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Major Department: Civil Engineering 

A mathematical framework for large strain consolidation of fully saturated 

soil is presented in this study. Strong and weak forms of the boundary-value problem 

are derived using both the material and spatial descriptions. The algorithmic treatment 

oflarge strain of the solid phase is based on multiplicative decomposition of the 

deformation gradient and is coupled with the algorithm of fluid flow via the 

Kirchhoff pore water pressure. Balance laws for saturated soil are written following 

the classjcal theory of mixture considering the soil-water mixture as a two-phase 

continuum. Since the motion of the fluid phase only affects the Jacobian of the solid 

phase, balance laws are derived completely in terms of the motion of the soil 

skeleton. 

Both geometric and material nonlinearities are incorporated in the stated 

mathematical model. Geometric nonlinearity is represented by the Jacobian and its 

variation along with proper stress and strain characterization based on the updated 
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configuration. Material nonlinearities of soil skeleton are represented in this study by 

two different constitutive relations ( elastoplastic and viscoplastic) based on a 

modified Cam-Clay (MCC) model of critical state soil mechanics. 

The proposed mathematical model is linearized in order to obtain consistent 

tangent operators and subsequently implemented in the displacement-based finite 

element code PlasFEM, developed by the Geotechnical Engineering group at the 

University of Florida. Numerical predictions of primary ( consolidation and swell) and 

secondary (creep) consolidation settlement are made using PlasFEM for phosphatic 

waste clay, found at the construction site of the Polk County Expressway in Lakeland, 

Florida, in the presence of vertical wick drains and subject to surcharge loading, 

unloading, and subsequent reloading (i.e., road construction). Simulation results 

showed a very good agreement with the field measurements. 
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CHAPTER 1 
INTRODUCTION 

1.1 Introduction 

Non-linear response of geotechnical structures typically results from plastic 

yielding and large deformation of the soil skeleton. There are many classical geotechnical 

applications where non-linear effects due to these two factors could critically influence 

the outcome of a numerical analysis. Two examples are large movement of slopes and 

tilting of a tower due to P-8 effect. The impact of large deformation and plastic response 

is most evident in soft clays. It is a well-known characteristic of clays that considerable 

time is required for the occurrence of the compression caused by a given increment of 

load. Two phenomena contribute to this large time lag. The first is due to time required 

for the escape of the pore water. It is called the hydrodynamic lag or consolidation, a 

phenomenon which involves transient interaction between the solid and fluid phases of a 

soil-water mixture. The second phenomenon is called plastic time lag or secondary 

compression. The slow continued compression that continues after the excess pore 

pressures have substantially dissipated is called secondary compression. Secondary 

compression occurs because the relationship between void ratio and effective stress is 

usually somewhat time-dependent: the longer the clay remains under a constant effective 

stress, the denser it becomes. 

1 
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Various problems of coupled fluid flow and deformation in porous media arise 

frequently in the fields of geotechnical engineering, groundwater hydrology and plate 

tectonics, among others. Slope stability analysis, surcharge loading for consolidation 

drainage, embankment, excavation, settlement of bridge approach pavements etc. are a 

few examples of a wide spectrum of geotechnical applications that involves 

consolidation. 

The behavior of soil during consolidation is governed by the differences between 

the total stresses acting on the soil mass and the pore pressure. In most practical field 

cases it is necessary to describe the effective stress field to characterize the strength and 

deformation properties of the soil. Although the no-flow (undrained) and the free-flow 

(drained) conditions can be analyzed using a single-phase continuum formulation, 

consideration of a two-phase soil-water relationship in a saturated soil medium is 

essential in characterizing the soil behavior during the transient period of excess pore 

pressure dissipation. The physics involved in consolidation phenomenon requires that 

appropriate numerical analysis address coupled response of solid and fluid phases. 

1. 2 Research Focus 

The mathematical structure and numerical analysis of nonlinear consolidation at 

small strains are fairly well developed and adequately documented [1-10]. The general 

approach is to write the linear momentum and mass balance equations in terms of the 

solid displacement and fluid potential ( or pore water pressure), and then solve them 

simultaneously via a two-fold mixed formulation. The small strain assumption simplifies 

the linear momentum balance equation since it produces an additive form of elastic and 
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plastic deformations. In the context of finite element analysis, the small strain assumption 

also simplifies the mass conservation equation since the volume change of the mixture 

becomes a linear function of the nodal solid displacements. 

In spite of substantial development of computational methods for small strain 

consolidation, mathematical models capable of handling the problem of coupled fluid 

flow and large deformation of the soil matrix are not developed well enough to be useful 

for routine analysis of prototype geotechnical structures. Extensions of the small strain 

formulation of the classical consolidation equations to large deformation are based 

primarily on the use of rate-constitutive equations [8,9, 12-14]. In addition to the 

restrictions of small elastic strains imposed by this hypoelastic formulation, it also 

obscures a proper definition of 'mean gradient' and 'average volume changes' necessary 

for imposing the mass conservation equation at finite increments. Consequently, second

order terms in the hypoelastic extension are ignored, particularly in the mass conservation 

equation, which leads to a degradation of accuracy when the load increment is large. 

The present study adopts an alternative formulation for large strain elastoplasticity 

based on the multiplicative decomposition of the deformation gradient. This method 

completely circumvents the 'rate issue' in large deformation analysis [ 17, 18], and allows 

for the development of large elastic strains. Multiplicative decomposition technique 

better represent the particulate nature of soil, much like for metals from its crystal 

microstructure. It provides a means for describing mathematically the relationships 

between the reference configuration, the current configuration, and the unloaded, stress

free intermediate configuration of a soil assembly subjected to large deformation in the 

microscopic sense. A more recent development [19,20] indicates that the multiplicative 
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decomposition technique can be exploited to such an extent that the resulting algorithms 

may inherit all the features of the classical model of small strain plasticity. 

Proper characterization of fluid flow is another long-standing issue in large 

deformation consolidation analysis. Classical theory of mixtures [21-26] is employed in 

this study to describe coupled response of solid and fluid phases. Accordingly soil-water 

mixture is viewed as a two-phase continuum, appropriate balance principles that govern 

the interaction between the solid and fluid constituents are derived. In contrast to 

previous formulations of the mixture theories, however, this study focused on the motion 

of the solid phase alone and uses the constitutive flow theory in terms of relative motion 

of the fluid with that of the solid [27]. Spatial form of generalized Darcy's law is used to 

describe the constitutive relation of the fluid phase. 

Due to its simplicity and practicality, modified Cam-Clay (MCC) model [28, 29] 

of critical state soil mechanics is adopted in this study to represent the nonlinear 

responses (plastic and viscoplastic) of the solid phase. Important features like 

hyperelasticity and bilogarithmic compressibility law are added to MCC model to better 

simulate the behavior of soft clay in large strain regime. 

Finally the mathematical framework of non-linear large deformation 

consolidation analysis is implemented in a displacement-based finite element code 

PlasFEM, which is been developed by the Geotechnical Engineering group at the 

University of Florida over last few years. Numerical analysis is performed to study the 

consolidation behavior of a field case of low solid-content phosphatic waste clay. 
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1.3 Scope ofWork 

The dissertation is organized in eleven chapters. Chapter 2 presents literature 

review and historical development of the theory of mixtures for porous media based on 

balance laws, micromechanical approach for large strain based on the theory of 

multiplicative decomposition. In Chapter 3, general kinematics and balance laws for a 

non-interacting mixture of non-polar constituents are derived in the light of modem 

theory of mixtures. Balance equations, specific for a fully saturated soil media (two

phase), are further reduced from generalized equations. In Chapter 4, field equations or 

strong form of the boundary-value problem of consolidation phenomenon are established 

from balance equations, corresponding weak forms are derived for use in subsequent 

finite element formulation. Constitutive theories for solid and fluid phases, appropriate 

for large strain, are outlined. Constitutive models for phosphatic waste clay (low solid

content clay) are discussed in Chapters 5 and 6. Hyperelastic-plastic MCC (modified 

Cam-Clay) model, suitable for primary consolidation response, is presented in Chapter 5. 

Chapter 6 presents the development of a hyperelastic-viscoplastic MCC model, used for 

simulation of time-dependent secondary compression. Explicit expressions for the 

consistent tangent moduli of the constitutive models are derived in the framework of 

large deformation theory, based on multiplicative decomposition as mentioned before. In 

Chapter 7, corresponding variational equations for boundary value problems are 

developed and linearized for implementation into a finite element code. Chapter 8 

presents the implementation issue of the governing equations, i.e., matrix formulation for 

finite element code. Chapter 9 presents numerical examples one and two-dimensional 

hyperelastic consolidation. These examples demonstrate significance of large strain on 
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consolidation responses compared to the same for small strain formulation. Chapter 10 

presents a study of consolidation phenomena of phosphatic waste clay, deposited at the 

construction site of Polk County Expressway (a multi-lane expressway around Lakeland, 

Florida). Numerical simulations are run for cases ofhyperelastic-plastic (primary) and 

hyperelastic-viscoplastic (secondary, i.e., creep settlement) consolidation. Field 

settlement and pore pressure data are compared with numerical predictions. Chapter 11 

contains a summary of the work that has been presented, as well as conclusions and 

recommendations for future investigations. 



CHAPTER2 
LITERATURE REVIEW 

2.1 Consolidation 

The first author to deal with the important problem of fluid-filled deformable 

porous solids was von Terzaghi. In a famous paper presented to the Academy of Sciences 

in Vienna in June 1923, von Terzaghi showed the derivation of his consolidation theory. 

