Abstract

Compositionality is of great practical importance when building systems from individual components. Unfortunately, leads-to properties are not, in general, compositional, and theorems describing the special cases where they are, are needed.

In this paper, we develop a general theory of compositional leads-to properties, and use it to derive a composition theorem based on the notion of progress sets, where progress sets can be defined in various ways. Appropriate definitions of progress sets yield new results and generalized versions of known theorems.

1 Introduction

Although leads-to properties are not compositional, in general, it is worthwhile to identify the special cases where they are. Composition theorems for leads-to properties have been proposed, for example, in [Rao92, Mi91a, Mi91b]. In this paper, we develop a general theory about composition of leads-to properties, then specialize the results to give a composition theorem based on the notion of progress sets. A progress set for a program F and target q is a set of predicates satisfying certain properties. The theorem essentially states that if for each predicate in the progress set, program G satisfies a particular property, then any "leads-to q" property that holds for F, also holds in the parallel composition of F and G. Several different composition theorems can be obtained by choosing particular ways of constructing progress sets.

First, we will introduce our program model, define the necessary background information, and develop a very general theorem for composing programs in a
way that preserves leads-to properties. This theorem is then specialized to obtain the main result of the paper — a composition theorem based on progress sets. Finally, we explore different choices for the way a progress set is constructed and give several useful corollaries.

2 Preliminaries

2.1 Programs and Properties

A program \(F \) is a pair \((V_F, S_F)\) where \(V \) is a set of typed variables and \(S \) is a set of predicate transformers that includes the identity transformer and represents the weakest preconditions of a set of nonmiraculous, always terminating, and boundedly nondeterministic commands. Thus each \(s \in S_F \) is universally conjunctive, strict w.r.t. \textit{false}, and or-continuous. Since the identity transformer corresponds to the command \textit{skip}, all programs in our model allow stuttering steps. The state space of \(F \) is a Cartesian product with a coordinate for each variable of \(V \). If \(V_F \) is the empty set, the state space is a single state representing the empty Cartesian product.

A computation of \(F \) is an initial state \(\sigma_0 \), and a sequence of pairs \((s_i, \sigma_i)\), \(i > 0 \), where \(s_i \in S \) is a command and \(\sigma_i \) is a program state, and execution of command \(s_i \) can take the program from state \(\sigma_{i-1} \) to state \(\sigma_i \), for \(i > 0 \), and each command in the program appears infinitely often. This definition follows the one in \cite{CS95} or may also be viewed as a generalized version of UNITY \cite{CM88} with no initially section. In contrast with UNITY, our model does not explicitly restrict the initial condition of a program. Thus we will not be able to use a rule such as the UNITY substitution axiom to eliminate states unreachable from a specified initial state from consideration. We will, however, take into account that after any point in the computation, not just the initial one, some states may be no longer reachable or are not reachable in some interval of interest.

Now we define several predicate transformers and program properties. The square brackets in the definitions are the everywhere operator from \cite{DS90}.

The predicate transformers \(\text{awp}.F \) and properties \(\text{co} \) and \(\text{stable} \). The predicate transformer \(\text{awp} \) \cite{CS95}, is defined as

\[
[\text{awp}.F.q \equiv (\forall s : s \in S_F : s.q)]\tag{1}
\]

Using \(\text{awp}.F \), we define a property \(\text{co}.F \) \cite{Mis94, CS95} that describes the next state relation of the program \(F \).

\[
p \text{co}_F q = [p \Rightarrow \text{awp}.F.q]\tag{2}
\]

Operationally, \(p \text{co}_F q \) means that if \(p \) holds at some point during a computation, then \(q \) holds and will still hold after executing any command of \(F \).
The property \(\text{stable.}F.q \) is defined as
\[
\text{stable.}F.q = [q \Rightarrow \text{awp}.q],
\]
which indicates that \(q \) will never be falsified by any command of \(F \).

Refinement of awp. For two programs \(F \) and \(F' \), we say that \(F \) is refined by \(F' \), denoted \(F \leq F' \) when the following formula holds.
\[
(\forall p : [\text{awp}.F.p \Rightarrow \text{awp}.F'.p])
\]
For our purposes in this paper, we use the fact that if \(F \) is refined by \(F' \), every co property of \(F \) is also a co property of \(F' \).

The **predicate transformer** \(\text{wens}.F.s \), and properties ensures and leads-to (\(\sim \)). The weakest predicate that will hold until \(q \) does, and which will be taken to \(q \) by a single \(s \) step is denoted \(\text{wens}.F.s.q \). It is defined as
\[
[\text{wens}.F.s.q \equiv \forall x : [x \equiv (s.q \land \text{awp}.F.(q \lor x)) \lor q]].
\]
The predicate transformer \(\text{wens}.F.s \) is monotonic (i.e. \([p \Rightarrow q] \Rightarrow [\text{wens}.F.s.p \Rightarrow \text{wens}.F.s.q] \)) and weakening (i.e. \([q \Rightarrow \text{wens}.F.s.q] \)).

From predicate calculus and the fixpoint induction rule,
\[
[p \land \neg q \Rightarrow (s.q \land \text{awp}.F.(q \lor p))] \Rightarrow [p \Rightarrow \text{wens}.F.s.q].
\]
From [CS95] we have a rule stating that if a predicate is stable, then its \(\text{wens} \) is also stable.
\[
\text{stable.}F.q \Rightarrow \text{stable.}(\text{wens}.F.s.q).
\]
If \([t \land \neg q \Rightarrow \text{awp}.F.t] \) holds, then operationally, we have that if \(t \land \neg q \) holds, at some point, then \(t \) will continue to hold while \(\neg q \) does, and it will also hold after the step that has established \(q \). In this case, the states that satisfy both \(t \) and \(\text{wens}.F.s.q \) are the same as those satisfying both \(t \) and \(\text{wens}.F.s.(t \land q) \):
\[
[t \land \neg q \Rightarrow \text{awp}.F.t] \Rightarrow [t \land \text{wens}.F.s.q \equiv t \land \text{wens}.F.s.(t \land q)].
\]

Proof of (8):

The proof is by mutual induction.
\[
\text{true} = \{ \text{With } [p \equiv \text{wens}.F.s.q], \text{from the definition of } \text{wens} (5) \} \]
\[
[p \equiv s.q \land \text{awp}.F.(p \lor q) \lor q] \]
\[
\Rightarrow \{ \text{predicate calculus} \} \]
\[
[p \land \neg q \Rightarrow s.q \land \text{awp}.F.(p \lor q)]
\]

\[\text{This definition of refinement only considers safety properties. A more general notion, where progress properties are taken into account is described in [San95].}\]
The ensures property \(p \text{ ensures } q \) in \(F \) [CM88] can be defined as
\[
 p \text{ ensures } q \equiv (\exists s : [p \Rightarrow \text{wens}.F.s.q])
\] (9)

Operationally, this means that if at some point \(p \land q \) holds, then eventually \(q \) will hold, and furthermore, there is a single command that, when executed, will establish \(q \).

