ARCHAEOLOGICAL TESTING AT THE EARLY SALADOID TRANTS SITE, MONTSERRAT, WEST INDIES

James B. Petersen and David R. Watters

ABSTRACT

Archaeological testing at the Trants site (MS-G1), located on the windward coast of Montserrat, was undertaken in 1979 and 1990. A combination of systematic surface collection and test pit/unit excavation has established that the site is quite large, covering as much as 0.6 square kilometers as currently understood. The testing established that stratified deposits including anthrosols and middens are preserved to a depth of at least one meter below the modern surface beneath a shallow zone of historic disturbance. Substantial samples of Amerindian ceramics, faunal remains, carbonized floral remains and evidence of relatively common nonlocal lithics, including both beads and utilitarian tools, were recovered. Eight radiocarbon dates document that the site was minimally occupied ca. 480 B.C.-A.D. 320 during the early and middle portions of the Saladoid period of West Indian prehistory. The Trants site is highly significant in terms of better understanding population settlement and social interaction during the Saladoid period in the northern Lesser Antilles.

INTRODUCTION

The Trants archaeological site (MS-G1) is highly significant in terms of early ceramic or Saladoid period settlement and social dynamics in the West Indies. Located on the windward coast of Montserrat, the site is notable for its large size, extensive prehistoric deposits and the early dates obtained for solely Saladoid period contexts thus far. Rich ceramic, lithic, faunal and floral samples document that the Trants site represents an unusually large settlement for the early Saladoid period in the West Indies, dated as early as 480 B.C. and 440 B.C. The economy seems to have been diverse including both marine and terrestrial vertebrates, marine mollusks and presumably cultivated plants. Long-distance social interaction is documented by the presence of flaked stone and bead materials which clearly originated elsewhere in the West Indies and perhaps mainland South America. This paper synthesizes the preliminary results of initial site testing in 1979, more extensive testing in 1990, and ongoing museum research using extant samples derived from these two periods of field work and a site collection curated by the National Museum of the American Indian, Smithsonian Institution.

HISTORY OF INVESTIGATIONS

The Trants site first came to the attention of archaeologists when the Seymour J. Howes collection and other Montserrat materials were acquired by the Museum of the American Indian, Heye Foundation (MAI) in the 1920s. Although the collection was never completely reported, Mark R. Harrington (1924) published an intriguing account of the substantial sample of approximately 500 lithic and shell bead materials in the MAI Howes collection. Following Harrington’s somewhat speculative account, the Trants site has been often cited as a rare example of a prehistoric ornament manufacture center in the West Indies (e.g., Boomert 1987:46; Morse 1989:34; Rouse and Alegría 1990:85).

Much later, as part of a dissertation research project involving comparison of Amerindian site distributions on different islands in the northern Lesser Antilles through the University of Pittsburgh, David Watters visited Montserrat for several extended periods in 1979. Watters excavated a single 2.0 m x
2.0 m test unit and conducted limited surface collection at the Trants site, designated MS-G1 in the then nascent Montserrat National Trust site survey file. A large portion of the site was brush-covered, but Watters clearly established the presence of significant intact Amerindian cultural deposits beneath a historically disturbed hoe cultivation zone. More specifically, he documented a Saladoid period attribution for the Trants site. Watters' (1980) subsequent dissertation discussed the Trants site in some detail, but was not intended to provide a complete analysis of the material culture and subsistence remains which he recovered.

Subsequent analysis of some of the samples derived from the 1979 testing at the Trants site and other Amerindian sites on Montserrat has followed over the past decade or so, primarily at the Carnegie Museum of Natural History. A detailed analysis of the marine and terrestrial vertebrates from the Trants site, undertaken with various zoologists and zooarchaeologists, has been published (Steadman et al. 1984), and analyses of the nonvertebrate fauna and Amerindian ceramics are ongoing. Likewise, the Amerindian lithic remains are being studied, as reported in another paper in this volume. In conjunction with these individual analyses, several radiocarbon dates were obtained for the Trants site in the 1980s (Table 1); these include somewhat conflicting and uncorrected (as for all reported) dates, 190 B.C. and A.D. 330, for the lower portions of the intact cultural deposits in the 1979 test unit.