This theory was later published in his book, which is now considered as the first 

substantial book [30] in soil mechanics. 

In the early 40's Biot [l] generalized von Terzaghi's theory of consolidation by 

extending it to the three-dimensional case and by establishing equations valid for any 

arbitrary load varied with time. In the following years, Biot generalized his theory to 

include properties of anisotropy, variable permeability, linear viscoelasticity, and the 

propagation of elastic waves in a fluid saturated porous solid [2,31]. The main 

disadvantage ofBiot's model, however, lies in the fact that the corresponding theory is not 

developed from the fundamental axioms and principles of mechanics and thermodynamics. 

Thus, some derivations are complicated and obscure. Finally, Biot [32] developed, within 

the framework of quasi-static and isothermal deformations, a theory of large deformations 

of porous media. 

Since the beginning of the 1960's the study of porous media advanced with 

development of new continuum theory of mixtures. In 1960, Truesdell and Toupin [26] 

presented a treatise on the classical field theories where they developed in detail the 

7 
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properties of motion and fundamental physical principle of balance. In 1965, Green and 

Naghdi [25] developed a dynamic theory for the relative flow of the two continua based 

on an energy equation and an entropy production inequality for the entire continuum. 

With the advances in modem computational science and the development of 

rigorous numerical techniques, such as the finite element method, numerical 

implementations of the consolidation theory, Biot' s equations and the mixture theories 

found wide applications. A variational formulation of the dynamics of fluid-saturated 

porous solids was the basis of a numerical method that Ghaboussi and Dikmen [33] 

developed for the purpose of discretizing the spatial media into finite elements. Sandhu 

and Wilson [34] first applied the finite element method to study fluid flow in saturated 

porous media. With the presence of finite element method as a sound numerical technique, 

it was possible to extend the mixture theory to encompass elasto-plastic non-linear 

constitutive models and obtain reliable solutions of the field displacements and pressures. 

A general analytical procedure that accounts for non-linear effects was presented by 

Prevost [8]. In his work, Prevost focused on the integration of the discretized field 

equations based on the mixture theories of Green and Naghdi [25]. Later he worked on 

several numerical applications to study the consolidation of inelastic porous media [3 5] 

and the non-linear transient phenomenon [36]. Due to the increasing necessity of nonlinear 

applications, Zienkiewicz and other researchers published a series of papers that elucidated 

various numerical solutions for pore-fluid interaction analysis. Zienkiewicz et al. [37] 

classified different method of analysis in a comprehensive paper on numerical solutions of 

the Biot formulation. A continuum theory of saturated porous media that is applicable for 
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soils exhibiting large strains was formulated later by Kiousis and Voyadjis [38]. Borja and 

Alarcon [39] recently proposed a framework for large strain consolidation based on 

continuum theory of mixtures. 

The mathematical basis for balance principles presented in this study is derived 

from the general theory of mixtures [21-26]. This research is focussed on fully saturated 

porous media (two-phase continua). Field equations governing the interaction between 

soil skeleton and pore fluid are developed from balance laws. 

2.2 Large Strain Multiplicative Plasticity 

Up to the beginning of the 1980s computational methods for large strain 

elastoplasticity typically relied on hypoelastic extensions of the classical small strain 

models; see, e.g., the reviews of Needleman and Tvergvaard [ 40], hence remained 

restricted to small elastic strains. Computational approaches based on the multiplicative 

decomposition appear to have been first proposed by Argyris and Doltsinis [ 41] within the 

context of so-called natural formulation. Subsequently, however, these authors appear to 

favor hypoelastic rate models on the basis that multiplicative formulations ' . .. . Lead in 

principle to non-symmetric relations between stress rates and strain rates' (see [21, p. 

22]). Simo and Ortiz [43] and Simo [44] proposed a computational approach entirely 

based on multiplicative decomposition and pointed out the role of intermediate 

configuration in a definition of the trial state via mere function evaluation of hyper-elastic 

stress-strain relations. Extensions of classical volume/displacement mixed methods within 

the framework of the multiplicative decomposition, originally introduced for plasticity 
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problems in [ 45] are presented in [ 46]. In recent years, computational approaches based 

on multiplicative decomposition have received considerable attention in the literature. 

Simo [ 4 7] exploited a strain-space version of the principle of maximum dissipation to 

obtain the associative flow rule consistent with multiplicative decomposition, and used a 

(covariant) backward method to derive a large strain version of the return mapping 

algorithms. Subsequently, Weber and Anand [48] and Eterovich and Bathe [49] used the 

multiplicative decomposition in conjunction with the logarithmic stored energy function 

and an exponential approximation to the flow rule cast in terms of full plastic deformation 

gradient. The multiplicative decomposition along with a logarithmic stored energy 

function is used in [50]. More recently, Moran et al. [51] addressed a number of 

computational aspects of multiplicative plasticity and presented explicit/implicit integration 

algorithms. Methods of convex analysis, again in the context of the multiplicative 

decomposition, are discussed in [52] 

The preceding survey, although by no means comprehensive, conveys the 

popularity gained in recent years by computational elasto-plasticity based on the 

multiplicative decomposition. Despite their success, these approaches involve 

modifications, and often a complete reformulation, of the standard closest-point 

algorithms of the small strain theory. From a practical stand-point the implication is that 

the implementation of classical models needs to be considered on a case-by-case basis in 

the large strain regime. 

In a later study, Simo [20] proposed a state-of-the-art algorithm based on 

multiplicative decomposition of the deformation gradient, as suggested by Lee [ 53 ], 
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Mandel [15] and others. The appeal of his formulation is that: the closest-point projection 

algorithm of any classical simple-surface or multi-surface model of small strain plasticity 

carries over to the large deformation context without modification. In particular, the 

algorithmic tangent moduli of small strain theory remain unchanged while introducing a 

further simplification: the closest-point projection algorithm is now formulated in principal 

(Kirchhoff) stresses. For the static problem, the proposed algorithm preserves exactly 

plastic volume changes if the yield criterion is pressure insensitive. For dynamic problems, 

Simo [20] presented a class of time-stepping algorithms which inherits exactly the 

conservation laws of total linear and angular momentum. Simo' s method is adopted with 

success in some recent works [39,54,55] for formulating nonlinear plasticity model in 

large deformation context. 

Present study has followed the above-mentioned theory [20] of multiplicative 

decomposition to derive explicit expressions of consistent tangent moduli for the proposed 

elasto-plastic and viscoplastic constitutive models (see Chapters 5 and 6). 



CHAPTER3 
THEORY OF MIXTURES 

3 .1 Basic Theory 

The conceptual model of a multiphase continua is based on the phenomenological 

behavior of each phase rather than particulate nature and the microscopic origin of the 

phenomenon involved. In other words, each phase (or constituent) enters through its 

average properties obtained as if the particles were smeared out in space. In order to be 

able to derive multiphase field and constitutive equations for such a medium, a technique 

for obtaining local average quantities is therefore necessary. Furthermore the basic 

kinematics and balanced equations for each phase and for the mixture as a whole must be 

defined. In following sections (3.2 to 3.4) general kinematics and balance laws are derived 

for a multiphase (n-phase) continuum allowing for the selection of the constitutive 

relations to be defined according to the particular phases that composes the mixture. For 

simplicity, it is assumed that phases are non-interacting and non-polar. 

3 .2 Kinematics 

A mixture can be viewed as a superposition of n single materials each of which 

may be regarded as a continuum. It is assumed that at any time t each place x of a mixture 

is occupied simultaneously by n different particles: x1, X2
, . ... , :xn. As in single-phase 

12 
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theory, a fixed but otherwise arbitrary reference configuration and a motion are assigned 

to each phase [26] as 

V a=l ... n, (3 .1) 

Figure 3 .1 Geometric representation of kinematics for a two-phase mixture 

where xa denotes the position of a phase in its reference configuration, and x is the spatial 

position occupied at the time t by the particle labeled xa. The function <l>~ in (3 .1) is 

called the deformation function for a phase at time t. In classical continuum theory <l> ~ is 

assumed invertible, and thus 
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V a= 1. .. n. (3.2) 

The invertibility of the deformation function ensures that a particle at X11 cannot occupy 

two spatial positions at a given time and that two particles of a phase with positions 

Xf and X~ cannot occupy the same spatial position. Figure 3 .1 shows geometrical 

representation of (3. 1) in Cartesian coordinate system E R3
. 

The velocity and acceleration of X11 at time t are obtained from Equation (3 .1) by 

time differentiation, viz. 

a. a.( ) Da.() -a. 
V = V x, t = Dt X = X ; 

aa = aa(x, t) = ~ (va )= ita, 

(3.3) 

where a superimposed dot indicates differentiation with respect to time holding X11 fixed 

(i.e., the material derivative following the motion of a phase). Material time derivative 

may be computed from spatial description using the following definition 

Da o 
-(•) = -(• )+ va •grad(•). 
Dt ot 

(3.4a) 

Material time derivative of a volume integral can be expressed as 

(3.4b) 

See [56] for proof of the identities (3.4a), (3.4b). Here, and in the following, grad and 

GRAD are used to denote spatial and material derivatives, respectively. The deformation 

gradient for X11 at time t is defined by 
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(3 .5) 

and the velocity gradient is defined by 

(3 .6) 

3.3 Average Quantities 

An important assumption in the theory of mixtures is that the phases of a mixture 

are allowed to occupy common portions of a physical space. Then each spatial position x 

in a mixture is occupied by n elements, one from each phase (see Figure 3.1 for n = 2). To 

address this assumption one needs to define average quantities. 