From (8), we easily obtain
\[
t \land \neg q \Rightarrow t \land p \text{ ensures } q \land t.
\] (10)

From [CM88], \(p \sim_F q \), read \(p \text{ leads-to } q \) in \(F \), is the unique strongest relation (on predicates) satisfying
\[
 [p \text{ ensures } q] \Rightarrow p \sim_F q
\] (11)
\[
 [p \text{ ensures } r] \land r \sim_F q \Rightarrow p \sim_F q
\] (12)
\[
 (\forall w : w \in W : w \sim_F q) \Rightarrow (\exists w : w \in W : w) \sim_F q
\] (13)

where \(W \) is an arbitrary set of predicates on the state space of \(F \).

A function from programs to predicate transformers \(\text{wlt} \) (weakest leads-to) has been given in [JKR89, Kna90] where
\[
p \sim_F q = [p \Rightarrow \text{wlt}.F.q]
\] (14)

We will give a new formulation of \(\text{wlt} \) below.
2.2 The weakest ensures set of \(q, E.F.q \)

Now, we introduce a new concept. For program \(F \) and predicate \(q, E.F.q \) is defined as the minimal set of predicates satisfying

\[
q \in E.F.q \tag{15}
\]

\[
p \in E.F.q \Rightarrow \text{wens}.F.s.p \in E.F.q \tag{16}
\]

\[
(\forall w : w \in W : w \in E.F.q) \Rightarrow (\exists w : w \in W : w) \in E.F.q \tag{17}
\]

where \(W \) is an arbitrary set of predicates on the state space of \(F \).

Some properties of \(E.F.q \) that will be used later are

\[
p \in E.F.q \Rightarrow [q \Rightarrow p] \tag{18}
\]

and

\[
p \sim_F q = (\exists r : r \in E.F.q : [p \Rightarrow r]) \tag{19}
\]

or alternatively,

\[
\text{wlt}.F.q \equiv (\exists r : r \in E.F.q : r) \tag{20}
\]

Induction on the structure of \(E.F.q \) A look at the properties (15),(16) and (17) shows that we can prove that all elements of \(E.F.q \) have a certain property by showing that

1. the property holds for \(q \),
2. if the property holds for \(r \) then for all \(s \), the property holds for \(\text{wens}.F.s.r \),
3. if the property holds for all \(r_i \) with \(i \in I \) then the property holds for \((\exists i : i \in I : r_i)\).

Several proofs in the sequel will use induction on the structure of \(E.F.q \).

2.3 Parallel Composition

For two programs \(F = (V_F, S_F) \) and \(G = (V_G, S_G) \), their parallel composition or union, denoted \(F || G \) is defined as

\[
F || G = (V_F \cup V_G, S_F \cup S_G). \tag{21}
\]

Parallel composition is only defined when common elements of \(V_F \) and \(V_G \) have the same type, however, we will assume that \(F || G \) is defined whenever we write it. Predicates on the state space of, say \(F \), may be also be viewed as predicates on the state space of \(F || G \) since the union may only increase the number of variables.

The following theorems follow easily from the definitions:

\[
[\text{awp}.F.q \land \text{awp}.G.q] \equiv \text{awp}.F || G.q \tag{22}
\]

\[
[p \Rightarrow \text{wens}.F.s.q] \land [p \land \neg q \Rightarrow \text{awp}.G.(p \lor q)] \Rightarrow [p \Rightarrow \text{wens}.F || G.s.q] \tag{23}
\]

\[
[\text{wens}.F || G.s.q \Rightarrow \text{wens}.F.s.q] \tag{24}
\]
3 Composing leads-to properties

While co and ensures admit simple composition theorems [CM88], simple composition theorems do not hold, in general, for leads-to properties. We can, however, use the relationship between leads-to properties and the elements of $E.F.q$ to give a general composition theorem that provides a starting point for more useful theorems.

Below, we give a union theorem for $E.F.q$. Intuitively, the theorem says that if for every predicate r in $E.F.q$, if $r \land \neg q$ holds at some point, then r continues to hold until q is established, then r is also in $E.F||G.q$. The theorem is actually more general, introducing a predicate t satisfying $[t \land \neg q \Rightarrow awp.F.t]$. This allows us, in essence, to restrict attention to the parts of the state space satisfying t.

Union Theorem for $E.F.q$.

$$\neg q \land t \Rightarrow awp.F.t$$
(25)

$$\forall r : r \in E.F.q : [\neg q \land (r \land t) \Rightarrow awp.G.(r \land t)]$$
(26)

$$\Rightarrow$$

$$\forall r : r \in E.F.q : (\exists r' : r' \in E.F||G.q : [r \land t \equiv r' \land t])$$
(27)

Proof of Union Theorem for $E.F.q$. We show a stronger result:

$$(\forall r : r \in E.F.q : (\exists r' : r' \in E.F||G.q : [r' \Rightarrow r] \land [r \land t \equiv r' \land t]))$$

The proof is by induction on the structure of the set $E.F.q$.

Base:

From (15), we have for $r = q$, $r' = q$.

Induction with (16):

Let $r = wens.F.s.x$ and $r' = wens.F||G.s.x'$.