Along with the ongoing analyses of samples derived from the 1979 field work at the Trants site, Watters began an analysis of the MAI Howes collection in 1985, specifically including the often-cited but incompletely reported lithic ornaments. Petersen was introduced to the site collections through his analysis of the MAI Amerindian ceramics, including some largely intact vessels. This work too is ongoing, with a recent spell of supplemental analysis conducted in 1991 at the MAI.

The most extensive episode of field work at the Trants site to date was undertaken in 1990 through a joint project of the Carnegie Museum of Natural History (CMNH) and the University of Maine at Farmington (UMF) under the sponsorship of the Montserrat National Trust (MNT). The MNT initiated the 1990 field work by contacting Watters in advance of the enlargement of the existing Black Byrne Airport, which currently lies to the east or seaward of the preserved site area and the buildings of the former Trants Estate (from which the site derives its name). New airport improvements may destroy some of the estate buildings and will certainly disturb much of the surrounding and more extensive prehistoric cultural deposits. Thus, the MNT hoped to stimulate further study of the prehistoric site to aid in the planning process and to evaluate preservation options.

Essentially two months of field work were undertaken in September and October, 1990, by personnel from the CMNH and UMF. A period of logistical preparation and overall perusal of the then-known extent of the Trants site and surrounding areas preceded the field work, and it was immediately obvious that the site is much larger than previously estimated (Figure 1). Consequently, all of the fields and other logical land divisions were assigned discrete designations (i.e., fields 1-15). The 1990 field work began with extensive surface survey of fields 1-3 near the existing Trants Village and Farm River ghaut to the south of the site area. All Amerindian artifacts and selected historic artifacts were collected in field 1, while in fields 2 and 3, all artifacts inventoried but only selected ones were collected; 10 0.5 m x 0.5 m test pits were excavated there as well. This initial work established that the Trants site essentially extends up to the ghaut, but rather deep disturbance seems present in this southern area. Only superficial attention was given to adjacent fields 4 and 5, while fields 6 and 7 (the latter being the existing airport property) were not studied at all.

The next portion of the field work was concentrated to the north of the airport access road in fields 8, 9 and 10, where the most dense concentrations of Amerindian cultural deposits were ultimately
ARCHAEOLOGICAL TESTING AT THE EARLY SALADOID TRANTS SITE

located. Field work in this area first included intensive collection of approximately 25% of the dense deposits in field 8, where all surface artifacts were flagged and counted. However, as in fields 2 and 3, only potentially diagnostic ceramic artifacts and lithic and shell tools and ornaments were collected from field 8.

Subsequently, an alternative strategy was adopted to provide a more cost-effective means of sampling much of the remainder of the increasingly large site. This alternative strategy employed transects of 10 m x 10 m sampling units, from which only the previously specified diagnostic artifact categories and other selected artifacts were collected. The sampling transects were placed along a metric site grid, which was established using a transit, stadia rod and metric tapes.

Two perpendicular transects were used to sample the full east-west width of the site from the airport on the east to the base of the hills west of the site area, and the central-northern portion of the north-south length of the site from the airport access road on the south to a dirt access road to the Trants Estate structures on the north. The east-west transect was about 560 m long and fully crossed fields 8, 10 and 13, while the north-south transect was 250 m long and fully crossed fields 8 and 9.

A small number of the 10 m x 10 m sampling units were completely collected in all four fields to provide comparative data for the partial samples of diagnostic artifacts collected along both transects in all four fields. Fields 11, 12, 14 and 15 were only briefly examined. In total, approximately 39,375 square meters were surface collected in fields 1-3 and 8, while another 10,900 square meters were covered in the two transects for a total combined area of about 50,000 square meters.