Average quantities are obtained by integrating microscopic quantities over an 

averaging volume or area. In the macroscopic field, the averaging volume represents a 

physical point, denoted by dV. Similarly, the averaging area dA, represents and 

characterizes a physical point on the surface of dV, and is an infinitesimal element of area 

in the macroscopic field. The part of dV occupied by the a phase is denoted by dV1, and 

the volume fraction na of the a phase is the fraction of dV occupied by the a phase 

defined by 

dVa 
na =na(x t)=--

' dV ' 
(3 .7) 

where na is constrained by L n ex = 1 and O :$; na :$; 1. Similarly, the part of dA lying in the 
ex 

a phase is denoted by dA a, and the areal fraction is defined by 
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-a -a( ) dAa n =n x t =--. 
' dA 

Again, L n a. = 1 and O ~ na. ~ 1. It is assumed in the following that the identity 
a, 

(3.8) 

A macroscopic average mass density function, pa is associated with each phase and 

is defined as the volume average of the microscopic density function, Pa . 

(3.9) 

where du is the microscopic volume element. The intrinsic volume average mass density is 

defined as 

-a 1 f 1 a p =-- aPadu=-p . 
dVa dV na 

(3.10) 

If the mass density of the a phase is microscopically constant the intrinsic volume average 

mass density equals to the microscopic mass density, i.e., pa= Pa and thus pa= napa. 

The mass density p of the mixture is defined as 

p=p(x,t)= LPa, (3.11) 

a 

and the volume-average velocity v for the mixture is defined as 

(3.12) 
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Following the similar averaging approach, a macroscopic partial stress vector ta may be 

defined as 

a. I f t = - a. ta.da, 
dA dA 

(3 .13) 

where da is microscopic area element. ta denotes the intrinsic stress vector of a. phase, 

3. 4 Balance Laws 

Once kinematics and local average quantities of a mixture are derived, one may 

postulate the laws of balance based on the theory of mixture [26] which must be satisfied 

irrespective of constitutive relations. Phases are understood to be material elements, which 

are open systems on a local state. Accordingly, local balance relations are derived for each 

individual phase. The equations are obtained in spatial configuration by applying the 

fundamental laws of mechanics: balance of mass, balance of linear momentum, balance of 

angular momentum, and the first and second laws of thermodynamics. 

For consistency in notations, in the derivation of balance laws and in the following 

thereafter, spatial ( deformed) configuration is represented by domain n, bounded by 

surfacer while material (undeformed) configuration is represented by domain 8, bounded 

by surface 88. 
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3.4.1 Balance ofMass 

The balance of mass can be expressed as "The time rate of mass in a fixed region in 

space n is equal to the time rate of mass flowing through the surface r that encloses n." 

In equation form 

f ap d!l = -J pv · n dr 
nat r ' 

where n is the unit outward normal to the surfacer, vis the flow velocity. 

(3.14) 

For illustration, mass flow through a control cube (oxxoyxoz) in Cartesian 

coordinate space E R3 is considered in Figure 3 .2. Surface areas normal to the flow 

components along coordinate axes are rx = oyoz, ry = oxoz, rz = oxoy. 

z 
p~ v:+~n~a0z 

I -- - ------- - - - - -

Pav;_ Ayn" 8q, I 

/ 
X 

Figure 3.2 Balance of mass: flow through a control volume 
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For the cube (3 . 15) can be written as, 

At {~av~+Axna - PaY~_Axna ]oy.Sz + ~av~+Ayna -pav~-Ayna] 6x6z 

+~av~+Azna -pa v~_Azna ]}ox.Sy= Padvalt+At -padval, 
(3 .15) 

Dividing by the volume dV = oxoyoz and ~t, then upon rearrangement (3 .16) can be 

written as 

(3 .16) 

(3 .16) is the localized form of balance of mass for a phase. 

3.4.2 Balance ofLinear Momentum 

In order to establish the balance of momentum laws for each a phase, one needs to 

consider the forces acting on the a phase within the region n such as drag forces, body 

forces or gravity forces, as well as, the effect on the a phase of the mixture outside the 

region n. This effect is accounted for by introducing partial stress vector ta, defined in 

(3.13). Now, let aa be the Cauchy partial stress tensors (21-26] and n denotes the unit 

normal vector to the surfacer. aa is related to ta by the relation ta = aa • n. 

The first Euler equation postulates that "The rate of change of the total momentum 

of a given mass is equal to the vector sum of all the external forces acting on the mass." In 

equation form 

(3.17) 
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g is the vector of gravity acceleration, pa. is the momentum supply for the a. phase from 

the rest of the mixture due to other interaction effects, e.g., relative motion of the phases. 

pa. is subject to Ip a. = 0. 
a. 

From divergence theorem 

Substitution of (3 .18) in (3 .17) results in 

(3 .18) 

which simplifies to the local version of the balance of linear momentum equations for 

individual phase as 

(3 .20) 

3. 4. 3 Balance of Angular Momentum 

The principle ofbalance of moment of momentum states that the material rate of 

change of moment of momentum of a body about a fixed point Xo, is equal to the resultant 

moment acting on the body around that point. 

The moment of momentum for a. phase is defined as 

(3 .21) 

r = vector of moment arm= x - :xo. Making use of (3 .17) material derivative of (3 .21) can 

be written in the form 
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(3 .22) 

From divergence theorem 

(3 .23) 

Substitution of (3 . 23) in (3. 22) yields 

(3 .24) 

Local form of (3 .24) results 

(3.25) 

For cases of non-polar phases partial stress tenor, cra are symmetric since there is no 

supply of moment of momentum (i.e., antisymmetric part of crais zero). 

3.4.4 Balance ofEnergy 

Principle of balance of energy or the first law of thermodynamics states that the 

material rate of change of internal energy in a body is equal to the resultant deformation 

power acting in the body plus the rate of heat added to the body. 

The internal energy in the body for a phase may be defined as 

(3 .26) 
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where ea represents internal energy density for a phase. Assuming no supply of energy 

due to interaction, e.g., chemical interaction within the phases material rate of change of 

if can be decomposed into following components 

where pa = Mechanical energy due to deformation of a phase 

K1' = Kinetic energy of a phase 

(3.27) 

aa = Thermal energy of a phase due to heat generation within the domain n and 

heat flow across the boundary dr. 

Material rates of energies for a phase can be expressed as follows: 

(3.28a) 

(3 .28b) 

(3.28c) 

1-F is the heat generation per unit mass for the a phase, and qa represents the heat flux 

vector associated with each phase. Substituting (3 .28) in (3 .27), one obtains for a phase 

the following expression 
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Da 1 _r -paea dO= r pag · vadn+ r pa ·Vadn+J cra : Va ®ndr 
Dt Jn2 Jo Jo r 

+ ! Jn ~ pava · va dQ + JrG pava • va )( va • n )dr (3.29) 

+ fopaHa dO-frqa . ndr. 

3. 4. 5 Entropy Inequality 

Entropy inequality or the second law of thermodynamics puts limit on the direction of 

such processes where thermal phenomenon are involved, permitting energy transfer to occur 

spontaneously only in certain preferred directions. The limitation may be expressed 

mathematically as an inequality stating that the intrinsic entropy production of the entire 

mixture is always nonnegative and is positive for an irreversible process. In other words the 

material rate of change of the entropy increase is always higher or to that of the entropy due 

to heat transfer. 

The entropy density for the entire mixture, 11 can be defined as 

(3 .30) 

11a is the entropy density for a phase. Entropy increase for the entire mixture results 

fop11dn = Jn LPa,,a dO. (3 .31) 

a 

Assigning to each phase a temperature ea, given by a positive-valued function, the second 

law of thermodynamics may be expressed as 

(3 .32) 
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1-F, qa are defined in (3.28c). Using (3.4b), divergence theorem and balance of mass 

(3.16), material time derivative of J 
0

pa11a d!l can be derived as 

~: faPexl]exdn =fa{! (Pexllex )+ di+exl]exVex ]}dn 

= fa { l]ex [ ! pex + div(pexvex)] + pex( ! llex + grad11ex •vex) }dn (3.33) 

= faPex ~ex dO. 

Substitution of (3 .33) in (3.32) results 

Localization of (3 . 3 4) yields 

(3 .35) 

Introducing the Helmholtz free energy function for a phase, 'Va defined by 

(3.36) 

one can write 

(3.37) 

Substituting (3 .37) in (3 .35), localized form of entropy inequality can be written as 

a(aea O\Va a ooa] a a a . [ I a] p ------11 -- -p H +0 div -q ~O. 
at at at ea 

(3.38) 
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3. 5 Balance Laws for Saturated Soil 

Balance laws of saturated soil medium are special case of generalized balance laws 

of n-phase continuum considering n = 2 (solid and fluid phases). Following the derivations 

in Section 3 .4, necessary balance laws for soil-water mixture are deduced in this section. 

Motions of solid and fluid phases are considered separately. 

3.5.1 Balance ofMass 

Fallowing (3 .16), localized form of balance of mass for solid and fluid phases can 

be written, respectively, as 

(3 .39a) 

div( n w Pw v w) + ! ( n w Pw) = 0 . (3.39b) 

Adding (3 .39a) and (3 .39b) gives the conservation of mass for the soil-water mixture as 

ap + div{pv) = 0, 
at 

where v is the volume-average velocity, defined in (3 .12). 