The induction hypothesis is $[x \land t \equiv x' \land t] \land [x' \Rightarrow x]$

* $wens.F.s.x \land t$

$$\equiv$$

$$\{ (8),(25) \}$$

$wens.F.s.(x \land t) \land t$

$$\Rightarrow$$

$$\{ (23) \text{ with } p := wens.F.s.(x \land t) \land t,$$

$$q := t \land x,$$

and using that $p \land \neg q \Rightarrow awp.G.(p \lor q)$ follows from (26) and $[q \Rightarrow x] \}

$$wens.F||G.s.(x \land t)$$

$$\equiv$$

$$\{ \text{ induction hypothesis, } [x \land t \equiv x' \land t] \}$$

$wens.F||G.s.(x' \land t)$

$$\Rightarrow$$

$$\{ wens.F||G.s \text{ monotonic } \}$$

** $wens.F||G.s.(x')$
⇒ \{ \text{wens.F}||G.s \text{ monotonic, induction hypothesis, } [x' \Rightarrow x] \} \\
\text{wens.F}||G.s(x) \\
⇒ \{ (24) \} \\
\text{wens.F.s}(x)

Thus we have, from the starred lines in the proof that

\[[r' \Rightarrow r] \text{ and } [r \land t \equiv r' \land t]. \]

Induction with (17):

Follows from the predicate calculus.

As a simple consequence of the union theorem for \(E.F.q\) and (19), we obtain
a union theorem for leads-to.

Leads-to Union Theorem

\[
[-q \land t \Rightarrow \text{awp.F.t}] \\
(\forall r : r \in E.F.q : [-q \land (r \land t) \Rightarrow \text{awp.G.}(r \land t)])
\]

⇒

\[
(wlt.F.q) \land t \sim_{F\parallel G} q
\]

Proof From the union theorem for \(E.F.q\) and the fact that \(wlt.F.q \in E.F.q\), we have \((\exists r' : r' \in E.F)[G.q : wlt.F.q \land t \equiv r' \land t]\). Thus \([wlt.F.q) \land t \Rightarrow r']\), which, together with (19), imply \((wlt.F.q) \land t \sim_{F\parallel G} q\).

A corollary of the above is the following.

Corollary to the leads-to union theorem

\[
p \sim_{F} q \\
[-q \land t \Rightarrow \text{awp.F.t}] \\
(\forall r : r \in E.F.q : [-q \land (r \land t) \Rightarrow \text{awp.G.}(r \land t)])
\]

⇒

\[
p \land t \sim_{F\parallel G} q
\]

Note that if \(t\) is such that \([p \Rightarrow t]\), then the conclusion is \(p \sim_{F\parallel G} q\).

Example In the next example we explore the composition of two simple single statement programs. The variable \(x\) is an integer.

\[
F : x := x + 1
\]

\[
G : x := 2x
\]
Let \(q = (x \geq k) \), for some \(k \). First, we determine \(E.F.q \). For a program with a single command \(s \), we have \(E.F.s.q = q \lor s.q \). Using now \(s.(x \geq i) = (x+1 \geq i) \), we get

\[
E.F.q = \{ i : i \leq k : (x \geq i) \} \cup \{ \text{true} \}
\]

and \(\text{wlt}.F.(x \geq k) \equiv \text{true} \). The union theorem can be applied, provided

\[
(\forall r : r \in E.F.q : [(x \geq k) \land r \land t \Rightarrow (\text{awp}.G.(r \land t))] \] (31)

where \([\text{awp}.G.(r \land t)] \equiv (x := 2x)(r \land t) \). It is easy to see that (31) does not hold for any \(k \) if \(t \) is \text{true}, however, it does hold for all \(k \) if \(t \) is \text{false}. In addition, this choice of \(t \) satisfies (28). Thus we can conclude from the analysis that

\[
x \geq 0 \leadsto F \parallel G \ x \geq k
\]

The example indicates the importance of being able to restrict the state space under consideration. The condition on \(t \) essentially says that once \(t \) holds in \(F \parallel G \) then it will continue to hold at least until \(q \), the target, does. We use this to weaken the requirements on \(G \) at the price of having \(t \) on the left side of the leads-to properties of the composed program.

In most cases, one is concerned that a particular progress property of \(F \), say \((x \geq 3) \leadsto (x \geq 10) \) is preserved in a composition, and the corollary is applicable. In this case \((x \geq 3) \land (x \geq 0) \) is just \((x \geq 3) \). Even though the restriction of the state space to states satisfying \((x \geq 0) \) has not impacted the conclusion, it was still needed to apply the theorem.

A generalization of Misra’s Fixed Point Union Theorem
Directly applying the union theorem for leads-to is usually not practical. However, we show below how it can be specialized to yield Misra’s fixed point union theorem.

A predicate \(q \) is a fixed point if the state no longer changes once \(q \) holds. Formally,

\[
q \text{ is a fixed point of } G = (\forall p : \text{stable}.G.(p \land q))
\]

Once a program has reached a fixpoint, its state no longer changes. The following theorem follows is a simple corollary of the leads-to union theorem since, from the definition of fixed point, (29) holds for all predicates.

Generalized fixed point union theorem

\[
\begin{align*}
p & \leadsto F \ q \\
[\neg q \land t & \Rightarrow \text{awp}.F.t] \\
\neg q \land t & \text{ is a fixed point of } G \\
\Rightarrow \\
p \land t & \leadsto F \parallel G \ q
\end{align*}
\] (32)
Misra's version [Mi91a] is obtained from the above with \([t \equiv true]\) and the observation that in this case \([-q \land t \Rightarrow \textit{awp}.F.t]\) hold trivially.

4 A composition theorem using progress sets

In this section, we give conditions under which a set \(C.F.q\) of predicates is guaranteed to contain \(E.F.q\). The idea is that this set of predicates is easier to describe than \(E.F.q\).

First, we require that \(C.F.q\) is closed under arbitrary conjunction and disjunction. For arbitrary \(R\):

\[
(\forall r : r \in R : r \in C) \Rightarrow (\forall r : r \in R : r) \in C \tag{33}
\]

\[
(\forall r : r \in R : r \in C) \Rightarrow (\exists r : r \in R : r) \in C \tag{34}
\]

Since \(R\) may be empty, the above formulae imply that \(true \in C\) and \(false \in C\).