Following completion of the extensive surface collection transects, subsurface testing was undertaken in fields 8, 9, 10 and 13 to document the extent and nature of the in situ Amerindian cultural deposits. A total of 19 test pits were excavated, primarily on the same transects as those employed for the extensive surface collections; 17 test pits were spaced at 50 m intervals and two test pits were used as discretionary pits elsewhere. As with the first 10 test pits, these 19 test pits were excavated by 10 cm levels within natural strata, if possible, and all sediments were screened through 6.4 mm (1/4 in) mesh screen.

Of the 19 later test pits, six test pits were located in field 8, three test pits were located in field 9, four test pits were located along the transect in field 10 and both the discretionary pits were situated elsewhere in field 10; four test pits were also located in field 13. In general, subsurface deposits were documented in all these locations and stratified middens were variably present in fields 8, 9 and 10; the area towards the hills at the western limit of the site in field 13 contained less dense remains, however.

The final episode of field work in 1990 included excavation of three 1.0 m x 1.0 m test units in fields 8, 9 and 10, all in the core portion of the site where cultural deposits with substantial integrity are well represented. The test units were carefully excavated by 10 cm levels within natural strata in all cases. Solely 6.4 mm (1/4 in) mesh screen was employed in three of the four 0.5 m x 0.5 m subunits and both 6.4 mm (1/4 in) and 3.2 mm (1/8 in) mesh were employed in the fourth subunit in each test unit. All feature fill was passed through 1.0 mm window screen as well. Initially, all fine screening with 3.2 mm mesh was done in the field, but it soon became apparent that this was too time-consuming and might lead to loss of the smaller remains. Therefore, in the end, nearly all of the finer screening was conducted at the field laboratory using lightly pressurized water, thereby maximizing recovery of the smaller artifacts and ecofacts.

Topographic mapping of most of the site was achieved towards the end of the field work, sediment columns were removed from each test unit and selected strata in the test pits for grain size, pH, organic matter and chemical analyses, and the test units were lined with plastic and backfilled for relocation
and possible expansion in the future. The test pits were also carefully backfilled. Concurrent with the latter stages of the 1990 field work, most artifact samples were washed and most larger specimens were labeled with the provenience numbers they were assigned during their recovery.

A substantial portion of the entire 1990 collection from the site was prepared for curation at the facilities of the MNT, while another portion, primarily the samples from the subsurface contexts, was prepared for transport back to the United States for additional processing and analysis. Some of these latter samples will be ultimately returned to the MNT for curation, and the CMNH will retain a portion of the 1990 samples as well. It should be noted that all the samples from the 1990 testing, as with those from Watters' 1979 testing, were minimally inventoried on Montserrat prior to their storage and/or transport. Future plans for Trants site research include more complete analysis of the MNT samples curated in Montserrat during one or more future visits by project personnel.

PRELIMINARY RESULTS

Although most aspects of the Trants site research are still ongoing, a variety of preliminary results can be specified. These are described below in several major sections including discussions of site size and distribution of cultural deposits, site stratigraphy, radiocarbon dating, material culture remains, and faunal remains and other ecofacts. A general discussion of the importance of the site and its relevance to broader research topics in West Indian prehistory follows these preliminary remarks.

Site Size and Distribution of Cultural Deposits.

Although still not completely established, it now appears that the full size of the Trants site may have been nearly 600,000 square meters (0.6 sq km). The total area of the 15 field subdivisions is about 596,876 square meters, assuming that unstudied and little studied fields still preserve and/or originally contained site deposits. Subtracting fields 6 and 7, for example, leaves approximately 404,000 square meters of site area. Thus, the site was likely about 99.9 to 147.5 acres in extent, although the core area is likely smaller.

Again, it should be emphasized that the full extent of the well-preserved portions of the Trants site are not completely known given the relatively low intensity of the subsurface testing to date. However, it can already be demonstrated that much, if not all of fields 8, 9 and 10 preserve cultural deposits with substantial integrity, covering a corresponding area of at least 78,438 square meters, or 19.4 acres; this three-field area is certainly a minimum core area and represents about 13.1% to 19.4% of the total site area depending upon the original size of the site as discussed above. Although conjectural, these latter estimates may more closely approximate the original nucleus of a single settlement or perhaps composite settlement areas.

