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Additional Methods23

Maximum Likelihood Estimation of the Patch-size Probability24

The Maximum Likelihood Estimation (MLE) method employed is fully described in Clauset25

et al. (2009). In this study, Pareto (power-law), truncated Pareto-Lévy (truncated power-26

law), and exponential distributions are tested for patch-size S which is the random variable27

of our interest. The appropriate MLE equation for the distribution of S is used to derive an28

exponent with the initial smin parameter set to the minimum value found in the dataset. A29

best fit dataset is generated with the estimated parameters and a Kolmogorov-Smirnov (KS)30

test is used to determine the goodness of fit (the KS-D statistic). The KS test is the accepted31

test for measuring differences between continuous data sets (unbinned data distributions) that32

are a function of a single variable. This difference measure, the KS-D statistic, is defined as33

the maximum value of the absolute difference between two cumulative distribution functions.34

The D statistic between two different cumulative distribution functions PN1(s) and PN2(s)35

is defined by D = max−∞<s<∞ | PN1
(s) − PN2

(s) |. To determine the best fit value for36

the smin parameter the calculation is repeated with increasing values for smin taken from37

the dataset with the value that resulted in the best (lowest) KS-D statistic being retained38

as the best fit value (Clauset et al., 2009; Humphries et al., 2010). When fitting a Pareto39

distribution the method is repeated to derive a best fit value for the smax parameter, so for40

the Pareto distribution both the smin and smax parameters are fitted in the same way. We41

found that the Pareto-Lévy distribution (or commonly called “truncated power-law”) is the42

best fit for the predicted distribution of the patch-size.43

Additional Results and Discussion44

The predicted land cover maps by the SLAMM model from 2006 to 2100 are represented in45

Figure S1. Many coastal wetland classes are considered into the land cover map. The Gulf of46

Mexico is divided into seven regions to which a unique set of SLAMM parameters is assigned47

(Table S1). A supporting video attached to this manuscript shows the predictions of the land48

cover in time. It appears that the East Apalachee Bay area (Zone 3 in the 2006 land cover49

map of Figure S1) and the South West area of the Gulf coast - North Everglades (Zone 7) will50

be largely inundated. The SLAMM class 17 represents the estuarine open water. The ocean51

open water is not represented in the maps. The zones 3 and 7 are subjected to the largest52

habitat transformations and loss. It is possible to see that the barrier islands in the South53

West area will be largely modified by the sea-level rise (SLR). The variation of the coastline54
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in those areas is large due to the low elevation and slope. The striped patterns observed in55

the East Apalachee Bay and in the South West areas are the result of the SLAMM model56

that considers exclusively the change of land cover from a cell with higher elevation to a57

cell with lower elevation, thus not affecting the neighboring cells (Chu-Agor et al., 2010). In58

Figure S2 the percentage of cells of each land cover class with respect to the total habitat is59

plotted in time. The global sea-level rise of 2 m produces local sea-level rise effects because60

of the different parameters assigned to each of the seven zones along the Florida coast and61

because of the natural heterogeneities of elevation and slope of each zone. Each land cover62

class - that represent also wetland types (swamp, cypress swamp, salt-marsh, and mangrove)63

- responds to sea-level rise differently according to the zonal geomorphological properties64

along the coast. A decrease in area in time is not observed for all the land cover classes.65

The smooth decline of the estuarine beach (10) and the mild increase of the ocean beach66

(12) reflect the quite smooth trend of the fractal dimension of the patches DK for SNPL and67

REKN in time. As for the scrub/shrub (7) and salt marsh (8) classes, their rough and abrupt68

variations in time are observed also for the fractal dimension of the patches for the PIPL69

(Figure 5, b) which occupies also these habitats. It appears evident the direct association70

between geomorphological processes (simplified as land cover change) and biological processes71

(described as patches). A huge loss of the swamp (3) is observed, strong variations of the72

tidal flat (11), and a large increase of the estuarine open water due to the inundation and73

consequent loss of other habitat areas.74

Figures S3, S4, and S5, show the suitability index (SI) for the breeding season of SNPL,75

and the wintering season of PIPL and REKN, in the Gulf coast of Florida from 2006 to 2100.76

The habitat suitability index is calculated as specified in the main text of the manuscript77

(see Methods). In Figures S3, S4, and S5 the patches are delineated according the proposed78

patch-delineation model and are reported below every Suitability Index map. A habitat79

patch is defined as a cluster of pixels that are good enough, big enough, and close enough80

together to support feeding and breeding by a particular species.“Good enough” means that81

they have sufficient resources for the survivability of the species. “Big enough” reflects the82

fact that there is the need to have enough area to support at least one breeding unit, typically83

considered a mating pair of individuals with overlapping home ranges. “Close enough” means84

that the pixels must be clustered, rather than divided into a checkerboard by too much85

interspersion with pixels of bad habitat. By “a particular species” we emphasize the fact86

that one species’ breeding patch may be another species’ worst habitat patch. From the87

patterns of patches in Figures S3, S4, and S5, the variation of the patches is visible in time.88

