 6.8 g. (42%) XIII, b.p. 95°/6mm, n_D^{20} 1.3932. Tomasino (34) reported b.p. 95°/6mm, n_D^{20} 1.3975.

Preparation of (4,5,5-Trifluoro-4-pentenyl)dimethylchlorosilanes

(4,5,5-Trifluoro-4-pentenyl)dimethylchlorosilane [XIV]

1,1,2-Trifluoro-1,4-pentadiene (50 g., 0.41 mole), prepared by the method of Tarrant and Gilman (26), was sealed in a thick-walled glass tube with dimethylchlorosilane (40 g., 0.42 mole) and 1/2 ml. 1 M H_2PtCl_6 solution in isopropyl alcohol. The tube was heated overnight at 75°. Distillation of products yielded 75 g. (85%) XIV, b.p. 163°, n_D^{20} 1.4046, d_D^{20} 1.116, M_D calcd. 48.0, found 47.6.
A 100 ml. three-necked flask equipped with a dropping funnel, a stirrer, and a reflux condenser was used. Into this flask was added 3, 4, 15 ml. of 0.07 N NaOH. A gas, probably trifluoroethyl, was evolved in the addition. The solution was diluted with water and extracted with ethyl acetate. The combined extracts were washed with 10% sodium hydroxide solution and water. The organic layer was dried over anhydrous calcium chloride and distilled at 117 °/0.07 mm. over a micro column. The following were obtained.

-

C, H, F

<table>
<thead>
<tr>
<th>Component</th>
<th>Calculated</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>33.79</td>
<td>44.60</td>
</tr>
<tr>
<td>H</td>
<td>5.58</td>
<td>6.43</td>
</tr>
<tr>
<td>F</td>
<td>29.04</td>
<td>30.31</td>
</tr>
</tbody>
</table>

I with Sodium Ethoxide

A 100 ml. three-necked flask equipped with a dropping funnel, a stirrer, and a reflux condenser was used. Into this flask was added 3, 4, 15 ml. of 0.07 N NaOH. A gas, probably trifluoroethyl, was evolved in the addition. The solution was diluted with water and extracted with ethyl acetate. The combined extracts were washed with 10% sodium hydroxide solution and water. The organic layer was dried over anhydrous calcium chloride and distilled at 117 °/0.07 mm. over a micro column. The following were obtained.

<table>
<thead>
<tr>
<th>Component</th>
<th>Calculated</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>45.94</td>
<td>44.60</td>
</tr>
<tr>
<td>H</td>
<td>7.73</td>
<td>6.43</td>
</tr>
<tr>
<td>F</td>
<td>29.04</td>
<td>30.31</td>
</tr>
</tbody>
</table>
hexamethyldisiloxane (60%), b.p. 97-99°, n_D^{20} 1.3777 (Lit. b.p. 100.4, n_D^{20} 1.3772).

Attempted Dimerization of I

I (7.0 g., 0.45 mole) was sealed in a glass tube and heated at 200° for two days. Distillation gave some starting material and 0.25 g. (3.8%) of material boiling 96°/24 mm. Considerable decomposition was evident.

Anal. Calcd. for C₁₀H₁₈F₄Si₂: C, 38.94; H, 5.88; F, 36.96.
Found: C, 39.19; H, 6.07; F, 37.22.

i.r. Data, while not conclusive, are in agreement with that expected of the dimer.

Attempted Reaction of 1,3-Butadiene with I

I (6.7 g., 0.044 mole) and butadiene (4.75 g., 0.090 mole) was sealed under N_2 in a glass tube and heated at 200° for 24 hours. A black solid was obtained, but no volatile products were present.

Reaction of Lithium Reagents with I

In general, the lithium reagent was prepared either directly or by the halogen exchange reaction with butyllithium. The lithium reagent was then slowly added to an ether solution of I in a 3-necked flask equipped with a stirrer and reflux condenser. The reaction mixture was then hydrolyzed, the ether layer separated and dried, and the product obtained by distillation.