The predicate transformer \(cl.C\). Given the set \(C\), we define a predicate transformer \(cl.C\), where \(cl.C.r\) is the strongest predicate in \(C\) weaker than \(r\):

\[
cl.C.r \equiv \mu x : x \in C \land [r \Rightarrow x] \tag{35}
\]

The postulated properties of \(C\) are sufficient to guarantee the existence of \(cl.C.r\). In addition, \(cl.C.r\) is monotonic, weakening, and universally disjunctive. Also,

\[
[cl.C.r \equiv r] = r \in C \tag{36}
\]

Progress sets For a program \(F\), and predicates \(t\) and \(q\), we say that \(C\) is a progress set for the triple \((F, t, q)\) if

\[
C\text{ is closed under arbitrary conjunction and disjunction, (33, 34)(37)}
\]

\[
q \in C \tag{38}
\]

\[
t \in C \land \textit{stable}.F.t \tag{39}
\]

\[
(\forall m, s : [q \Rightarrow m], s \in F : (t \land m) \in C \Rightarrow (t \land (q \lor s.m)) \in C) \tag{40}
\]

The following lemma says that if \(C\) is a progress set for \((F, t, q)\), then for all predicates \(r \in E.F.q\), \((r \land t) \in C\). The lemma will allow us to reformulate the leads-to union theorem in terms of a progress set instead of \(E.F.q\).

Lemma

\[
C\text{ is closed under arbitrary conjunction and disjunction}
\]

\[
q \in C
\]

\[
q \in C \land \textit{stable}.F.t
\]
(∀m, s : [q ⇒ m], s ∈ F : (t ∧ m) ∈ C ⇒ (t ∧ (q ∨ s.m)) ∈ C)

⇒

(∀r : r ∈ E.F.q : (r ∧ t) ∈ C)

The proof is by induction on the structure of E.F.q. The base case follows from the hypothesis (i.e. q ∈ C, t ∈ C) and the fact that C is closed under conjunction (33). The induction step with disjunction follows from the fact that C is closed under disjunction (34). The remaining induction requires us to show that:

(t ∧ m) ∈ C ⇒ (t ∧ wens.F.s.m) ∈ C (41)

Let r = wens.F.s.m,

t = true

= { definition of wens.s, (5) }
[r ⇒ (s.m ∧ awp.F.(m ∨ r)) ∨ m]
⇒ { predicate calculus }
[r ∧ t ⇒ t ∧ ((s.m ∧ awp.F.(m ∨ r)) ∨ m)]
= { stable.F.t thus [∀m awp.F.m] }
[t ∧ r ⇒ t ∧ ((s.m ∧ awp.F.(m ∨ r) ∧ awp.F.t) ∨ m)]
= { awp.F. conjunctive }
[t ∧ r ⇒ t ∧ (s.m ∧ awp.F.(m ∨ r) ∧ t) ∨ m]
⇒ { awp monotonic, [(m ∨ r) ∧ t] ⇒ (m ∨ (r ∧ t)), weaken right side }
[t ∧ r ⇒ t ∧ (s.m ∧ awp.F.(m ∨ (r ∧ t)) ∨ m)]
⇒ { cl.C. weakening, awp.F. monotonic, weaken right side }
[t ∧ r ⇒ t ∧ (s.m ∧ awp.F.(m ∨ cl.C.(r ∧ t)) ∨ m)]
⇒ { cl.C. monotonic }
[cl.C.(t ∧ r) ⇒ cl.C.(t ∧ (s.m ∧ awp.F.(m ∨ cl.C.(r ∧ t)) ∨ m))]
= { (t ∧ (s.m ∧ awp.F.(m ∨ cl.C.(r ∧ t)) ∨ m)) ∈ C, see below }
[cl.C.(t ∧ r) ⇒ t ∧ (s.m ∧ awp.F.(m ∨ cl.C.(r ∧ t)) ∨ m)]
⇒ { weaken right side }
[cl.C.(t ∧ r) ⇒ s.m ∧ awp.F.(m ∨ cl.C.(r ∧ t)) ∨ m]
⇒ { fixpoint, (6) }
[cl.C.(t ∧ r) ⇒ wens.F.s.m]
= { definition of r }
[cl.C.(t ∧ r) ⇒ r]
⇒ { s.t ∪ cl.C.I}, cl.C. monotonic, thus [cl.C.(t ∧ r) ⇒ t]
[cl.C.(t ∧ r) ⇒ t ∧ r]
⇒ { cl.C. weakening, thus [t ∧ r ⇒ cl.C.(t ∧ r)] }
[t ∧ r ⇒ cl.C.(t ∧ r)]
= { definition of r, property of cl.C., (36) }
t ∧ wens.F.s.m ∈ C
Now we show
\[(t \land (s.m \land \mathit{awp.F}.(m \lor \mathit{cl.C}.(r \land t)) \lor m)) \in C\]
that was assumed above. By the induction hypotheses \(t \land m \in C\).

\[
\begin{align*}
\text{true} & = \{ \text{induction hypothesis} \} \\
(t \land m) & \in C \\
\Rightarrow & \{ \text{C closed under disjunction} \} \\
((t \land m) \lor \mathit{cl.C}.(r \land t)) & \in C \\
\Rightarrow & \{ \text{predicate calculus, using } [\mathit{cl.C}.(r \land t) \Rightarrow t] \} \\
(t \land (m \lor \mathit{cl.C}.(r \land t))) & \in C \\
\Rightarrow & \{ \text{hypothesis} \} \\
(t \land (q \lor s. (m \lor \mathit{cl.C}.(r \land t)))) & \in C \\
\Rightarrow & \{ \text{conjunction over } s \in T_F, \text{ C closed under conjunction} \} \\
(t \land (q \lor \mathit{awp.F}.(m \lor \mathit{cl.C}.(r \land t)))) & \in C \\
\Rightarrow & \{ \text{induction hypothesis and hypothesis of lemma give} \} \\
(t \land (q \lor (s.m)) & \in C, \text{ C closed under conjunction} \} \\
(t \land (q \lor (s.m \land \mathit{awp.F}.(m \lor \mathit{cl.C}.(r \land t)))) & \in C \\
\Rightarrow & \{ (t \land m) \in C, \text{ C closed under disjunction, } [q \Rightarrow m] \} \\
(t \land (m \lor (s.m \land \mathit{awp.F}.(m \lor \mathit{cl.C}.(r \land t)))) & \in C) \\
\end{align*}
\]

\textbf{A monotonicity property of progress sets} From the conjunction and disjunction properties of a progress set \(C\) for \((F,t,q)\) one derives the following monotonicity property.

\[
C \text{ is a progress set for } (F,t,q) \\
[q \Rightarrow q'] \land q' \in C \\
\Rightarrow \\
C \text{ is a progress set for } (F,t,q')
\]

Now, we have the final theorem of this section, and a main result of the paper. It follows immediately from the lemma and the leads-to union theorem.