The number of patches in the South-West Gulf coast of Florida is much higher for PIPL and89
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REKN than for SNPL, confirming the field data. The variation of the patches is larger for90

PIPL than for SNPL and REKN, especially in the Florida Peninsula coast.91

The conditional probability in time of a SNPL breeding occurrence and of a PIPL and92

REKN adult occurrence in the winter season is shown in Figure S6 as a function of the93

predicted land cover (Figure S1) and the geology layers (Convertino et al., 2011b,a). The94

conditional probability changes as each environmental variable (land cover and geology) is95

varied, keeping all other environmental variables at their average sample value. In other96

words, the response curves of Figure S6 show the marginal effect of changing exactly one97

variable, whereas the model (MaxEnt) may take advantage of sets of variables changing98

together. The response curves are derived from the habitat suitability maps of Figures S3,99

S4, and S5. From the response curves it is possible to note the similarity of habitat preferences100

between the SNPL in the breeding season and the PIPL/REKN in the wintering seasons.101

SLAMM is the land cover according the SLAMM model classes and GEO is the geology102

layer (Convertino et al., 2011b,a). The Piping Plover seems to occupy also scrub/shrub103

transitional marsh and salt marsh areas (class 7, 8, and 9 respectively). The PIPL uses the104

ocean beach more than SNPL and REKN do (class 12). PIPL, and REKN, find more suitable105

substrates with medium/fine sand and silt (GEO class 4) and shelly sand and clay (GEO106

class 8). SNPL instead are found only in habitats characterized by white medium/fine sand107

and silt (class 4) that is typical of the Florida Gulf coast (Panhandle and Peninsula). It is not108

observed a significant variation in time of the conditional probabilities as a function of the109

environmental variables for the three TER species considered. The conditional probability110

to the geology layer shows more variation in time than for the land cover because the geology111

has been considered unchanged in time, thus the prediction is less reliable.112

Figure S7 shows the number of patches vs. the average size of patches for SNPL, PIPL,113

and REKN. The dots are the binned average of all the realization for each year simulated.114

The plot shows how the number of patches Np decreases with the size of patches 〈s〉 that115

increases. The PIPL has the smallest patches on average, while SNPL and REKN have116

similar patches of higher average size with respect to the PIPL.117

References118
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Additional Table Captions135

Table S1. Land-cover model parameters. SLAMM model parameters for the 7 distinct136

geomorphological areas: Pensacola-Eglin (1), Tyndall (2), East Apalachee Bay (3), Big-Bend137

(4), Tampa Bay (5), Ft. Meyers (6), and North Everglades (7). The parameters that are138

different for each region are evidenced in grey.139

140

Table S2. Model results. Fractal dimension of the patches DK , number of patches Np,141

mean patch size 〈s〉, mean number of connected patches 〈c〉 (that is a function of the esti-142

mated maximum dispersal distance dl), for the TER-s species considered in the years 2006,143

2020, 2040, 2060, 2080, and 2100.144

145

Table S3. Comparison among fractal dimensions derived from different methods for the146

SNPL occurrences, and fractal dimension of the coastline. Db, Dc, and DK are the fractal147

dimension derived from the box-counting, the perimeter-area relationship, and the Korčak’s148

law. The patch delineation model estimates (DK) is validated in the period 2006-2010 against149

the observations (Db). The relationship between Df and Db is the evidence of a correlation150

between geomorphological and ecological processes.151

152



Additional Figure Captions153

Figure S1. Simulated land cover patterns. Predicted land cover in time represented as154

SLAMM classes for the years 2006, 2020, 2040, 2060, 2080, and 2100. The domain has been155

divided into seven areas because different sea-level rise trend and tidal dynamics: Pensacola-156

Eglin (1), Tyndall (2), East Apalachee Bay (3), Big-Bend (4), Tampa Bay (5), Ft. Meyers157

(6), and North Everglades (7).158

159

Figure S2. Predicted change of land cover in time. Variation in time of the land cover160

classes for the Gulf coast region modeled. (a) favorite habitat for SNPL, PIPL, REKN161

(estuarine beach (10) and ocean beach (12)). (b) land cover classes favorable for PIPL162

(scrub/shrub (7), salt marsh (8), and mangrove (9)). (c) other classes (undeveloped dryland163

(2), swamp (3), cypress swamp (4), inland fresh marsh (5), tidal flat (11), and estuarine open164

water (17)). Many classes of the land cover are coastal wetland types (salt-marsh, mangrove,165

swamp, and cypress swamp). The swamp is the type of costal wetlands that is experiencing166

the largest decay in area.167

168

Figure S3. Simulated SNPL suitability index patterns. Suitability Index in time for169

the SNPL derived from the habitat suitability model (HSM) (MaxEnt) for the years 2006,170