Reaction of methyllithium with I. Methyllithium (0.05 mole) was added to I (7.7 g., 0.05 mole) in ether. A gas was evolved. A sample was collected, and the i.r. spectra indicated that it was probably $\text{CH}_3\text{CF}^+=\text{CHF}$. The reaction mixture was worked up as described and
distillation: 1.4 g. (19%) 1-trimethylsilyl-1,2-difluoro-1-propene [XVII], b.p. 30°, n\textsubscript{D} 1.3921, d20 0.917, M\textsubscript{r\ D} calcd. 39.1, found 39.1.

Anal. Calcd. for C\textsubscript{6}H\textsubscript{12}F\textsubscript{2}Si: C, 47.97; H, 9.06; F, 25.1.

Found: C, 47.78; H, 9.07; F, 25.1.

Reaction of butyllithium with I. Butyllithium (0.10 mole) was slowly added to I (15.4 g., 0.1 mole) in ether. Work-up of the reaction mixture gave 13.4 g. (70%) 1-trimethylsilyl-1,2-difluoro-1-hexene [XVIII], b.p. 76°/40 mm, n\textsubscript{D} 20 1.4112, d20 1.0387, M\textsubscript{r\ D} calcd. 53.0, found 53.9.

Anal. Calcd. for C\textsubscript{6}H\textsubscript{12}F\textsubscript{2}Si: C, 56.21; H, 9.44; F, 19.76. Found: C, 56.39; H, 9.48; F, 19.53.

Reaction of phenyllithium with I. Phenyllithium (0.10 mole) was slowly added to I (15.4 g., 0.10 mole) in ether. Work-up of the reaction mixture gave 13.4 g. (72%) 2-trimethylsilyl-α,β-difluorostyrene [XIX], b.p. 76-74°/2 mm, n\textsubscript{D} 20 1.5062, d20 1.0304.

Anal. Calcd. for C\textsubscript{11}H\textsubscript{18}F\textsubscript{2}Si: C, 62.22; H, 6.64; F, 17.90. Found: C, 62.52; H, 6.53; F, 17.75.

Reaction of m-trifluoromethyl-phenyllithium with I. m-Bromobenzotrifluoride (22.5 g., 0.10 mole) was reacted with butyllithium (0.10 mole). The reagent was then slowly added to I (15.4 g., 0.10 mole) in ether. Work-up of the reaction mixture gave 14.0 g. (50%) of m-trifluoromethyl-2-trimethylsilyl-α,β-difluorostyrene [XX], b.p. 101-104°/6 mm, n\textsubscript{D} 20 1.4640, d20 1.181.

Anal. Calcd. for C\textsubscript{12}H\textsubscript{15}F\textsubscript{5}Si: C, 51.42; H, 4.68; F, 33.89. Found: C, 52.31; H, 4.57; F, 33.22.

Reaction of 1-naphthyllithium with I. 1-Bromonaphthalene (20.7 g., 0.10 mole) was reacted with butyllithium (0.10 mole). (It was later
found that less than 0.10 mole of BuLi was used, but the correct amount is unknown.) The 1-naphthyllithium was slowly added to I (15.4 g., 0.10 mole) in ether. Work-up of the mixture gave 10 g. (50%) of 1-(1,2-difluoro-2-trimethylsilylvinyl)naphthalene [XXII], b.p. 100°/1.2
n_D^20 1.5588, d^20 1.116.

Anal. Calcd. for C_{15}H_{16}F_2Si: C, 68.69; H, 6.15. Found: C, 63.43; H, 6.35.

Reaction of 2-thiophenyllithium with I. 2-Bromothiophene (15.0 g., 0.09 mole) was reacted with butyllithium (0.09 mole). The 2-thiophenyllithium was slowly added to I (14 g., 0.09 mole) in ether. Work-up gave 10 g. (50%) 2-(1,2-difluoro-2-trimethylsilylvinyl)-thiophene [XXII], b.p. 60°/2mm, n_D^20 1.5101, d^20 1.135.

Anal. Calcd. for C_{9}H_{12}F_2Si: C, 49.50; H, 5.54; F, 17.35. Found: C, 49.62; H, 5.52; F, 17.17.