\textbf{Progress set union theorem} Let \(C\) be a progress set for \((F,t,q)\).

\[
(\forall c : c \in C : c \land \neg q \text{ coG } c) \\
[q \Rightarrow q'] \land q' \in C \\
\Rightarrow \\
\text{wit.F.q'} \land t \sim_{F\parallel G} q'
\]
5 Some progress sets

In this section, we give several examples of how progress sets can be defined.

The set of all predicates The set of all predicates on the state space of F is a progress set for $(F, true, q)$. Then (42) is equivalent to $\neg q$ being a fixed point of G, so that we get yet another proof of Misra’s fixed point union theorem.

The set of all predicates is primarily of interest because it demonstrates the existence of a progress set for every program and predicate.

The set of all stable predicates The set of all stable predicates of any program on the appropriate state space is closed under arbitrary conjunction (33) and disjunction (34) and is therefore a candidate for progress sets.

Rao [Rao92] gave two union theorems for leads-to based on the notion of decoupling and weak decoupling in terms of stability. His results are

Rao’s Decoupling Theorem

\[
\begin{align*}
p & \leadsto_F q \\
stable.G.q \\
F \text{dec}_{safe} G
\end{align*}
\]

\[\Rightarrow\]

\[
p \leadsto F \parallel G \ q
\]

where

\[F \text{dec}_{safe} G \equiv (\forall s, r : s \in S_F \land stable.G.r : stable.G.s.r),\]

and

Rao’s Weak Decoupling Theorem

\[
\begin{align*}
p & \leadsto_F q \\
stable.F \Vert G.q \\
F \text{wdec}_{safe} G
\end{align*}
\]

\[\Rightarrow\]

\[
p \leadsto F \parallel G \ q
\]

where

\[F \text{wdec}_{safe} G \equiv F \text{dec}_{safe} F \Vert G.\]

Both of these theorems are simple corollaries of the progress set union theorem. For the decoupling theorem, let $C.F.q = \{ r \mid stable.G.r \}$ From $F \text{dec}_{safe} G$
and \(\text{stable}.G.q \), \(C.F.q \) is a progress set for \((F, \text{true}, q)\). Since \(\text{stable}.G.r \Rightarrow r \land \neg q \iff_G r \), the theorem follows.

For the weak decoupling theorem, let \(C.F.q = \{r|\text{stable}.F\|^G.r\} \). From \(F \text{ wdec}_{C,F,G} \), and \(\text{stable}.F\|^G.q \), \(C.F.q \) is a progress set for \((F, \text{true}, q)\). Since \(\text{stable}.F\|^G.r \Rightarrow r \land \neg q \iff_G r \), the theorem follows.

Rao used these result to explore notions of commutativity that allow compositional progress results rather than advocating their direct use in programming. Indeed, direct use would seem to be counterproductive since the theorems themselves are rather non-compositional, requiring detailed knowledge of both \(F \) and \(G \) in order to determine whether they are decoupled or weakly decoupled.

On the other hand, our more general theorem can be used in a similar, but more "compositional" way where \(F \) and \(G \) can be decoupled via a third program \(G' \). Instead of checking whether two programs \(F \) and \(G \) are decoupled or weakly decoupled, given \(F \), we choose a program \(G' \) so that the set of stable predicates of \(G' \) is a progress set for \(F \). Ideally, \(G' \) is chosen so that its set of stable predicates has a simple structure and is easily described. Then, to compose a program \(G \) with \(F \), it is only necessary to check that \(G \) satisfy (42) for the stable predicates of \(G' \). It suffices that \(G \) is refinement of \(G' \), thus the stable predicates of \(G' \) are stable in \(G \), and we have the following corollary of the progress set union theorem.

Decoupling via \(G' \) union theorem Let the set of all stable predicates of \(G' \) be a progress set for \((F, \text{true}, q)\).

\[
G' \leq G
\]

\[
\Rightarrow \quad \text{wlt}.F.q \leadsto_{F\|^G} q
\]

It is worth noting that when the set of stable predicates of \(G \) is taken as a progress set, \(C \), then \(\text{cl}.C.r \) is the strongest stable predicate weaker than \(r \) in \(G \), or \(\text{sst}.G.r \) [San91]. The set of states of \(G \) that are reachable from \(r \) is given by \(\text{sst}.G.r \).

Additional program properties that generate potential progress sets In the previous section, we discussed using the set of all stable properties of some program \(G \) as a potential progress set for \((F, t, q)\). In this section, we give three more program properties that are slightly weaker than stable such that all predicates satisfying the property for some program \(G \) are closed under conjunction and disjunction and are therefore potential progress sets for \((F, t, q)\). (We still need to check the remaining conditions on progress sets.) Like the set of all stable predicates, all of the predicates so obtained satisfy (42) for \(G \).

Stable.G-not-leaving-q

\[
\{r|r \land \neg q \iff_G r \land [r \land q \iff_G r \lor \neg q]\}
\]
In this case, \(cl.C.r \) is the set of states that are reachable from \(r \) along a sequence of states satisfying the requirement that once \(q \) holds for some state in the sequence, it holds for all later states in the sequence.

For two states \(\sigma \) and \(\gamma \) connected by such a sequence we write \(\sigma \text{ Reach}_G \text{nl.} q \gamma \).

Stable.\text{G-not-leaving-q-all-directions}

\[
\{ r| r \land (\neg q \lor \forall w.p) \leftarrow co_G \ r \} \tag{49}
\]

Here, \(cl.C.r \) is the set of states that are reachable from \(r \) via a sequence of states where once \(q \) holds, the sequence cannot be extended without maintaining \(q \).

Stable.\text{G-outside-q}

\[
\{ r| r \land \neg q \leftarrow co_G \ r \} \tag{50}
\]

In this latter case, \(cl.C.r \) is the set of states that are reachable from \(r \) via a sequence of states where \(q \) holds for at most the final state in the sequence.

Also, note that for each of these choices for \(C \), \(q \in C \) trivially, thus providing alternatives to the set of all stable predicates, which requires that \(q \) be stable in \(G \). For later use we also note that a predicate \(p \) with \([q \Rightarrow p] \) satisfies (48) and (49) if it satisfies (50).