Site Stratigraphy.

The stratigraphy of the Trants site is demonstrably variable across its full length and width even though its subsurface deposits have been very lightly tested; a total area of only 14.25 square meters has been subsurface sampled on the basis of the 1979 and 1990 field work (Figures 2-4).

In any case, the site sediments can be generally described as quite sandy, with different areas distinguished primarily by the variable presence of pebbles and cobbles, and buried "anthrosols," or human-modified sediments. All processed samples can be technically classified as sandy loams, at the finest, to loamy sands and sands. The finest samples consist of at least 61-69% sand-sized particles,
perhaps not coincidentally occurring in the most intensively human-modified sediments, while the sediments more typically contain 70-80% or more sand-sized particles.

Although this is not the context to present the full range of available information on the pH, organic matter and chemical data, these determinations represent favorable conditions of preservation in all cases. For example, the pH readings range from 7.0 to 8.5, which suggests nonacidic neutral to basic conditions. The organic matter readings range from 1.4 to 4.6%, which is relatively high overall for such sandy sediments; the highest values are correlated with the most extensively human-modified “anthrosols.”

Likewise, the few absolute phosphate fractionation values are high in correlation with the prehistoric cultural deposits, but in this case do not strictly peak with the dark “anthrosols.” Instead, they seem to reach their highest expressions in conjunction with the most intensive deposits of artifacts and ecofacts in midden deposits. In fact, the three sediment columns demonstrate that all of the phosphate fractionation values, 650-2,736 ppm, fall within the range of residential values recorded elsewhere worldwide. The upper end of the Trants site phosphate fractionation values (over 1,000-1,100 ppm) in two of the middens apparently represent “exceptionally intensive residential activities of the type found in Middle East tells or urbanized zones” (Eidt 1984, 1985:42-43, 95).

The cultural deposits are not particularly deep at the Trants site, with all less than about 1 m below the modern site surface as presently understood. A historically disturbed hoe cultivation zone extends to a depth of approximately 20-25 cm below the modern surface, and the cultural deposits in the four more northerly sampled fields, 8-10 and 13, extend down variably deeper than this disturbance: 20-40 cm at most in field 13, about 50-80 cm in fields 8 and 9, and 30-100 cm in field 10. Notably, a portion of fields 9 and 10 and perhaps a portion of field 8 contain well-stratified, buried deposits capped off by, or intermixed with large numbers of rocks.

The most obvious example of this situation occurs in field 10 where two middens, one partially disturbed by the hoe zone and another completely intact, are separated by a more or less sterile layer of sand and rocks (Figures 3 and 5). Farther north in field 10, near its boundary with little-known field 11, a test pit revealed a clear pit feature which contained a whole, broken ceramic vessel (Figure 6); the pit was infilled with a mixture of large rocks and sand. Nearby in field 9, another dense cultural midden contained both copious artifacts and large rocks, some weighing in excess of 100-200 kg; a deeper rock deposit also underlies the cultural deposits in this area (see Figure 4).

These rock-laden deposits are enigmatic, but may represent dramatic landslides and/or storm-tossed deposits over portions of the site dating to various periods before and during the deposition of the prehistoric cultural remains. It is also possible and perhaps likely that the site occupants themselves contributed to deposition and/or modification of these coarse deposits during their span of occupation. In any case, some portions of the site certainly do not include the coarse rock constituents, for example, a portion of field 8 that contains an intense “anthrosol” and no large rocks of any sort (see Figure 2).

Radiocarbon Dating

The Trants site was previously dated with two radiocarbon dates for the 1979 test unit (Table 1). As noted above, dates of 190 B.C. and A.D. 330 were obtained from essentially the same context towards the bottom of the cultural deposits in the 1979 test unit, but these dates are surprisingly divergent.