Reaction of allyllithium with I. Tetraallyltin (7.1 g., 0.025 mole) was slowly added to an ether solution containing phenyllithium (0.10 mole). A precipitate of tetraphenyltin was formed. I (15.4 g., 0.10 mole) was added slowly to this mixture. The mixture was stirred for two hours and filtered. Distillation of the filtrate yielded 3.5 g. (20%) of 1-trimethylsilyl-1,2-difluoro-1,4-pentadiene [XXIII], b.p. 50°/30mm, n_D^20 1.4180, d^20 0.924, M_D calc. 47.9, found 48.0.

Anal. Calcd. for C_{8}H_{14}F_2Si: C, 54.32; H, 7.97; F, 21.58. Found: C, 54.33; H, 7.81; F, 21.76.

Reaction of vinylolithium with I. Tetravinyltin (5.7 g., 0.025 mole) was slowly added to an ether solution containing phenyllithium (0.10 mole). A precipitate of tetraphenyltin was formed. I (15.4 g., 0.10 mole) was slowly added to this mixture. The mixture was stirred
for two hours and steam distilled to remove the product from the phenyltin. The ether layer was separated, dried, and distilled. The product was found to polymerize when heated, but 2.3 g. (1.6 equiv.) of triethylsilyl-1,2-difluoro-1,3-butadiene [XXIV] was obtained, b.p. 45°/40 mm, \(n_D^{20} \) 1.4400, \(d_20 \) 0.944.

Preparation of 1,2-Difluoro-1-hexene [XXV]

1-Trimehtylsilyl-1,2-difluoro-1-hexene [XVIII] (13 g., 0.047 mole) was reacted as above with 20 ml. KOH-ethanol solution. Work-up yielded 5.5 g. (62%) XXV, b.p. 73°, \(n_D^{20} \) 1.3680, \(d_20 \) 0.885, \(X_B \) calcd. 29.5, Found 30.4.

Anal. Calcd. for C\(_6\)H\(_{10}\)F\(_2\): C, 60.00; H, 8.34; F, 31.61. Found: C, 59.89; H, 8.21; F, 31.30.

Preparation of \(\alpha,\beta \)-Difluorostyrene [XXVI]

\(\alpha,\beta \)-Trimethylsilyl-\(\alpha,\beta \)-difluorostyrene [XIX] (11.8 g., 0.026 mole) was reacted as above with 20 ml. KOH-ethanol solution. Work-up yielded 5.5 g. (61%) XXVI, b.p. 84/60, \(n_D^{20} \) 1.5056, \(d_20 \) 1.155. Had (12) reports b.p. 88-90°/60 mm, \(n_D^{20} \) 1.5060.

Preparation of \(\alpha \)-Trifluoromethyl-\(\alpha,\beta \)-difluorostyrene [XXVII]
m-Trifluoromethyl—trisubstituted benzene [XXI] (3 g., 0.049 mole) was reacted as above with 20 ml. KOH-ethanol solution. Work-up yielded 7.3 g. (75%) XXVII, b.p. 75°/40 mm, \(n_D^{20} = 1.4467; \) \(c^{20} = 1.353. \)

Analytical. Calculated for \(C_6H_5F_3: \) C, 51.94; H, 2.42; F, 45.65. Found: C, 51.79; H, 2.50; F, 45.28.

This compound formed a clear glass with a h.v. of 66,300 when heated at 90° overnight with benzoyl peroxide.

Preparation of 1-(1,2-Difluorovinyl)napththalene [XXVII]

1-(1,2-Difluorovinyl)napththalene [XXVII] (3.3 g., 0.039 mole) was reacted as above with 20 ml. KOH-ethanol solution. Work-up yielded 5.5 g. (83%) XXVIII, b.p. 70°/1 mm, \(n_D^{20} = 1.5975; \) \(c^{20} = 1.224. \)

Analytical. Calculated for \(C_{12}H_7F_2: \) C, 75.77; H, 4.24; F, 19.97. Found: C, 75.23; H, 4.10; F, 19.14.