Progress sets from a relation Let \(R \) be a reflexive, transitive relation on the state space and \(\sigma \) and \(\gamma \) be representative states. Then the set of predicates \(r \) such that

\[
(\forall \sigma, \gamma : r.\sigma \land \sigma R \gamma \Rightarrow r.\gamma) \tag{51}
\]

is closed under arbitrary conjunction and disjunction.\(^2\)

5.1 Composition theorems based on monotonicity and commutativity

The previous section listed several ways that sets of predicates closed under arbitrary conjunction and disjunction can be generated. In this section, we give two theorems that are helpful in showing (40), repeated here for convenience, under the assumption of (33, 34, 38, and 39).

\[
(\forall m, s : [q \Rightarrow m], s \in F : (t \land m) \in C \Rightarrow (t \land (q \lor s.m)) \in C) \tag{52}
\]

\(^2\)If we let \(R \) be defined by \(\sigma R \gamma = \{ cl.C.(\sigma) \} \gamma \), where \(\{ \sigma \} \) is the point predicate that holds at \(\sigma \) then the set of predicates generated by \(R \) is just \(C \).
Commutativity of cl.C and command Assuming (33, 34, 38, and 39), the following implies (40):

\[(\forall s : s \in S_P : (\forall m : [q \Rightarrow m] : [cl.C.(t \land s.m) \Rightarrow t \land (q \lor s.(cl.C.(t \land m))))]] \tag{53}\]

Proof:

\[
[q \Rightarrow m] \land t \land m \in C
\]
\[
\Rightarrow \{ (53) \text{ and } cl.C.t \land m = t \land m \}
\]
\[
[cl.C.t \land s.m \Rightarrow t \land (q \lor s.(t \land m))]
\]
\[
\Rightarrow \{ \text{monotonicity of } s \}
\]
\[
[cl.C.t \land s.m \Rightarrow t \land (q \lor s.m)]
\]
\[
\Rightarrow \{ \text{disjunction of left and right side with } t \land q \text{ which is equal } cl.C.t \land q \}
\]
\[
[cl.C.t \land q \lor cl.C.t \land s.m \Rightarrow t \land (q \lor s.m)]
\]
\[
\Rightarrow \{ \text{disjunctivity of cl.C} \}
\]
\[
[cl.C.t \land (q \lor s.m) \Rightarrow t \land (q \lor s.m)]
\]
\[
\Rightarrow \{ \text{def. of closed} \}
\]
\[
t \land (q \lor s.m) \in C
\]

In the next theorem, we require that the command corresponding to each \(s\) is deterministic and given by a functional state transformer \(f_s\).

Commutativity of functions and relation. Let \(R\) be defined by \(\sigma R \gamma = (cl.C.(\sigma)).\gamma\). Then the condition below implies (53).

\[(\forall s : s \in S_P : (\forall \sigma, \gamma : \text{state space of } F)[G : \sigma R \gamma \land t.\sigma \Rightarrow q.\sigma \lor q.\gamma \lor (f_s.\sigma R f_s.\gamma))] \tag{54}\]

Proof:

\[
[q \Rightarrow m] \land (cl.C.t \land s.m).\gamma
\]
\[
\Rightarrow \{ \text{definition of } R \}
\]
\[
\exists \sigma : \sigma R \gamma : (t \land s.m).\sigma
\]
\[
\Rightarrow \{ \text{rewritten with } f_s \text{ using stable.F}.t \}
\]
\[
(t \land m).f_s.\sigma
\]
\[
\Rightarrow \{ (54) \Rightarrow (q.\sigma \lor q.\gamma \lor f_s.\sigma R f_s.\gamma) \}
\]
\[
q.\sigma \lor q.\gamma \lor (cl.C.t \land m).f_s.\gamma
\]
\[
\Rightarrow \{ q \in C \text{ and } \sigma R \gamma \}
\]
\[
q.\gamma \lor (cl.C.t \land m).f_s.\gamma
\]
\[
\Rightarrow \{ \text{rewritten with } s \text{ instead of } f_s \}
\]
\[
q.\gamma \lor (s.cl.C.t \land m).\gamma
\]
\[
\Rightarrow \{ t \in C \text{ implies } t.\sigma \Rightarrow t.\gamma \}
\]
\[
(t \land (q \lor s.cl.C.t \land m)).\gamma
\]
5.2 Monotonicity

This section gives a composition theorem based on monotonicity with respect to a partial order \(\leq \).

We use the following definitions.

A predicate \(q \) is called monotonic with respect to \(\leq \) if

\[
(\forall \sigma, \gamma : q.\sigma \land (\sigma \leq \gamma) \Rightarrow q.\gamma).
\]

(55)

A function \(f \) is called monotonic with respect to \(\leq \) if

\[
(\forall \sigma, \gamma : (\sigma \leq \gamma) \Rightarrow f.\sigma \leq f.\gamma).
\]

(56)

A function \(f \) is called non-decreasing with respect to \(\leq \) if

\[
(\forall \sigma : \sigma \leq f.\sigma).
\]

(57)

If we take the set of all monotonic predicates as \(C \), then the condition

\[
(\forall s : s \in S_F : f_s \text{ is monotonic with respect to } \leq) \implies (54) \quad \text{and} \quad (\forall s : s \in S_G : g_s \text{ is non-decreasing with respect to } \leq) \implies \text{implies that all predicates in } C
\]

are stable and satisfy therefore (42), so that we have the following corollary:

For a partial order \(\leq \)

\[
q \text{ is monotonic with respect to } \leq
\]

\[
(\forall s : s \in S_F : f_s \text{ is monotonic with respect to } \leq)
\]

\[
(\forall s : s \in S_G : g_s \text{ is non-decreasing with respect to } \leq)
\]

\[
\Rightarrow \quad wlt.F.q \leadsto_{F\parallel G} q
\]

This result can be applied in many programming situations. One example is PCN, see for example [FOT], processes communicate via so-called definitional variables. A definitional variable is initially undefined and may have assigned a value at most once. We can express this as monotonicity with respect to the partial order given by \((\sigma \leq \gamma) \equiv (\sigma \text{ undefined } \lor \sigma = \gamma)\). Another example are processes that communicate by message passing where the partial order is given by the length of the messages that have been sent along a communication channel.