3.5.2 Balance ofLinear Momentum 

(3.40) 

In the absence of inertia forces balance laws of linear momentum for solid and fluid 

phases can be written from (3 .17) as follows: 

(3.41a) 

(3.41b) 
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Since p s and p w are the internal forces which naturally will not affect the soil-

water mixture as a whole, ps + p w = 0, i.e., the seepage force exerted by the fluid on the 

solid matrix is the negative of the reactive force exerted by the solid matrix on the fluid . 

Consequently, the sum of (3 .41a) and (3 .41b) results in 

(3.42) 

cr is the Cauchy total stress tensor, cr = crs + er w. 

Now, let pw and ps be the (non-symmetric) first Piola-Kirchhoff partial stress 

tensors arising from the fluid and intergranular stresses, respectively. Also, let N denote 

the unit normal vector to the surface 88 of the undeformed region B. The tensor P w is 

defined such that P w • N represents the resultant force exerted by the fluid per unit area of 

the solid matrix in the undeformed configuration. Similarly, the product ps · N is the 

resultant net force exerted by the individual grains (which may include the partial effects of 

fluid pressures) over the same undeformed reference area. By the additive decomposition 

of the Cauchy total stress tensors, we obtain a similar expression for the first Piola-

Kirchhoff total stress tensor P 

(3.43) 

where P 8 = Jcr 8 
• F-t and P 8 = Jcr 8 

• F-t are the first Piola-Kirchhoff partial stress 

tensors arising from the solid and fluid stresses, respectively, and 

J = det(F); 
ax F=-· 
ax' 

:x=X+u. (3.44) 
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In (3. 44 ), J is the Jacobian, F is deformation gradient, X are the coordinates of a 

point X in undeformed configuration, u is the macroscopic displacement field of the solid 

phase, x are the spatial coordinates of point X. 

P can also be decomposed as 

~ pw 
P=P+-w' n 

(3.45) 

where P is the first Piela-Kirchhoff effective stress tensor, and ( P w /n j -N represents the 

resultant force exerted by the fluid per unit area of void in the undeformed configuration. 

P and P' are related by the equation 

(3.46) 

An integral equation similar to (3 .42) can be developed in terms of the tensor P. 

With reference to the undeformed configuration, (3.42) can be written in the form 

(3 .47) 

Po= Jp is a pull-back mass density of the soil-water mixture and g is the vector of gravity 

accelerations. 

It is very important to note that p0 is not a constant quantity. Figure 3.3 would 

explain the scenario. In Figure 3.3, the fluid now occupying the void in a soil at a point 

ct>t(X) may not necessarily be the same fluid material that occupied the same void at a 

reference point X in the undeformed region B. Mathematically, ct>t(X) = ct>t(Y), where ct>t(Y) 

is the spatial configuration of the fluid phase whose reference configuration is at Y. 
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y 

Figure 3.3 Balance of mass: total mass of material point Xis not conserved in <l>t(X) 

Notice that Y does not necessarily have to be in 8. Likewise, fluid phase of material point 

X, Xw might not necessarily be present in the spatial configuration <l>t(X). Hence, Po does 

not necessarily represents the true mass-density in 8 of the soil mass which now occupies 

the volume <l>t(8), since fluid can migrate into or out of the soil matrix during the motion. 

In other words, the total mass of the soil-water mixture in 8 is not necessarily conserved 

in <l>t(8). 

A simple relationship analysis in the following would demonstrate the effects of 

diffusion on mass densities. Let n'; (X, t = 0) be the initial porosity of the point X in 8 . 

Then, the initial volume of the voids in an elementary volume dV is n0 dV, while the 
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initial volume of the solid region is (1- n0 )dv. As the soil matrix deforms, its volume 

changes to dv = J dV. Now, assume the solid phase is incompressible. Since u is the 

displacement field of the solid phase, its volume is conserved at (1- n'({) dV in dv, while 

the volume of the voids changes to dv - (1 - n O )dv. Consequently the porosity varies 

according to 

w _ Jdv-(1-n'({ )dv _ ( w) _ 1 
n - JdV -1- 1-n0 J . (3.48) 

Hence, the total mass density and the porosity of soil vary with deformation through the 

Jacobian J. 

3.5.3 Balance ofEnergy 

Ignoring kinetic energy and non-mechanical power, and assuming balance of 

momentum and balance of mass hold, (3 .29) can be simplified for balance of energy of 

a phase as 

The localized version of balance of energy can be derived in the following fashion. 

Consider the left-hand side of (3.49), for example. Following the derivation of (3 .33), one 

can reduce 

(3 .50) 
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since grad ea= 0. Using divergence theorem and localized version of balance of linear 

momentum (3 .20), one can reduce right-hand side of (3 .49) as 

fo(pag+pa} vadn+ fraa: va ®ndr 

= -J
0

divaa · vadn+ fo[ divaa • Va +aa : gradva ]dn 

= foaa : la dO= foaa : da dO. 

(3 .51) 

la is defined in (3 .6), da = Sym(la). Since aa is symmetric, aa : la= aa: da. Substituting 

(3. 50) and (3 . 51) in (3. 49), localized version of balance of energy for a phase can .be 

written as 

(3.52) 

Corresponding localization for the saturated soil media takes the form 

(3 .53) 

where e is the rate of internal energy for the soil-water mixture obtained from the volume 

average 

..:.. pses+pwew 
e=----- (3 .54) 

p 

It is often convenient to describe the balance of energy in the material picture 

because the domain of integration of the functions remains fixed. To this end, one makes 

use of the following transformation. Let the right leg of the tensor P be pushed forward by 

the configuration <f>t. The result is the Kirchhoff total stress tensor 'i , which differs from 

the Cauchy total stress tensor a by the factor J, i.e., 

~ 1~ P~ Ft 't= a= .. (3.55) 



31 

'i can be decomposed into solid and fluid counterparts in any of the following ways 

(3 .56) 

't is Kirchhoff effective stress, 0 is Kirchhoff pore water pressure ( compression positive), 1 

is the second order identity tensor. Now, pulling back the left leg of P by the inverse 

motion (<l>t)"1
, one obtains symmetric S, the second Piola-Kirchhoff total stress tensor 

such as 

~s - F-1 P~ - F-1 ~ F-t - JF-1 ~ F-t - . - ·'t· - ·O'· . (3 .57) 

Following (3.56) and (3.57), additive decomposition of Scan be written as 

(3 .58) 

where Sis the second Piola-Kirchhoff effective stress tensor and C is the right Cauchy

Green tensor given explicitly by 

(3.59) 

F is defined in (3 .44). 

Let x = <f>(X, t), Ea(X, t) = ea(x, t). If one multiplies the localized balance of energy 

(3.52) by J, and uses the porosity expression (3.48), one obtains the following expression 

for the balance of energy for the solid and fluid phases in localized material form 

PsniEs =-rs :ds = ~ss :C; 

Pw{I-nt)Ew =~w :dw = ~Sw :Cw . 
(3.60) 
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Balance of energy for the soil-water mixture in the material picture is now given by 

...:... 1 · 1 · JpE ='ts : ds +'tw: dw = -Ss : C+-Sw: Cw, 
2 2 

(3 .61) 

Where E is obtained from the volume average 

s · s ( w Lw 
...:... PsnoE +Ps J -nO Jb 
E = ---------= e. 

Jp 
(3 .62) 

The quantity J p E is the mechanical power generated per unit reference volume of the 

soil-water mixture. (3.61) can be expressed in a more elegant form in terms of effective 

Kirchhoff stress and deformation of the solid phase as 

JpE = -r : d5, (3 .63) 

i.e., the sum of the mechanical powers of the partial stresses is equal to the mechanical 

power of the effective stresses with respect to the deformation of the solid matrix 

computed from its own motion. 

Proof of(3.63) is given in section A.2. (3.63) states that total mechanical power in 

soil-water mixture is absorbed by the energy rate 't: d8
, and that the pore pressure tensor 

'tw / nw in (3.56) performs no work. It is obvious from the fact that fluid is assumed 

incompressible and has no shear strength. By virtue of these assumptions, fluid cannot 

store volumetric nor deviatoric energy, i.e., it has no mechanical power. 

3. 5. 4 Entropy Inequality 

Ignoring non-mechanical power and kinetic energy production, the localized form 

of entropy inequality or the second law of thermodynamics (3 .38) can be simplified as 



33 

(3 .64) 

In case of soil-water mixture (3 .64) takes the form 

(3.65) 

e is defined in (3.54). Similarly, 'V is the rate of free energy for the soil-water mixture 

defined as 

~ Ps\Vs+Pw\Vw 
'tf=-----

p 
(3.66) 

Let x = cp(X, t), 'Pa(X, t) = o/a(x, t) . Similar to (3 .62), volume average rate of free energy 

'P can be expressed as 

P n s q, s + p (J _ n w )'P w _. s O s 0 
'P = --------= o/. 

Jp 
(3.67) 

From (3. 62), (3. 65), and (3. 67) localized version of entropy inequality for soil-water 

mixture in undeformed configuration B can be written as 

. . 
JpE - Jp'P ~ 0. (3.68) 

Jp'P is the power generated from free energy. Jp'P = d 'P /dt; 'P denotes the stored 

energy function, or free energy, per unit reference volume of soil matrix. Substituting 

(3.63), one can rewrite (3 .68) as 

d'P "t:ds--~O. 
dt 

(3.69) 



CHAPTER4 
VARIATIONAL EQUATIONS, CONSTITUTIVE THEORIES 

4.1 Boundary Value Problem 

In order to formulate a well-defined boundary value problem for consolidation 

phenomenon, one needs to consider a problem domain with a set of suitable boundary 

conditions. Let B c Rnsd (nsd =no. of spatial dimensions) be an open set in material 

configuration (time to) with piecewise smooth boundary aa. aa is assumed to admit the 

following decomposition 

{
aad u aat = aa, 
aBd naBt = 0 

' 

{
aa0 u aah = aa, 
aB9 naBh = 0. 