Attempted Preparation of 2-(1,2-Difluorovinyl)thieno[3,2-b]naphthalene

2-(1,2-Difluorovinyl)thieno[3,2-b]naphthalene [XXVII] (3 g., 0.04 mole) was reacted as above with KOH-ethanol solution. Work-up yielded 5.5 g. product, b.p. 65°/40 mm, \(n_D^{20} = 1.5272. \) The compound quickly discolored, and the next day was a black tar.

Analytical. Calculated for \(C_6H_4F_2Si: \) C, 49.30; H, 2.76; F, 25.98. Found: C, 48.41; H, 2.69; F, 27.43.

Attempted Preparation of 1,2-Difluoro-1,4-pentadiene

1-Trifluoromethyl-1,2-difluoro-1,4-pentadiene [XXIII] (3 g., 0.017 mole) was reacted as above with KOH-ethanol solution. Work-up yielded a small amount of low boiling product, but not pure enough for analysis.
Attempted Preparation of 1,2-Difluoro-1,3-butadiene

The steam distillate from the preparation of 1,2-difluoro-1,3-butadiene [XXIV] was stripped of ether by distillation. The concentrated solution was then slowly added to a hot ether solution. The gases evolved were caught in a Dry Ice-acetone trap. Separation by v.p.c. gave three fractions. One was identified by i.r. and M.W. as CF₂=CF₂. Another was probably 1,2-difluorobutadiene, but there was not enough for elemental analysis. i.r. Data were consistent. The third component (highest boiling) was not identified.

Reactions of (3,4,4-Trifluoro-3-butenyl)trimethylsilane [XXI]

Thermal Dimerization of IX

IX (25 g., 0.14 mole) was sealed in a thick-walled glass tube containing a pinch of hydroquinone. The tube was heated at 210° for 47 hours. Distillation of the reaction mixture yielded 3 g. dimer [XXIX], b.p. 70°/0.8, nD²⁰ 1.4059, d²⁰ 1.069, MrD calc. 34.5, found 33.8.

Reaction of Phenyllithium with IX

IX (9.1 g., 0.05 mole) was slowly added to a solution containing phenyllithium (0.05 mole) in ether. The mixture was stirred for two hours, hydrolyzed and the organic layer dried. Distillation gave 8.3 g. (69%) (4-phenyl-3,4-difluoro-4-butenyl)trimethylsilane [XXX], b.p. 90°/2mm, nD²⁰ 1.4990, d²⁰ 1.007.

Anal. Calcd. for C₁₃H₁₉F₂Si: C, 64.93; H, 7.56; F, 15.01. Found: C, 65.01; H, 7.67; F, 15.82.
Preparation of (1,1,1,3,3-hexafluoroisopropoxy)trimethylsilane (XXXI)

Hexafluoroacetone (16.6 g., 0.10 mole) and methyldichlorosilane (15.0 g., 0.10 mole) were sealed in a thick-walled glass tube and irradiated in sunlight for about two weeks. Distillation yielded 20 g. (63%) XXXII, b.p. 94°, n_20^20 1.3333, d_20^20 1.439, Mr calcd. 39.7, found 40.1.

Anal. Calcd. for C_4H_9Cl_2F_3O: C, 17.09; H, 1.29; F, 40.3.

Found: C, 17.15; H, 1.45; F, 40.3.

Preparation of (1,1,3,3-tetrafluoro-1,3-dichloroacetone)trimethylsilane (XXXI)

1,1,3,3-Tetrafluoro-1,3-dichloroacetone (80 g., 0.40 mole) and methyldichlorosilane (46 g., 0.40 mole) were sealed in a thick-walled glass tube and irradiated for about two weeks. Distillation yielded 89 g. (79%) XXXIII, b.p. 153°, n_20^20 1.3930, d_20^20 1.524, Mr calcd. 49.7, found 49.3.

Anal. Calcd. for C_4H_9Cl_2F_3O: C, 15.25; H, 1.29; F, 24.20.

Found: C, 15.85; H, 1.33; F, 24.33.