The six dates obtained using carbonized floral remains from the 1990 testing seem more reliable and establish the relatively great antiquity of the site deposits back to the middle of the first millennium B.C. Dates as early as 480 B.C. for a depth of 50-70 cm (field stratum C) in field 8 and 440 B.C. for the a depth of 70-80 cm (field stratum C) in field 9 were obtained recently (see Figures 2 and 4). The rock-
buried midden in field 10, however, produced a date of 10 B.C. for a depth of 70-80 cm (field stratum C.2); notably, another date, A.D. 210, was obtained for the uppermost portion of the same midden using a sample from a depth of 61 cm (field stratum C.1) (see Figures 3 and 5).

Still another sample from field 10, obtained from a depth of 40-60 cm (field stratum B) in a discretionary test pit near Watters' 1979 test unit, provided a date of A.D. 200. It perhaps confirms the later date of the two previously obtained from the 1979 test unit. Likewise, a second sample from the test unit dated to 440 B.C. in field 9 produced a date of A.D. 60 for the cultural midden intermixed with rocks at a depth of 30-40 cm (field stratum B), further establishing the correct stratigraphic order of strata B and C (see Figure 4). Thus, rock building on the site seems to clearly predate 440 B.C. and occurred as late as A.D. 60, and probably later in field 9 on the basis of rocks beneath field stratum C and throughout stratum B there. Rock building minimally postdates A.D. 210 in field 10 where it occurs only clearly in stratum B on the basis of the available evidence. Notably, relatively few prehistoric remains occur on the surface of field 10, perhaps confirming the presence of partially capping rock and other deposits in this area.

All of the available dates for the Trants site can be attributed to the Saladoid period, and more specifically to the early and middle portions thereof, ca. 480 B.C.-A.D. 320. Additional dating in the future may extend this temporal range, but no obvious post-Saladoid period deposits have been recognized at the site thus far.

Material Culture Remains

The combined material culture remains from the various episodes of testing at the Trants site well corroborate the radiocarbon-based temporal attribution, with all recognizable diagnostics potentially subsumed within the known range of Saladoid period (or tradition) material culture in the West Indies (e.g., Rouse 1986; Rouse and Alegría 1990; Siegel 1989; Veloz Maggiolo 1991). In particular, the ceramics are easily comparable with other reported Saladoid period (and contemporary Huecoid) samples in the Lesser Antilles and nearby areas, and as a result receive the bulk of the attention in this discussion.

However, it should be reiterated that lithic ornaments present in the MAI sample and the samples derived from recent field work, along with flaked lithic tools, cores and flakes, constitute another significant portion of the combined material samples. As noted above and in another paper in this volume, the lithic ornaments establish long-distance social interaction during the Saladoid period as early as the earliest deposits at the site (cf. Boomert 1987; Chanlatte Baik 1984; Chanlatte Baik and Narganes Store 1990; Cody 1991). Ground stone tools, shell tools and shell ornaments are also represented in the site collections, but these are not particularly common.

The Amerindian ceramics originated as deep as the earliest dates for the site and represent a widely variable combination of undecorated and decorated vessel forms, with the undecorated clearly predominating over the decorated vessels. Red slipped fragmentary vessels also predominate over decorated examples, but again the slipped specimens are less common than the undecorated or "plain" specimens. Although a full attribute analysis of vessel lots has yet to be achieved for the specimens derived from the 1979 and 1990 testing (e.g., Petersen and Watters 1991), it is estimated that many dozens of vessels are represented among the ceramics from the subsurface contexts alone; approximately 5,175 specimens were recovered from the 1979 and 1990 test units and a still unquantified number were also recovered from the 1990 test pits. Many more ceramic specimens were surface collected during both episodes of field work as well, especially during 1990. Over 40 Amerindian vessel lots have also been defined in the Howes collection curated by the MAI.
The diverse vessel forms include large and small deep bowls, shallow bowls, jars of various sorts, griddles with and without feet, and "incense burners," among other forms (see Figure 6); almost all seem to reflect local volcanic temper types, although a few have carbonate (shell?) temper.