(4.la) 

(4. lb) 

aad, aat, aa0, aah are open sets in aa. aad and aat represent the portions of aa with 

prescribed displacement and tractions, respectively while aa0 and aah represent portions 

with prescribed fluid potential and volumetric flow rate, respectively. 0 is a null set. 

In spatial description at any time tE[tn, tn+il, reference domain B will be mapped 

to the configuration n = ~(8) c Rnsd with boundary r = ~(aB). Similar to (4.1), 

decomposition of boundary r will now take the following form 

{

rd urt = r, 

rd nrt =0 
' 
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(4.2a) 
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{
re urh = r, 
re nrh =0. 

Figure 4 .1 Prescribed boundary conditions of spatial domain n 

(4.2b) 

shows decomposition of domain boundary in spatial configuration. Having outlined the 

domain boundary, one would require strong form of consolidation phenomenon with 

appropriate boundary conditions to define a well-posed mathematical problem. 

4.2 Strong Form 

Strong form or field equations of consolidation problem emanate from balance 

laws. Equation of equilibrium is derived from balance of linear momentum. Localization 

of (3 . 4 7) results in the following statement of stress equilibrium in material description 
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(4.3) 

DIV is the material divergence operator. (4.3) is subject to the following boundary 

conditions: the motion <t> is prescribed to be <t>d on 88d c 88, and the traction P . N = tis 

prescribed on the remainder 881; and subject further to the constraint imposed by the 

balance of mass. Push-forward of (4.3) in spatial configuration n can be obtained as 

div -=t + Jpg = 0, (4.4) 

since grad J = 0 ( see Section A.1 ). 

Equation of flow continuity is derived from the balance of mass. It is assumed in 

this study that both the fluid and solid phases are homogeneous and incompressible, i.e., 

8(pa)/8t = O; grad Pa= 0 (see Section A.1). Using these assumptions, Pa can be factored 

out and eliminated from (3 .16), resulting an expression 

(4.5) 

Adding (4.5) over the phases yields 

(4.6) 

For future reference, it is useful to define a superficial, or Darcy, velocity as 

(4.7) 

The vector v represents the relative volumetric rate of flow of fluid per unit area of 

deforming soil mass in spatial configuration n = <f>t(8). v is related to fluid potential IT 

by constitutive relationship. See Section 4.5 for discussion. For simplicity of notation, v 

will be used for solid phase velocity, V
5 in subsequent discussion. Substituting (4.7) in 

( 4. 6), field equation of flow continuity can be obtained in the spatial reference as 
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div v + div v = 0. (4.8) 

(4.8) is subject to the following boundary conditions: fluid potential II is prescribed to be 

IT c 4>t(888
), and the volumetric flow is v • n = -q on the remainder 4>t(8Bh); and subject 

further to the constraint imposed by the conservation of momentum. Here n is the 

outward unit normal to the deformed surface 4>t(8B) and q is positive when fluid is being 

supplied to the system. In material description, (4.8) takes the following from 

DIVV +DIVV = 0. (4.9) 

V, V are pull-back velocities in undeformed, reference configuration B. V, V can be 

obtained through Piola transform of v, v such that, V = JF-1 
• v, V = JF-1 

• v . Let 

V • N = -Q be the prescribed volumetric rate of flow per unit undeformed area across the 

boundary aah, N being outward unit normal to the undeformed surface aB. Q maintains 

the same sense of direction as q. 

4.3 Weak Form 

In order to establish weak form of the boundary value problem, one needs to 

define following spaces in accordance with the standard arguments of variational 

principles. Let the space of admissible configurations be 

Ccj, = {ci> : 8 ➔ R nsd lcl>i E H1, cl>= cl>d on asd} (4.10) 

and the space of admissible variations be 

Vcj, ={Tl : 8 ➔ R nsd llli E H 1
, TJ = 0 on asd }. (4.11) 
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where Tl is an admissible virtual displacement field, H1 is the usual Sobolev space of 

functions of degree one. Further, let G : C+ x V+ ➔ R denote the weak form of 

equilibrium equation (4.8) in material description. 

G(<t,,II, 11) = f 8 (GRAD11: P- Poll· g)dV - f 0
8 

Tl· t dA. (4.12) 

The balance of linear momentum is given by the condition G( <t,, II, Tl) = 0. The formal 

statement of (4.12) is: Find 4> E C+ such that G(<t>, II, Tl)= 0 for all TIE V+. Using (3.55) 

and (3.56), one can rewrite an equivalent expression of G of (4.12) in the same 

undeformed, material configuration with the integrands evaluated in spatial description as 

follows: 

Now, let the space of potentials in spatial reference be 

Ce ={n:,l,i(B)➔ RnsdlneH1, Il=Ile onr8 } {4.14) 

and the corresponding space of variations be 

Va= {\JI: ,j,t(B) ➔ R nsd IIJI e H1, \JI= 0 on r8 }, (4.15) 

where \j/ represents an arbitrary virtual pore pressure field . Further, let H : Ca x Va➔ R 

denotes the weak form of equation of continuity (4.8) in spatial description. 

H(<t,,II, \j/) = f n (\j/divv - grad \j/ · v)dn- fr \j/ · q dr. (4.16) 

One can show that the balance of mass is given by the condition H(<t>, II, \j/) = 0. Formal 

statement of weak form ( 4 .16) will translate as: Find II E Ca such that H( 4>, II, \j/) = 0 for 

all admissible \j/ E Va. 



39 

The domain of integration of H( <t>, II, \V) of ( 4 .16) can be of evaluated quite easily 

in undeformed, material configuration by introducing the Jacobian J. In doing so, one 

would require the following identity 

j = J div v. ( 4 .17) 

j is the time derivative of the J. See Section A. 4 for proof of the identity ( 4 .17). 

Substituting (4.17) in ( 4.16) yields 

H(<f>,Il, 'V) = f 
8 

('Vj - grad \V · .Tv) dV - f
08 

\VQ dA . (4.18) 

Relation of area transformation of flow rate, q dr = Q dA ( see Section A. 4) is employed 

in deriving (4.18). H(<f>,Il, 'V) in material description takes the form 

(4.19) 

(4.18) and (4.19) are equivalent expressions since GRAD \V • V = grad \V • Jv. 

Presence of rate term j in the variational equation H( <t>, II, \V) makes it 

mathematically awkward. One can eliminate rate terms altogether by semi-discretization 

in time domain, via finite difference, for example. Following is a brief discussion on time 

descretization scheme for consolidation problems. 

4.4 Time Descretization Scheme 

The ordinary differential equation associated with the problem of consolidation is 

generally stiff. A physical insight provides an explanation: points near drainage 

boundaries consolidate many times faster than do points at remote places. The spectrum 

of eigenvalues associated with the consolidation equation is therefore wide. 
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The general linear k-step method for approximating the solution of a system of 

ordinary differential equations of the first order, 

d=f(d,t), d(O)=d0 , t~O (4.20) 

IS 

k 

L(a.mdn+1-m +AtPmfn+1-m)= 0, (4.21) 
m=O 

where At= tn+1-tn and O.m, Pm are unknown coefficients. A linear multistep (LMS) method 

is explicit if Po = 0, otherwise, it is implicit. Implicit method is preferred in this study 

because it has a larger region of stability than the explicit methods, and it is compatible 

with the stress point algorithms used in the development of constitutive models ( see 

Chapters 5 and 6). As a result, Po* 0. (4.21) has 2k + 2 unknown coefficients. 

An effective technique for solving stiff differential equation is provided by so

called stiffly stable methods proposed by Gear [58-61]. These k-step methods of order k 

are based on backward differentiation formulas (BDF) derived by setting Po* 0, P1 = P2 

= ... pk= 0. The resulting BDF approximation is 

k 

L(a.mdn+1-m)+ AtPofn+l = 0 (4.22) 

m=O 

with k + 1 unknown coefficients which one can choose by forcing a k-step method to 

satisfy an accuracy of order k. There is an arbitrary normalizing factor so that one can set 

a.o = -1.0, leaving k unknowns. (4.22) then takes the form 

(4.23) 
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See [5] for determination of coefficients for BDF-k scheme. ( 4 .23) can be made more 

generalized by introducing one-step recurrence relation for f such that 

(4.24) 

0 ~ p ~ 1 is the parameter of generalized trapezoidal method. Some of the well-known 

families of fl-methods are presented in the following. 

Table 4 .1 Generalized trapezoidal method 

0 
1/2 
1 

Method 
Forward Euler 
Crank-Nicolson 
Backward Difference 

Unconditional stability is achieved for any ~t if P ~ 1/2. In general, the nonlinear 

responses of interest are dominated by low-frequency component of the system, but high 

frequencies also enter into the solution because of the numerical approximation. It is 

known that the backward difference scheme (P = 1.0) can damp such high-frequency 

components but at the expense of accuracy. On the other hand, Crank-Nicholson scheme 

(P = 1/2) possesses a second order accuracy but lacks the numerical dissipation of the 

backward difference scheme. It was shown in [ 61] that the variable step size, variable 

order BDF methods are convergent and unconditionally stable for ordinary differential 

equations. 