6 Generalized commutativity conditions

The importance of commutativity in program composition has been known for some time. Both Lipton [Lip75] and Misra [Mi91b] have proposed relevant conditions and their relationship has been explored by Rao [Rao92]. Here, we give generalized definitions of both Lipton and Misra commutativity and prove
a composition theorem using these results. The advantage of our results is that they apply when \(q \) in \(p \leadsto q \) is not stable.

The commutativity conditions are conditions on functions, we therefore assume that all commands are deterministic and are expressed by functional state transformers \(f_s \) for program \(F \) and \(g_s \) for program \(G \). In addition, we assume that for each function, there is a guard predicate written \(b_s \text{ or } [] f_s \), and if the guard predicate is false, then the state is unchanged, i.e.

\[
[-b_s \Rightarrow (f_s = \text{id})]
\]

where \(\text{id} \) is the identity function.

If \(b_s, \sigma \), then we say that \(f_s \) is enabled at \(\sigma \) and write this as \([\sigma] f_s \).

Now we assume that we have a second function \(g_t \) with guard \(c_t \). The composition of functions \(f_s g_t \) is evaluated from the right, i.e. \(f_s g_t, \sigma = f_s (g_t, \sigma) \) and we define enabled for the composition as

\[
[\sigma] f_s g_t = c_t, \sigma \land b_s, g_t, \sigma.
\]

(58)

Left Lipton commutativity outside \(q \) Lipton proposed a commutativity condition where left commutativity can be briefly stated as: If for all states, \([\sigma] f g, \text{then } [\sigma] g f \text{ and } f g, \sigma = g f, \sigma \), i.e. if \(f g \) is enabled, then so is \(g f \) and both give the same result.

Here, we give a definition that applies to states where some predicate \(q \) does not hold. For two guarded functions \(f \) and \(g \) left Lipton commutativity outside \(q \) is given by:

\[
(f \circ o_{L} q g) \equiv \\
(\forall \sigma : \neg q, \sigma \land [\sigma] f g \land \neg q, g, \sigma : [\sigma] g f \land f, g, \sigma = g f, \sigma \land (q, f, \sigma \Rightarrow q, f g))
\]

Operationally left Lipton commutativity outside \(q \) can be described as follows: If \(\sigma \) is outside \(q \), i.e. \(\neg q, \sigma \) and \(f g \) is enabled and \(g, \sigma \) is outside \(q \), then \(g f \) is enabled and \(f g = g f \) and if the result \(g f, \sigma \) is outside \(q \) then \(f, \sigma \) is outside \(q \). Note that if \(q = \text{false} \) we get the original definition given in [Lip75, Rao92].

Left Lipton commutativity is extended to programs by requiring all pairs of functions from the programs to commute. For two programs \(F \) and \(G \):

\[
(F \circ o_{L} q G) \equiv (\forall f_s, g_t : s \in S \land t \in T : f_s \circ o_{L} q g_t)
\]

(60)

Misra Commutativity outside \(q \) Misra defined a slightly different commutativity condition. Two functions \(f \) and \(g \) Misra commute if at points when both are enabled, both compositions are enabled and give the same result. As above, we give a modified condition that applies to states where a predicate \(q \) does not hold.
For two guarded functions \(f \) and \(g \):

\[
(f \text{ co}_m.q) g \equiv \\
(\forall \sigma : -q.\sigma \land [\sigma]f \land [\sigma]g : [\sigma]fg \land \sigma = g.f.\sigma \land \\
(q.f.\sigma \lor q.g.\sigma \Rightarrow q.fg.\sigma \lor q.f.\sigma \land q.g.\sigma))
\]

(61)

Operationally this can be described as follows: If \(\sigma \) is outside \(q \) and \(f \) and \(g \) are enabled, then \(fg \) and \(gf \) are enabled and \(fg = gf \) and if the result \(fg.\sigma \) is outside \(q \) and if \(f \) or \(g \) is outside \(q \) at \(\sigma \), then both are. If \(q = \text{false} \), then we get the original definition of [Mi91b].

Misra commutativity is extended to programs in the obvious way. For two programs \(F \) and \(G \):

\[
(F \text{ co}_m.q) G \equiv (\forall f_s, g_t : s \in S \land t \in T : f_s \text{ co}_m.q g_t)
\]

(62)

Now we show the main result of this section, if we have Left Lipton and Misra commutativity outside \(q \) that the set of predicates that are \(\text{stable}.G \land \neg \text{leaving} - q \) (48) are a progress set for \((F.\text{true}.q)\).

Commutativity outside \(q \) and \(\text{stable}.G \land \neg \text{leaving} - q \)

\[
(F \text{ co}_\ell.q) G \land (F \text{ co}_m.q) G \\
\Rightarrow \\
\text{The set of all predicates that are } \text{stable}.G \land \neg \text{leaving} - q \\
\text{is a progress set for } (F.\text{true}.q)
\]

Proof Since \(q \) is \(\text{stable}.G \land \neg \text{leaving} - q \), it is sufficient to show that (40) holds, or the stronger (54) with relation \(\text{Reach}.G.\text{nl}.q \), (48), i.e.

\[
(\forall s : s \in S : \sigma \text{ Reach}.G.\text{nl}.q \gamma \Rightarrow q.\sigma \lor q.\gamma \lor (f_s.\sigma \text{ Reach}.G.\text{nl}.q f_s.\gamma))
\]

(1) \(q.\gamma \)

\[
(\sigma \text{ Reach}.G.\text{nl}.q \gamma) \land q.\gamma \\
\Rightarrow \\
q.\sigma \lor q.\gamma \lor (f_s.\sigma \text{ Reach}.G.\text{nl}.q f_s.\gamma)
\]

(2) \(\neg q.\gamma \)

(2a)

\[
(\sigma \text{ Reach}.G.\text{nl}.q \gamma) \land (\sigma \neq \gamma) \land \neg q.\gamma \\
\Rightarrow \\
\exists \sigma = \sigma_n, \sigma_1, \ldots, \sigma_n = \gamma : (\forall i : 0 \leq i < n : \exists t : t \in T : \sigma_{i+1} = g_t.\sigma_i)
\]