Although the decorated specimens are in the minority, various forms of decoration are represented and seem to have clearly coexisted on the basis of their common provenience in some sealed contexts. For example, both "white-on-red" (WOR) and "zone incised cross-hatched" (ZIC) decoration coexisted in the oldest contexts dated before A.D. 1 in fields 8 and 9, and also coexisted in the later contexts in these areas, as well as in field 10 (Figures 7 and 8). Decorated and undecorated adornos with and without slips and painted decoration are represented; turtle and perhaps other effigy bowls are included. Both human and animal representations seem to be included in the available sample of adornos, although punctated node, or "eye" motifs, seem most common (see Figure 6).

Of notable interest, some of the WOR and ZIC vessels show common techniques and even nearly identical motifs between different site areas on the basis of surface and subsurface finds. For example, the earliest deposits at the site thus far identified, dated ca. 480-440 B.C. in fields 8 and 9, share a common unslipped, bowl form with a flanged rim that was decorated using a common form of broad line ZIC and a similar punctate adornno, along with WOR decorated vessels. The former occurrence, among others, suggests that these areas were occupied more or less contemporaneously by people sharing very similar, if not precisely identical ceramic styles.

Faunal Remains and Other Ecofacts

Besides the above-mentioned sediment columns, few other ecofact samples from the 1990 testing at the Trants site have yet been processed and fully analyzed. The extensive samples of faunal remains from the 1990 testing are currently being analyzed at the University of Georgia, and the smaller samples of floral remains are being analyzed at the University of Florida within their fragmentary limits. In the latter regard, it should be noted that the rather common presence of ceramic griddles throughout the site deposits establishes the likely use of one or several cultivated plants, presumably including manioc, in the occupants' subsistence pattern, but this is strictly inferential at this point.

Considerable work has been done on the faunal samples derived from Watters' 1979 test unit, and the results of the full vertebrate analysis have been published elsewhere (Steadman et al. 1984), as noted above. Although only briefly summarized here, the analysis of the 1979 faunal samples indicates that a broad range of terrestrial and marine vertebrates were exploited by the Saladoid period occupants. Marine vertebrates include both shallow and deep water fish, as well as turtles, while the terrestrial vertebrates include iguanas, various birds such as pigeons, doves and gallinules, several species of extinct rice rats, agouti and dog. At least the agouti and the dog seem to have been introduced to Montserrat by the Amerindians. Moreover, the combined terrestrial fauna indicates that a number of the birds came from forested and/or marshy environments, neither of which are common near the site today.

In addition, the other as yet unreported constituents of the fauna from the 1979 test unit include copious land crab remains, along with various marine mollusks. It should be further noted that many of these same resources are likely represented in the 1990 samples on the basis of their preliminary examination; extensive crab middens were encountered in several portions of the site in 1990, for example. In sum, the available ecofacts from the Trants site reveal a broad-based economy that included a wide variety of marine and terrestrial resources which were largely native, but also included several introduced animals. Cultivated plants presumably also contributed to the Saladoid subsistence pattern and these too were likely introduced.
CONCLUSIONS

Recent and ongoing research at the Trants site has established that it is highly significant and will help provide better definition of the Saladoid period in the West Indies. Because of the substantial integrity preserved in its cultural deposits, research at the site should enable definition of Saladoid settlement, chronology, cultural lifeways and social interaction. The fact that it has been largely used only for hoe horticulture during the historic period means that dense prehistoric deposits survive in substantial portions of the site area, especially in the more deeply buried and apparently more intensively utilized core area in fields 8-10. At least about 78,438 square meters, or 19.4 acres, are represented in this central core area in fields 8-10.