Following ( 4.24), one can obtain time-integrated variational forms of 

H 6t ( <t>, II, 'V) given as 
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Hllt(<l>,Il,\j/)= f ~ (In+l - ia.min+1-mJdV 
s Llt m=l 

- Po f s ~ {grad \JI · Jv)n+l + (1-p)(grad \j/ · Jv)n] dV (4.25) 

-Pof [J3Qn+1 +(1-P)Qn] dA= 0, as 

Hllt (<!>,TI, 'V) = f ~ (1 n+l - ia.mJ n+l-mJdv 
s Llt m=l 

-Pofs~(GRAD\j/· v)n+l +(1-p)(GRAD\j/· v)n]dV (4.26) 

-Pof U3Qn+l +(1-P)Qn]dA=0. as 

(4.25) and (4.26) are obtained from (4.18) and (4.19), respectively. 

4.5 Large Deformation Plasticity Model for Soil Skeleton 

In this study, plasticity behavior of soil skeleton in large deformation is based on 

multiplicative decomposition of the deformation gradient, F [15, 16]. Let X be a 

macroscopic point containing a sufficient number of solid particles in the reference, 

undeformed configuration B, and x be the configuration ofX at some time t ~ 0, i.e., x = 

<l>t(X). Recall from (3.44), F = fJx/8X. x and X are coordinates ofx and X, respectively. 

The motion ofX produces both reversible as well as irreversible microstructural 

changes in the soil. Typical processes associated with reversible microstructural changes 

include elastic deformation and (for plate-like particles) elastic bending of the granules 

comprising the assembly. As xis unloaded, it moves to some intermediate, stress free 

configuration defined by the macroscopic point xu. Assuming that this intermediate 

configuration exists, the chain rule can be used to express F in the product form 
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(4.27) 

Jr= ox/8xu, FP = axu/8X. Figure 4.2 presents the schematic of the multiplicative 

decomposition ofF. 

Reference 
Configuration 

X 
Spatial 
Configuration 

Intermediate 
Configuration 

Figure 4 .2 Illustration of multiplicative decomposition of the deformation gradient 

Ignoring non-mechanical power and kinetic energy production, balance of energy 

and the use of the second law of thermodynamics lead to the following reduced 

dissipation inequality 

d'P 1 · d'P D='t:d--=-S:C--~O 
dt 2 dt ' 

(4.28) 
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where d = Sym(I) is the rate of deformation tensor, I= F • F-1 is the overall spatial 

velocity gradient, and 'Vis the stored energy function. Clearly, d'P/dt = JpE and D = 0 

for an elastic material (see (3 .63)). 

The form of the stored energy function 'V determines the constitutive 

characteristics of the soil. For isothermal, elastic processes, 'V depends only on X and C if 

it is to satisfy the axiom of material and frame indifference. Equally well one can say that 

for isothermal, elastic processes 'Vis a function ofX and elastic left Cauchy-Green 

tensor, be, provided that be satisfies an objective transformation. 

An elasto-plastic process requires a yield function, a hardening rule, and the 

imposition of consistency condition. Let f be the yield function defined as f ( -c, x) = 0. x 

E Rm is a suitable vector of m ~ 1 (stress-like) internal variables characterizing the 

hardening response of the soil. ~ E Rm is a vector of internal plastic variable (strain-like) 

conjugate toxin the sense that x = - o'P/8~ . From the framework set in (4.27), 'V takes 

the form 

(4.29) 

Now, consider the following time-derivative of'P 

(4.30) 

where £
0 

be is the Lie derivative of be. Inserting (4.30) in (4.28) and assuming isotropy in 

the sense that be and o'P/obe commute, the dissipation inequality can be expressed as 

( 
d'P e) d'P e ( 1 e e-1J o'P i (431) D= -c-2-·b :d+2-·b : --£ 0 b ·b --·",~O . . 
dbe dbe 2 8~ 



45 

The first term of ( 4. 31) yields the constitutive relationship 

(4.32) 

while the other terms yield, following the requirement / ( 't, x) = 0 and the postulate of 

maximum dissipation, 

i . 8/ 
":>=(j)-ax. (4.33) 

<i> and / satisfy the requirements of consistency conditions such that <i> ~ 0, / ~ 0, and <i> / 

= 0. Thus (4.33) defines the flow rule. (4.32) and (4.33) satisfy the reduced dissipation 

inequality of(4.28) even with the use of empirically derived hardening law. The flow rule 

( 4.33) possesses a number of important properties. In particular, it gives the correct 

evolution of plastic volume changes as the following observations reveal : 

(i) The total and elastic volume changes are given by J = det(F) > 0 and f = 

(det(bj)112 > 0, respectively. 

(ii) Let JP= det(FP). The rate of plastic volume change predicted by the (4.33)1 is 

given by the evolution equation 

_!{log JP)= tj>tr[
8!] 

dt 8t , 

which implies exact conservation of plastic volume for pressure insensitive yield 

conditions; i.e., if tr[8/ /at]= 0. 

The left Cauchy-Green tensor be can be decomposed spectrally into 

be= ±(A;_)2 m(A); 

A=l 

(4.34) 

(4.35) 
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where A.A is the elastic principle stretch corresponding to the principal direction n(A) . ® 

is a vector operator defined as (a®b)ij = aibj for any vectors a and b. Since 't and be 

commute, 't can be decomposed spectrally in the form 

3 

't= ~)3Am(A), (4.36) 
A=l 

where PA are the principal Kirchhoff effective stresses. 

By the assumption of frame indifference and isotropy, the free energy function 

can be expressed as symmetric function of the elastic principal stretches, i.e., 

EX =ln{A.~), A=l,2,3, (4.37) 

where el 's are principal elastic logarithmic stretches. Thus, the elastic constitutive 

equation (4.32) reduces to a scalar relationship between PA and el such that 

A - a'¥ . 
t-'A ---, 

&i 
A= 1,2,3, (4.38) 

In the elasto-plastic regime, the additional task of enforcing the consistency condition, 

/('t, x) = 0, is done incrementally. In the first step, plastic flow is frozen and an elastic 

assumption ignoring the constraints imposed by yield criterion leads to elastic a trial 

elastic state. 

f = (.f· , ~ = 0, (4.39) 

where f = ox/axn is the deformation gradient evaluated relative to the converged 

configuration <l>t n (B). In the second step, trial state is held fixed and plastic relaxation is 

introduced. The algorithm is given explicitly 
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r = o· 
' 

i, e = -2,n of . be. 
't' 8t ' 

subject to <i> ~ 0, f -5: 0, and <i> f = 0. 

;. _ . of 
i..;,-Y ax' ( 4.40) 

Incremental counterparts of the evolution equations (4.39) and (4.40) are obtained 

from the so called product formula algorithm [62]. From (4.39), trial elastic left Cauchy

Green tensor is obtained in incremental form by freezing plastic flow as 

be, tr = f • b ~ • f 1; (4.41) 

where b~ and ~n are the respective values ofbe and l; at configuration <l>tn (B) . Similar 

to (4.27), be,tr can be decomposed spectrally in the form 

m tr(A) = 0 tr(A) ® 0 tr(A). (4.42) 

Introducing the product formula algorithm into the plastic flow equation then yields 

(4.43) 

where Acp is an incremental consistency parameter that satisfies the conditions Acp ~ 0, f 

-5: 0, and Acp f = 0. 

Now, by invoking isotropy one can conclude that there exists an equivalent 

function f = f{Pi,J3 2 ,P3,l;) such that 

3 
of="'"" ~m(A) 
m LJ of3 ' 

A=l A 

( 4.44) 

The function can then be used in (4.43), together with (4.35), to obtain 
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(4.45) 

Comparing spectral decomposition of be,tr in (4.42) and (4.45), one can conclude that 

( 4.46) states that the principle directions n<A) coincide with the trial principle directions 

nu{A)' and that the plastic relaxation equation takes place along the fixed axis defined by 

the trial elastic state. 

Finally, an additive form of the plastic relaxation equation is obtained by taking 

the natural logarithms of both sides of ( 4. 46)2. The result reads 

A= 1,2,3 . (4.39) 

( 4.39) represents a linear return mapping algorithm in the strain space defined by the 

elastic logarithmic principal stretches. In Kirchhoff effective stress space, a linear return 

mapping algorithm similar to that presented in [ 63] can be derived if one assumes an 

elasticity operator a.AB from the equation 

A= 1,2,3. (4.48) 

The result reads 

A= 1,2,3 . (4.49) 
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Similarity in form between the standard linear return maps of the infinitesimal theory and 

(4.48), (4.49) allows the algorithms for the infinitesimal theory to be preserved and 

exploited for finite deformation analysis, with the added simplification that calculations 

now takes place in the fixed principal stretch directions. 

4.6 Constitutive Law for Fluid Flow 

Similar to solid phase one needs to describe appropriate constitutive law for fluid 

phase. In this study flow is assumed laminar and generalized Darcy's law is employed to 

describe the constitutive relation between relative volumetric flow v of ( 4. 7) and fluid 

potential II. Linear constitutive equation is given as 

v = -k · grad II, (4.50) 

where k is the second-order permeability tensor and II is the fluid potential, defined in 

(4.14). The negative sign in (4.50) implies that fluid always flows in the direction of 

decreasing potential. Permeability k is an important soil parameter which depends on 

other material properties such as: particle size, void ratio, composition, fabric, degree of 

saturation [64]. For most practical purposes, k is assumed to be symmetric, positive

definite. 