2020, 2040, 2060, 2080, and 2100. The suitable patches determined by the patch-delineation171

algorithm are represented.172

173

Figure S4. Simulated PIPL suitability index patterns. Suitability Index in time and174

predicted patches for the PIPL derived from the HSM (MaxEnt) and the patch model for175

the years 2006, 2020, 2040, 2060, 2080, and 2100.176

177

Figure S5. Simulated REKN suitability index patterns. Suitability Index in time and178

predicted patches for the REKN derived from the HSM (MaxEnt) and the patch model for179

the years 2006, 2020, 2040, 2060, 2080, and 2100.180

181

Figure S6. MaxEnt response curves in time. Habitat suitability for breeding and win-182

tering for SNPL, PIPL and REKN respectively, as a function of the land cover (as SLAMM183

classes) and geology classes calculated by MaxEnt for the years 2006, 2020, 2040, 2060,184

2080, and 2100. The SLAMM classes are reported in Figure S2. The geology classes (GEO)185

are: clayey sand (1), gravel and coarse sand (2), limestone (3), medium/fine sand and silt186

(4), sandy clay and clay (5), shell beds (6), dolomite (7), shelly sand and clay (8), lime-187

7



stone/dolomite (9), peat (10), and water (11).188

189

Figure S7. Average number of patches vs. average size. Np is the number of patches,190

and 〈s〉 is the average size. The dots are the binned average of the realizations for all the191

years modeled.192

193
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Additional Video194

Video S1. Predicted land cover by SLAMM from 2006 to 2100.195

196
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Table S1:

1 2 3 4 5 6 7

Direction of shore S S S W W W W
Historic Trend (mm/yr) 2.1 0.75 1.38 1.8 2.36 2.4 2.02
Mean Tidal Level - NAVD88 (m) 0 0 0 0 0 0 0
Great Diurnal Tide Range (m) 0.383 0.409 0.492 1.158 0.688 0.401 0.874
Salt Elevation (m) 0.5745 0.6135 0.738 1.737 1.032 0.6015 1.311
Marsh Erosion (horz. m/yr) 2 2 2 2 2 2 2
Swamp Erosion (horz. m/yr) 1 1 1 1 1 1 1
Tidal Flat Erosion (horz. m/yr) 0.2 0.2 0.3 0.2 0.2 0.2 0.2
Regional Flood Marsh Accretion (mm/yr) 5.6 5.6 5.6 2.1 2.1 2.5 2.5
Irregular Flood Marsh Accretion (mm/yr) 3.75 3.75 3.76 3.75 3.75 3.75 3.75
Tidal Fresh Marsh Accretion (mm/yr) 4 4 4.2 4 4 4 4
Beach Sedimentation Rate (mm/yr) 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Frequency Overwash (yr) 2 2 2 2 2 2 2
Max Width Overwash (m) 500 500 500 500 500 500 500
Beach to Ocean Overwash (m) 30 30 30 30 30 30 30
Dryland to Beach Overwash (m) 30 30 30 30 30 30 30
Estuary to Beach Overwash (m) 60 60 60 60 60 60 60
Marsh Pct. Loss Overwash (%) 50 50 50 50 50 50 50
Mangrove Pct. Loss Overwash (%) 25 25 25 25 25 25 25
Regional Flood Max Accretion. (mm/yr) 9 9 9 4.5 4.5 5.7 5.7
Reg. Flood Min Accretion (mm/yr) 4.7 4.7 4.7 1.4 1.4 1.4 1.4
Reg. Flood Diffusion Effect Max (m) 0 0 0 0 0 0 0
Reg. Flood Diffusion Effect Min (-) 1 1 1 1 1 1 1
Reg. Flood Salinity Turbulence Max (ppt) 0 0 0 0 0 0 0
Reg. Flood Turbulence Max Zone (ppt) 0 0 0 0 0 0 0
Reg. Flood Salinity Non Turb. Max (-) 1 1 1 1 1 1 1
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Table S2:

2006 2020 2040 2060 2080 2100

Snowy Plover
DK 1.47 1.576 1.582 1.54 1.573 1.55
Np 219 182 206 226 304 312
〈s〉 10.37 9.38 8.48 8.32 7.59 7.92
〈c〉 5 7 7 6 9 8

Piping Plover
DK 1.7 1.64 1.646 1.356 1.595 1.733
Np 369 550 357 403 996 692
〈s〉 (km2) 6.48 7.03 6.33 6.31 11.12 5.81
〈c〉 (km) 12 10 11 9 10 20

Red Knot
DK 1.42 1.452 1.464 1.469 1.617 1.56
Np 189 220 177 199 272 320
〈s〉 (km2) 11.30 10 9.89 9.52 7.59 7.90
〈c〉 (km) 11 13 13 15 18 18
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Table S3:

2002 2003 2004 2005 2006 2007 2008 2009 2010

Df 1.26 1.28 1.37 1.35 1.29 1.29 1.30 1.32 1.33
Snowy Plover

Db 1.63 1.62 1.75 1.74 1.63 1.64 1.66 1.68 1.70
Dc − − − − 1.52 1.53 1.58 1.61 1.65
DK − − − − 1.47 1.49 1.52 1.54 1.58
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