Unfortunately, much of the entire site is threatened by proposed construction of the new international airport. Since the final engineering and design phases of the airport planning have yet to be completed, archaeologists are currently working with Montserratian and United Kingdom planners to minimize unnecessary disturbance to this highly significant cultural resource. It is expected that there will be some flexibility in moving the proposed airport development away from some portions of the site, but it does not seem likely that all of the significant areas can be avoided. Consequently, additional testing and some degree of large-scale salvage excavation will likely be needed, especially in the portions of fields 8-10 which will be disturbed.

In any case, ongoing study of the Trants site using previously and recently collected site samples promises to raise as many questions as the various avenues of research may answer. The somewhat surprisingly early dates from the site, along with another date of 440 B.C. from the Radio Antilles site located on the southwestern coast of the island, establish that Montserrat contains some of the oldest known Saladoid period deposits in the West Indies. In fact, among dates for the Saladoid period in the West Indies, only single dates from the Fond Brule site on Martinique and the Hope Estate on St. Martin are currently older than the oldest available dates from the Trants and Radio Antilles sites; few other third and fourth century B.C. dates are known from any of the other islands including both Martinique and St. Martin (Haviser 1991; Rouse 1989; Siegel 1991). Thus, the Trants site research has implications for the timing and nature of Saladoid period settlement in the West Indies.

The potential contributions it can make to better understanding Saladoid period lifeways and social interaction should be obvious on the basis of the preceding discussion, especially given the presence of little-disturbed midden deposits and cultural features with notable integrity. The large size of the Trants site and current understanding of the apparent core area where house and other structures may be identifiable (cf. Schinkel 1991; Versteeg 1990) will allow intriguing questions to be ultimately asked about the size of the resident human population, as well as their degree of social complexity during the Saladoid period.

Although Siegel (1989:201-203) has elsewhere hypothesized that Saladoid populations can be characterized as “complex tribes” transitional between tribes and chiefdoms, relatively few other Saladoid period sites in any context in the West Indies and South America provide such a potential data base for comparative evaluation of this proposition. The lithic ornament data, ceramics and perhaps extensive residential features, among other remains at the Trants site, should allow direct testing of the degree of social complexity characteristic of its resident Saladoid populations.
ACKNOWLEDGEMENTS

Acknowledgements for the 1979 field work at the Trants site are provided in Watters (1980) and Steadman et al. (1984). The 1990 research was funded by the M. Graham Netting and Edward O'Neil research funds of the Carnegie Museum, the Center for Latin American Studies at the University of Pittsburgh, and the University of Maine at Farmington Archaeology Research Center; UMF also partially supported travel to the 14th ICCA in Barbados. At UMF, Ann Robinson helped with editing, Belinda Cox prepared the graphics and Tom Buchanan prepared the photographs.

Various individuals in Montserrat facilitated the 1990 research, of whom only a few can be mentioned here. Franklin Margetson, President of the MNT, helped in many ways including discussions with Government; Erica Gibbs, Secretary of the MNT, provided housing and space for a field laboratory while she was off-island; and Carol and Cedric Osborne, MNT Vice President, and Marian and Bert Wheeler, among others, did various favors for the archaeologists. Ken Sparkes, Director of Public Works, also provided significant help. To these individuals and other friends in Montserrat we owe a hearty note of thanks.

REFERENCES CITED

Boomert, Arie

Chanlatte Baik, Luis A.
1984 Arqueología de Vieques. Universidad de Puerto Rico, Recente de Rio Pedras.

Chanlatte Baik, Luis A., and Yvonne M. Narqanes Storde
1990 La Nueva Arqueología de Puerto Rico (su Proyeccion en Las Antillas). Taller, Santo Domingo.

Cody, Annie

Eidt, Robert C.

Harrington, Mark R.
Haviser, Jay B.

Morse, Birgit F.

Petersen, James B., and David R. Watters

Rouse, Irving

Rouse, Irving, and Ricardo E. Alegría
1990 Excavations at Maria de la Cruz Cave and Hacienda Grande Village Site, Loiza, Puerto Rico. Yale University Publications in Anthropology 80. New Haven.