Preparation of (1,1,1,3,3,3-hexafluoroisopropoxy)trimethylsilane (XXXI)

XXXII (17 g., 0.06 mole) was reacted with CH_3MgBr (0.12 mole) in ether. The mixture was hydrolyzed and the organic layer dried. Distillation gave 5 g. (35%) XXXIV, b.p. 80°, n_20^20 1.3196, d_20^20 1.177, Mr calcd. 40.5, found 40.3.
Reaction of IX with 1,3-Butadiene

IX (8.2 g., 0.045 mole) and 1,3-butadiene (4.8 g., 0.09 mole) were sealed in a thick-walled glass tube and heated at 200° for 24 hours. Distillation of the liquid residue gave 3.6 g. (33.6%) of a compound tentatively identified as either

\[
\text{(CH}_3)_2\text{SiCH}_2\text{CH}_2\text{CF-CF}_2 \quad \text{or} \quad \text{CH}_2=\text{CHCH}_2=\text{CH}_2
\]

Infrared analysis showed a vinyl group to be present.

Anal. Calcd. for \(\text{C}_{11}\text{H}_{19}\text{F}_3\text{Si} \): C, 55.88; H, 8.11. Found: C, 56.87; H, 8.11.

Reaction of IX with NOCl

A 3-necked, 300 ml. round-bottomed flask was fitted with a stirrer, reflux condenser, and inlet tube. DMF (160 ml.), \(\text{AlCl}_3 \) (11 g., 0.082 mole), and IX (11 g., 0.06 mole) was added to the flask. NOCl was bubbled in until no further reaction was obvious. (The reaction was quite exothermic.) The solution was extracted with pentane, and the pentane layer, containing the blue product, was passed through an alumina (acid) column. The blue material was collected and the pentane evaporated under vacuum. A deep blue product, tentatively identified as \((\text{CH}_3)_3\text{SiCH}_2\text{CH}_2\text{CFCFCl} \) was obtained. n.m.r. Spectrum indicated the structure was possible, although not definite.

Anal. Calcd. for \(\text{C}_{7}\text{H}_{13}\text{ClF}_3\text{NO} \): C, 33.89; H, 5.29. Found: C, 33.76; F, 5.43.

Thermal Dimerization of

\((4,5,5\text{-Trifluoro}-4\text{-pentenyl})\text{dimethylchlorosilane} \ [XIV]\)
Yield. Calcd. for C₁₅H₂₄F₁₂O₃: C, 29.87; H, 3.97; F, 47.96.

Preparation of (1,1,3,3-Tetrafluoro-1,3-bis(chloromethyl)silane LXXXVI (0.1 mole) was reacted with CH₂MgBr (0.2 mole) in ether. The mixture was hydrolyzed, and the organic layer distilled. Distillation yielded 15 g. (90%) XXXV, b.p. 150°, n_D 1.495, d₄ 1.240.

Anal. Calcd. for C₁₅H₂₄F₁₂O₃: C, 26.34; H, 3.69; F, 28.42.

Found: C, 26.39; H, 3.81; F, 27.95.

Polymerization of XXXII and XXXIII

Twenty gram samples of XXXII and XXXIII were reacted separately in separate beakers containing 50 ml. water. The mixtures were stirred rapidly. Each formed an elastomeric gum in about 10 to 15 minutes. The gums were resilient but not strong. The gums were put on watch glasses to dry overnight. They hardened overnight to form brittle polymers. Elemental analysis of the polymer from XXXII showed only 4.41% fluorine: analysis of the polymer from XXXIII showed only 7.60% chlorine. (Calcd.: 50.4% and 27.4% respectively, if no hydrolysis of the isoproxy groups took place.)
A series of silanes of the general form \(\text{R}_n\text{SiCF}=\text{CF}_2 \) has been prepared, where \(n \) is 0, 1, 2, or 3. Some derivatives have functional groups.

The first of the series, \(\text{Me}_2\text{SiCH}=\text{CF}_2 \), was prepared by the reaction of \(\text{CF}_2=\text{CHLi} \) with the appropriate silane, \(\text{R} = \text{Me}_2\text{SiCl} \), or \(\text{OSiMe}_2\text{CF}=\text{CF}_2 \). Where \(\text{R} = \text{CF}_2=\text{CF}_2 \), the starting silane was \(\text{CF}_2=\text{CFCH}_2\text{Li} \) and where \(\text{R} = \text{H} \), \(\text{CF}_2=\text{CHLi} \) was reacted with \(\text{ClMe}_2\text{SiH} \).