For incompressible flow the potential II can be decomposed as 

II= Ile + II 9 · 
) (4.51) 

rr8 and Ile represent pressure and elevation counterparts, respectively. g is the gravity 

acceleration constant, 0 is Kirchhoff pore pressure as defined in (3 . 56). Taking spatial 

gradient of(4.51)1 and using (A.3), one obtains 
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grad TI= grade+!._ 
Jpwg g 

(4.52) 

Iflle is measured in the direction of gravity, gig takes a convenient form of {O, 1, O} Tin 

Cartesian space E R3
. Thus the variational equation ( 4 .18) for the volume conservation 

may be written as 

H(<t,,TI, 'V) = f 8 'V j dV + J
8

grad 'V • k •(grade+ J g)dv - {
38 

'VQdA. (4.53) 
Pwg g 



CHAPTERS 
HYPERELASTIC-PLASTIC MCC MODEL 

5 .1 Introduction 

Elasto-plastic models based on critical state formulations have been successful in 

describing many of the most important features of the mechanical behavior of soils such 

as hardening, softening and pressure sensitivity. The modified Cam-Clay (MCC) 

plasticity model of critical state soil mechanics [28] is one of the most widely used 

plasticity models because of its practicality and simplicity. As a result, MCC model is 

adopted in this study to simulate elasto-plastic response of phosphatic waste clay. Two 

important modifications are incorporated to the small strain version ofMCC to take into 

account large deformation effects. These modifications are hyperelasticity and 

bi logarithmic compressibility. 

Elasticity models are commonly incorporated into elasto-plastic constitutive 

models through a hypoelastic formulation. However, extension of a hypoelastic 

formulation to the case of nonlinear elastic soil response could result, in some cases, in 

conservative models [ 65]. In case of small strain formulation, the use of non-conservative 

elastic models consistent with critical state theory has been justified by the hypothesis of 

small deformation [66]. This argument is unacceptable in the large deformation regime 

particularly under conditions of cyclic loading where significant energy can either be 

extracted or dissipated from certain loading cycles. On the other hand, hyperelastic 

materials are those for which a stored energy function exists, and hence, are conservative. 

51 
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Nonlinear hyperelasticity model with a constant elastic shear modulus is used for large 

deformation Cam-Clay model in [67]. Though energy conservative, use of constant shear 

modulus can be erroneous since experimental evidence suggests that for soil elastic shear 

modulus does vary with effective volumetric stress [60, 68]. Consequently, a class of 

two-invariant stored energy functions [68] is employed in this study which includes 

pressure-dependent as well as constant elastic shear modulus for special case. A variable 

elastic shear modulus leads to fully coupled volumetric and deviatoric elastic responses. 

Another limitation in small strain formulation is the use of linear variation of the 

void ratio ( or specific volume) with logarithm of effective volumetric stress to describe 

the hardening response of the soil [28]. This assumption can be justified for small 

volumetric strain, which does not hold for large deformation regime. In large strain, 

linear void ratio - logarithm of effective stress variation can result in a physically 

meaningless solution such as the prediction of negative specific volume even at 

realistically low values of stresses. In this study, this limitation is addressed by 

incorporating bilogarithmic compressibility law, i.e., linear relationship between the 

logarithm of specific volume and the logarithm of effective volumetric stress as proposed 

in [69-71]. Advantages and generality ofbilogarithmic compressibility law are discussed 

in a following section. 

5.2 Hyperelastic Model 

The formation of hyperelasticity is based on the existence of a stored energy 

function 'I'= 'l'(&J, where Ee is the vector of elastic lograrithmic principal stretches. The 
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effective principal Kirchhoff stress vector J3 can be expressed in terms of'¥ (see (4.38)). 

Substituting (4.38), the elastic moduli ae E R3
x
3 can be expressed in tensor notation as 

e ap· a2'¥ a .. = __ l = ---. 
•J ae~ ae~ae~ 

J 1 J 

Assuming 'I'(ee )= 'I'(e~ ,E~ ), one can use the chain rule to expand (4.38) as 

ei ande: are the volumetric and deviatoric invariants ofee, respectively. 

where o = [l 1 If Since 

where n = ee/lleell, then (5.2) can be rewritten in the equivalent form 

~ = p6 +J¾qn = p6 +s, 

where 

8'¥ 1 
P=-=-A.l,· 

e 3.., ' 
&v 

a'¥ ~ q=-= -llsll; aee 2 s 
s = P- po. 

(5.1) 

(5 .2) 

(5.3) 

(5.4) 

(5 .5) 

(5.6) 

p and q are the mean normal stress and the deviatoric invariant of J3, respectively. s is the 

vector of deviatoric principal Kirchhoff stresses. 
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The elastic moduli tensor can be obtained by differentiating the stress equation 

( 5. 6) with respect to the corresponding strain components. In order to do that, one would 

need De = VV'I' ER 2x
2 , Hessian matrix of'!'. 

The first time-variation of stress invariants now takes the form 

(5 .8) 

Note that De is symmetric provided that the function 'V exists. If Df2 * 0, then the 

volumetric and deviatoric elastic responses couple, that is, an imposed volumetric strain 

produces a shearing stress response, and vice versa. The following section investigates 

the coupled elastic responses within the context of stored energy function developed 

specifically for cohesive soils. 

Consider a class of stored energy function of the form [68] 

(5.9) 

where e~0 = elastic volumetric strain corresponding to a mean normal stress of po; K = 

elastic compressibility index; andµ= elastic shear modulus defined by the expression 

(5.10) 
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µ contains a constant term µo and a term that varies with e~ through a constant 

coefficient a . If a = 0 and µo > 0, then the elasticity model is defined by a variable elastic 

bulk modulus and a constant elastic shear modulus. 

The following elastic constitutive equations can be derived from (5 .7) and (5 .9): 

where P = 1 + 3a (e: )
2 

/2K. 

-3 e q - µes, 

D e _ De -(3ae: J _ 3ap0e: (e~ - e~0 J 12 - 21 - -- p----exp --- . 
PK p K 

(5 .11) 

(5.12a) 

(5 .12b) 

(5.12c) 

An important feature of elastic soil behavior, presented in (5 .12a), is that the elastic bulk 

modulus K is a linear function of p. With a suitable selection of parameters, elastic shear 

modulusµ can be made constant or a linear function ofp (see (5.12b)). Since the 

coupling terms Df2 and Di1 can be nonzero for a -:t= 0, the elastic shear and volumetric 

responses are coupled for a general loading path. In extreme case, when µo = 0 and 

e: = ✓2K/3a; det(DJ = 0, i.e., De becomes singular. This situation arises when the 

stress ratio q/p reaches its maximum value of ✓3aK/2 [68]. 
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5. 3 Plasticity Model 

The essential ingredients of a plasticity model are a yield function, a flow rule and 

a hardening law. Two-invariant yield function ofMCC model [28] is given by the 

ellipsoid 

2 
f = /(p,q,pc) = q 

2 
+ p(p- Pc)= 0. 

M 
(5 .13) 

Here f is defined in the space of principal Kirchhoff stresses, f3 . Invariants p, q are given 

in ( 5. 6), Kirchhoff preconsolidation pressure Pc is a plastic state variable that describes 

the size off. Mis the constant slope of the critical state cone in the p-q plane. 

q 

Yield 
Surface 

p 

Pc 

Figure 5 .1 Yield surface of the MCC Model in p-q plane 

Hardening law and flow rule of MCC, appropriate for large strain formulation, are 

presented in the following. 
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5.4 Hardening Law 

In case of small strain, the growth of Pc is conventionally defined by a linear 

relationship between the void ratio e and the logarithm of Pc, or, equivalently, by a linear 

variation of the specific volume u = 1 + e with the logarithm of Pc for virgin loading (see 

Fig. 5.2a). Corresponding hardening law takes the form 

. . 
u ~Pc -=-A- , (5 .14) 

uo Pc 

where uo is the reference initial specific volume at a preconsolidation pressure pc0, and A 

is a constant compressibility index of the soil. Upon integration, the hardening law (5 .14) 

defines the following relationship between the specific volume u and the logarithm of Pc 

u ~ (Pc) -=l-11.ln - . 
Uo Pco 

(5.15) 

The limitations of this hardening law are generally well recognized, and include 

among others, that a negative void ratio can result even at realistically low values of 

preconsolidation pressure, and that the linear relationship is valid only over a narrow 

range of values of the effective volumetric stress. 