(48)
It is now sufficient to prove:

\[(\forall i: 0 \leq i < n: q . \sigma_i \Rightarrow q . \sigma_{i+1}) \]
\[\Rightarrow \{ \text{omitting all } \sigma_i \text{ with } \sigma_{i+1} = \sigma_i \} \]
\[\exists \gamma: \sigma_0, \sigma_1, ..., \sigma_n = \gamma: (\forall i: 0 \leq i < n: \exists t: t \in T: [\sigma_i]g_t \land \sigma_{i+1} = g_t . \sigma_i) \]
\[\land (\forall i: 0 \leq i < n: q . \sigma_i \Rightarrow q . \sigma_{i+1}) \]
\[\Rightarrow \{ \neg q(\gamma) \} \]
\[\exists \gamma: \sigma_0, \sigma_1, ..., \sigma_n = \gamma: (\forall i: 0 \leq i < n: \exists t: t \in T: [\sigma_i]g_t \land \sigma_{i+1} = g_t . \sigma_i) \]
\[\land (\forall i: 0 \leq i < n: \neg q . \sigma_i) \]

(2b)

\[s \in S \]
\[\Rightarrow \{ \text{construction of a set for } f_s \} \]
\[(i: 0 \leq i < n: \sigma'_i = f_s . \sigma_i \text{ if } f_s \text{ is enabled for } \sigma_i, \sigma'_i = \sigma_i \text{ otherwise}) \]

(2c) It is now sufficient to prove:

\[(\forall i: 0 \leq i < n: \exists t: t \in T: \sigma'_{i+1} = g_t . \sigma'_i \land (q . \sigma'_i \Rightarrow q . \sigma'_{i+1}) \]

(2c1) \(\sigma'_{i+1} \neq \sigma_i \)
\[\sigma'_{i+1} \neq \sigma_i \]
\[\Rightarrow \{ f_s \text{ must be enabled at } \sigma_{i+1} \} \]
\[[\sigma_{i+1}]f_s \land \sigma'_{i+1} = f_s . \sigma_{i+1} \]
\[\Rightarrow \{ \text{By (2a) } \neg q(\sigma_i) \land [\sigma_i]g_t \land (\neg q . \sigma_{i+1} \land \sigma_{i+1} = g_t . \sigma_i) \}
\[= q . \sigma_i \land [\sigma_i]g_t \land (\neg q . \sigma_{i+1} \land \sigma_{i+1} = g_t . \sigma_i) \}
\[\Rightarrow \{ F \text{com G} \}
\[[\sigma_i]g_t \land [\sigma_i]f_s . \sigma_i = f_s . g_t . \sigma_i \land (q . f_s . \sigma_i \Rightarrow q . g_t . f_s . \sigma_i) \]
\[\Rightarrow \{ \sigma'_{i+1} = f_s . g_t . \sigma_i \}
\[[\sigma_i]g_t \land \sigma'_{i+1} = g_t . \sigma_i \]
\[\Rightarrow \{ \{ \sigma_i]g_t \land \sigma'_{i+1} = f_s . g_t . \sigma_i \land (q . f_s . \sigma_i \Rightarrow q . g_t . f_s . \sigma_i) \}
\[\Rightarrow \{ \text{def. of } \sigma'_{i+1} \}
\[\sigma'_{i+1} = g_t . \sigma'_i \land (q . \sigma'_i \Rightarrow q . \sigma'_{i+1}) \]

(2c2) \(\sigma'_{i+1} = \sigma_{i+1} \land \sigma'_i \neq \sigma_i \)
\[\sigma'_i \neq \sigma_i \]
\[\Rightarrow \{ f_s \text{ must be enabled at } \sigma_i, \text{ also by (2a), } g_t \text{ is enabled at } \sigma_i \}
\[\neg q(\sigma_i) \land [\sigma_i]f_s \land \sigma'_i = f_s . \sigma_i \land (\neg q . g_t . \sigma_i) \]
\[\Rightarrow \{ F \text{com G} \}
\[[\sigma_i]f_s . g_t \land \sigma'_i = f_s . g_t . \sigma_i \land (q . f_s . \sigma_i \Rightarrow q . g_t . f_s . \sigma_i) \]
\[\Rightarrow \{ \text{def. of } \sigma'_{i+1} \}
\[\neg q . \sigma_i \land \sigma'_{i+1} = g_t . \sigma'_i \land (q . \sigma'_i \Rightarrow q . \sigma'_{i+1}) \]

(2c3) \(\sigma'_{i+1} = \sigma_{i+1} \land \sigma'_i \neq \sigma_i \)
\[\text{By (2a) } \sigma'_{i+1} = g_t . \sigma'_i \land (q . \sigma'_i \Rightarrow q . \sigma'_{i+1}) \]

Now we can state the theorem on commutativity, which follows now from the progress set union theorem.

Commutativity outside q theorem

\[q \sim_F r \]
The next example applies the theorem to a simple handshaking protocol. The results of Rao are not applicable here since the target predicate is not stable.

Example: Consumer and producer Variable x is a local variable of F, y of G. Both programs share a one element buffer b.

F : Consumer

```latex
consume : x, b := b, \bot \text{ if } b \neq \bot
```

additional assignments that do not modify b
or any variable of G

G : Producer

```latex
produce : b := y \text{ if } b = \bot
```

additional assignments that do not modify b
or any variable of F

Now $b = k \sim_{F} b = \bot$. We want to apply the theorem to show $b = k \sim_{F \parallel G} b = \bot$.

With $q = (b = \bot)$, the conditions of the theorem (63) hold:

1. $\neg q \land r \lor \forall q$ holds because in our case $r = q$.
2. $(F \lor_{c_k,q} G) \land (F \lor_{m,q} G)$

Since there is no interaction between F and G except via b and the value of q is changed only by $consume$ and $produce$, we need only look at pairs of functions involving $consume$ and $produce$.

The conditions $\neg q \land [\sigma]f \land \neg q \land g \land [\sigma]f \land [\sigma]g$ never hold if $g = produce$, so that the case with $f = consume$ and $g \neq produce$ remains.

The commutativity in this case follows because there is no interaction between $consume$ and g and $q.consume.g$ holds.

7 Conclusions

Starting from "first principles", we gave a general composition theorem for leads-to, then specialized it to a theorem based on the notion of a progress set.
Progress sets proved to be an extremely useful device—by choosing different definitions of progress sets, we were able to obtain several different theorems for composing programs without invalidating leads-to properties.

References