The compound \(\text{Me}_3\text{SiCH}_2\text{CF}=\text{CF}_2 \) was prepared by the reaction of \(\text{Me}_3\text{SiCH}_2\text{Li} \) with \(\text{CF}_2=\text{CF}_2 \).

The compound \(\text{Me}_3\text{SiCH}_2\text{CH}_2\text{CF}=\text{CF}_2 \) was prepared by the electron addition of \(\text{CF}_2\text{BrCFCllBr} \) to \(\text{CH}_2=\text{CHSiMe}_3 \) and subsequent dechlorination and reduction of the addition product. Other derivatives were obtained from the addition product of \(\text{CF}_2\text{BrCFCllCH}_2=\text{CHCH}_2\text{Li} \) and \(\text{ClMe}_2\text{SiH} \).

Derivatives of \(\text{RMe}_2\text{SiCH}_2\text{CH}_2\text{CF}=\text{CF}_2 \) were obtained from the addition product of \(\text{ClMe}_2\text{SiH} \) and \(\text{CH}_2=\text{CHSiMe}_2\text{CF}=\text{CF}_2 \). The chlorine, trimethyl, and disiloxane derivatives were prepared.

\(\text{Me}_3\text{SiCF}=\text{CF}_2 \) was found to give substitution products with several lithium compounds:

\[\text{R}\text{Li} + \text{Me}_3\text{SiCF}=\text{CF}_2 \rightarrow \text{Me}_3\text{SiCF}=\text{CFR} \]

Lithium compounds used were methyl, \(n \)-butyl, phenyl, \(n \)-trifluoromethylphenyl, \(1 \)-naphthyl, \(2 \)-thiophenyl, allyl, and vinyl. These substitution
products or further reacted in alcoholic base to give 1,2-difluoro-olefins with the n-butyl, phenyl, m-trifluoromethylphenyl, and naphthyl adducts.

The compound Me₃SiCH₂CH₂CF=CF₂ also formed the cyclobutyl dimer upon prolonged heating, as did ClMe₃SiCH₂CH₂CF=CF₂.

Two ketones, CF₂=O and CF₂=OCF₂Cl, were found to react with methyltrichlorosilane to give the isopropoxides,

\[
\begin{align*}
\text{ClCF}_2\text{Cl} & \quad \text{and} \quad \text{ClSiCH}\text{Cl} \\
\text{MeSiOCF}_2\text{Cl} & \quad \text{and} \quad \text{MeSiOCl} \\
\end{align*}
\]

Both of these polymerized by reaction in water. Much of the isotopes was lost, giving hard, brittle polymers instead of the expected ethers. The trimethyl derivatives were also prepared from the two alkoxides.
BICGRAPHIC.NOTE

Vard M. Oliver was born April 25, 1930, in Mobile, Alabama. He attended public schools in Baldwin County, Alabama, and graduated from Baldwin County High School in May, 1948.

He entered the U. S. Navy the month of his graduation and served on active duty for a period of 10 years, 11 months and 22 days. While in the service he attended Del Mar Junior College in Corpus Christi, Texas, for a period of three years. Upon being discharged, he entered Southern Missionary College, Collegedale, Tennessee, and graduated with a B.S. in Chemistry in June, 1961.

He entered the University of Florida as a graduate student in September, 1961. He later received a fellowship supported by the U.S. Army Natick Laboratories, Natick, Massachusetts.

The author is married to the former Miss Lyda Little of Bay Minette, Alabama, and has three children. He is a member of the American Chemical Society.
This dissertation was prepared under the direction of the candidate's supervisory committee and has been approved by the members of that committee. It was submitted to the Dean of the College of Arts and Sciences and to the Graduate Council, and was approved as partial fulfillment of the requirements for the degree of Doctor of Philosophy.

December 19, 1964

Supervisory Committee:

R. B. Banner

J. B. Butler

A. G. Stroufer

J. D. Winford

L. G. Gramling

Dean, College of Arts and Sciences

Dean, Graduate School