Schinkel, Kees

Siegel, Peter E.

Steadman, David W., David R. Watters, Elizabeth J. Reitz, and Gregory K. Pregill

Veloz Maggiolo, Marcio
Versteeg, Aad

Watters, David R.
<table>
<thead>
<tr>
<th>Radiocarbon Years B.P.</th>
<th>Years B.C./A.D.</th>
<th>Sample No.</th>
<th>Context</th>
<th>Depth (in cm b.s.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2140 ± 80</td>
<td>190 B.C.</td>
<td>Beta-18489</td>
<td>1979 unit</td>
<td>---</td>
</tr>
<tr>
<td>1620 ± 90</td>
<td>A.D. 330</td>
<td>Beta-18582</td>
<td>1979 unit</td>
<td>---</td>
</tr>
<tr>
<td>2430 ± 80</td>
<td>480 B.C.</td>
<td>Beta-44828</td>
<td>N396E571</td>
<td>50-70C</td>
</tr>
<tr>
<td>2390 ± 90</td>
<td>440 B.C.</td>
<td>Beta-41682</td>
<td>N596E571</td>
<td>70-80C</td>
</tr>
<tr>
<td>1890 ± 70</td>
<td>A.D. 60</td>
<td>Beta-41678</td>
<td>N596E571</td>
<td>30-40B</td>
</tr>
<tr>
<td>1960 ± 90</td>
<td>10 B.C.</td>
<td>Beta-41680</td>
<td>N422E645</td>
<td>70-80C</td>
</tr>
<tr>
<td>1740 ± 90</td>
<td>A.D. 210</td>
<td>Beta-41681</td>
<td>N422E645</td>
<td>61C</td>
</tr>
<tr>
<td>1750 ± 80</td>
<td>A.D. 200</td>
<td>Beta-41679</td>
<td>TP N407E634</td>
<td>40-60B</td>
</tr>
</tbody>
</table>

Table 1. Radiocarbon Dates for the Trants Site (MS-G1), St. George's Parish, Montserrat (as of June 1, 1991).
Figure 1. Overview map of the Trants archaeological site (MS-G1), St. George's Parish, Montserrat. Note field subdivisions and locations of Trants Estate, Trants Village and Blackburne Airport structures and facilities.
Figure 2. West wall profile of test unit N396 E571 in field 8 at the Trants site (MS-G1). Note in situ ceramic sherds; lower portion of field stratum B2 was radiocarbon dated to 480 B.C. ±80.
ARCHAEOLOGICAL TESTING AT THE EARLY SALADOID TRANTS SITE

Figure 3. Composite west and north wall profiles of test unit N421-N422 E645 in field 10 at the Trants site (MS-G1). Note in situ ceramic sherds and rocks, and feature 3; field stratum C1 was radiocarbon dated to A.D. 210 ± 90, and field stratum C2 was radiocarbon dated to 10 B.C. ± 90.
West wall profile of test unit N596 E571 in field 9 at the Trants site (MS-G1). Note in situ ceramic sherds and rocks; upper portion of field stratum B was radiocarbon dated to A.D. 60 ± 70, and the upper portion of field stratum C was radiocarbon dated to 440 B.C. ± 90.
Figure 5. View of the field stratum C midden in test unit N421-N422 E645 in field 10 at the Trants site (MS-G1) after excavation of the 60-70 cm level, facing west. Note range pole marked in 20 cm intervals for scale, in situ ceramics and rocks, and feature 3; the large ceramic sherds on the floor lie largely in field stratum C2, radiocarbon dated to 10 B.C. ± 90.
Figure 6. Large section of broken ceramic vessel from a test pit in field 10 at the Trants site (MS-G1). Note strap handle, paucity of decoration, and adornos on handle and rim flanges.
Figure 7. Selected examples of "white-on-red" (WOR) ceramics from the Trants site (MS-G1).
Figure 8. Selected examples of "zone incised cross-hatched" (ZIC) ceramics from the Trants site (MS-G1).