An alternative hardening law for finite volume changes, which appears to have 

been first proposed by Hashiguchi and Ueno [69], and later studied more extensively by 

Butterfield [70] and Hashiguchi [71 ], is of the form 

u = -11. Pc 
' 

(5 .16) 
u Pc 

where A is the appropriate compressibility soil index in the large deformation regime for 

virgin loading. A simple integration of (5 .16) yields the relationship 
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ln(~J = -Aln(Rf...J 
Uo Pco 

which indicates a linear variation ofln u with ln Pc (see Fig. 5.2b). 

u 

Uo ---
I 
I 
I 
I 
I 
I 
I 
I 

u ---~--------------------

Pea Pc 

ln u 

Uo ---
I 
I 
I 
I 
I 
I 
I 
I 

u ---~--------------------

Pea Pc 

(5.17) 

Figure 5.2a Unilogarithmic compressibility 
law 

Figure 5.2b Bilogarithmic compressibility 
law 

( 5 .17) can be also be written in the form 

~=(PcoJA 
uo Pc 

(5 .18) 

which implies that u ➔ 0 as Pc ➔ oo. Since practically one cannot have u < 1 (ore< 0), 

the bilogarithmic compressibility law is not without limitation either. However, 

Butterfield [70] shows from compression test data on natural soils, specifically soft clays, 

that this law is more accurate than the unilogarithmic compressibility equation over a 

wide range of values of effective volumetric stress. Furthermore, the value of Pc below 

which u ~ 1 (ore~ 0) is higher with the bilogarithmic compressibility law (see Fig. 5.3). 
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A simple inspection shows that in the limit of small strains, the natural volumetric 

strain ln(u/uo) = ln(l - Au/uo), where Au= uo - u, coincides with the natural volumetric 

strain Au/u0 of the infinitesimal theory. Thus, the bilogarithmic hardening law 

approaches the unilogarithmic law in the limit of small volumetric strains. However, 

large deformation analysis requires the use of natural, and not nominal, strains, and so 

(5.16) is more robust since it is useful both for small and large deformation analyses. In 

light of these desirable features, bilogarithmic law is adopted in the proposed model. 

u 

Uo ---

1.0 
I ---~--------------------
' I 
I 
I 
I 
I 
I 
I 

Pc0 

Eqn. (5.16) 

Eqn. (5.14) 

Pc 

Figure 5.3 Limit of validity: comparison between unilogarithmic and 
bilogarithmic compressibility laws 

In order to develop a hardening law appropriate for large strain plasticity model, 

one needs to exploit the properties of deformation gradient F. The product decomposition 

of the F given by (4.27) produces the identity 

(5.19) 
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where r = det(Fj and :r = det(FP). In the space of principal logarithmic stretch, 

logarithm of ( 5 .19) then yields 

ln J = ln J e + ln JP - e p 
⇒ Ev -Ev +Ev . 

In other words, the product decomposition ofF is equivalent to the additive 

decomposition of the natural strains (see Section A.3) . The rate form of (5.20) is 

j je jP 
-=-+-
J J J 

· -e ·P 
⇒ Ev =Ev +Ev. 

(5 .20) 

(5.21) 

j I J = u / u since J = u / u0 . u is the specific volume with a reference value uo in the 

undeformed configuration. Thus, the hardening law of ( 5 .16) can also be written as 

j _ u _ . e . p _ ~ Pc 
----Ev +Ev --1\,-

J u Pc 
(5 .22) 

Setting E: = 0, q = 0 and p = Pc in (5 .11) yields the following expressions for virgin 

isotropic loading: 

(5 .23a) 

. Po (E~ -E~o)-e Pc -e Pc = -exp --- Ev = -Ev. 
1( 1( 1( 

(5.23b) 

Substituting (5.23b) in (5.22) and simplifying, one can obtain the following hardening 

law expressed in terms of plastic component of the natural volumetric strain: 



Integration of (5 .24)1 produces 

Pc = 0ee; 
Pc 
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1 
0=-. 

A,-1( 

_ [0( P P )] _ [0( e, tr e )] Pc - Pc,n exp Ev - Ev,n - Pc,n exp Ev -Ev , 

(5 .24) 

(5 .25) 

where Pc.n and Ee n are the preconsolidation pressure and the plastic natural volumetric 
' 

strain at time t0 , respectively. Thus, the hardening law given by (5.16) offers a further 

computational advantage in that the evolution equation Pc can now be integrated exactly 

over a finite load increment. 

5. 5 Flow Rule 

Under the hypothesis of associative flow behavior, the integrated flow rule at any 

time t0 +1 in the space of logarithmic principal stretches takes the form (cf (4.47)) 

(5 .26) 

For simplicity of notations, in (5 .26) and in the following subscript (n + 1) is omitted; it is 

assumed that the unsubscripted variables are all reckoned with respect to time station t0 +1. 

Volumetric and deviatoric components of (5 .26) are as follows: 

e _ e, tr _ A /3 a f _!__ 
e - e ucpV-2 8q llsll" (5.27) 

In terms of unit vectors n, n tr (5.27)2 takes the form 

(5.28) 
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where E: = ✓21311 e II, E :, tr = ✓2/3lle tr II' n tr = e tr /lie tr II' n = e e /lie e 11 · Two useful 

identities, derived from the following assumptions, are: (i) from the assumption of 

associative flow rule, n = e e /lie e II = s/llsll. and (ii) from the assumption of convexity of 

the yield function, n = n tr. Exploiting these identities (5 .27) can be rewritten as 

(5 .29) 

subject to the conditions 

(5 .30) 

In the elastic regime /(ptr qtr p ) < 0 Arn= O· Ee = Ee,tr Ee= Ee,tr Plastic regime , , , C, n , 't' , V V , S S · 

is realized for the conditions: f (p tr, q tr, Pc n) > 0, Acp > 0. p tr and q tr are the predictor 
) 

values defined from ( 5. 6) as 

p tr = 8'¥~ e, tr); 
aee,tr 

V 

q tr = a'I'(e e, tr)_ 
aee, tr 

s 

(5 .31) 

In the elasto-plastic regime, (5.29) and (5.30) can be viewed as a system of simultaneous 

nonlinear equations in the elastic strain invariants and the consistency parameter Acp, 

represented by residual vector rand vector of unknowns y, as follows: 

E~ -E~ tr+ Acp8/ /op 
r = E: -E :, tr + A <pa f I 8q 

f 

(5.32) 

In order to solve this system iteratively, one can employ Newton's method over the 

following loop: 
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(5 .33) 

k is the local iteration counter. AER3
x
3 is the consistent tangent operator. A closed form 

expression of A can be written in a compact form with the aid of the following matrices: 

H = [Hu H12 ]-[8
2 

/ / apap 8
2 

/ / 8p8q] · 
H21 H22 - 82 / / aqap 82 ff 8q8q ' 

G=HDe . 

(5 .34) 

H = VV /lpc ER 2x
2 is the Hessian matrix of yield function/ with Pc held constant. The 

A matrix then takes the form 

l + A cp(G11 + Kp82 / / 8p8pc) AcpG12 8/ /8p 

A= AcpG21 1 + AcpG22 8/ / 8q (5 .35) 

DtMl8p+DtMl8q+KpMl8pc Df28/ I 8p + Di28/ / 8q 0 

where Kp =ape/&~ = -0pc is the plastic hardening modulus. Using the yield function 

(5.13), one can have: 8/ / 8p = 2p-pc, 8/ / 8q = 2q/M2, 8/ /ape= -p , 

5.6 Consistent Tangent Moduli 

Material tangent stiffness matrix aER3
x
3

, defined in the spaces of J3 and E, is 

expressed as 

a .. _ 8J3i _ 8'3i 
lJ - -

& j 8E ~' tr 
J 

(5 .36) 
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For a fully elastic response with volumetric and deviatoric coupling, the matrix a takes 

the form 

ae =(Df1 -
2

q J6®6+ {2Df2(6®n+n®6)+ 
2

q (I-n®n)+~D~2n®n, (5.37) 
9e; V3· 3e; 3 

where I is a 3 x3 identity matrix, n is a 3 x I vector obtained from the relations 

n = ee/lleell = ee,tr/llee,trll = s/llsll -

In case of isotropic, linear elasticity free energy function 'I' takes the form 

I [ e e e ] 
2 

[/ e ) 
2 

/ e) 
2 

/ e) 
2 

] 'I' = 
2 

A. 81 + 82 + 83 + µ \E1 + \E2 + \83 
(5 .38) 

I { e )2 3 / e)2 
= -K\ev +-µ\es , 

2 2 

where K and µ are constant elastic bulk and shear moduli, respectively. K = A. + 2/3 µ, A. 

is a Lame's constant. Sinceµ= µo > 0 (see (5.10)), ex.= O; elastic shear and volumetric 

responses uncouple, i.e., Df2 = D11 = 0 (see (5 .12c)). Now substituting Df1 = K, D12 = 

3µ (see (5.12a), (5.12b)), tangential elastic moduli of (5 .37) degenerates to the familiar 

expression for linear elasticity as follows: 

(5.39) 

In the elastoplastic regime, the tangential moduli matrix aep can be expressed 

using strain derivative of ( 5. 5) as 

(5.40) 

where 
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(5.41) 

Substituting (5.41) in (5.40), and using the elements of the matrix De to enforce the chain 

rule, one can have 

(5.42) 

Strain derivatives of the invariants Ei and Ei are obtained from (5.29) as 

&i = 8 (E:' tr - ~ cp 8 /J. (5.43) 
a:e, tr a:e, tr aq 

In the expansion of (5.43), one will need the following strain derivative ofpc 

(5.44) 

where Kp = or>c/ a:i and Kif= or>c/ &~tr . The expansion of(5.43)1 and (5 .43)2 takes 

the following forms, respectively 

(5.45a) 

b a:i b &i #" 8/ B~cp 21--+ 22--= -n- --, re e, tr re e, tr 3 aq re e, tr 
(5.45b) 

where 
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(5.46) 

a2t c = 1-AcpKtr __ _ 
p apapc 

Solving (5.45a) and (5.45b) simultaneously yields 

aet _ 1 [b co- rib n-(b at_b atJ aAcp] ( ) 
a;e,tr - det(b) 22 V3 12 22 ap 12 aq a;e,tr , 5.47a 

ae; - l [- b co+ rib n-(b at - b atJ aAcp ] (5.47b) 
a;e,tr - det(b) 21 V3 11 11 aq 21 aq aee,tr ' 

where det(b) = b11b22- b21b12. 

The strain-gradient of Acp is obtained from the overall consistency condition 

at = at ap + at aq + at ape = o. (S.4S) 
re e, tr 8p a: e, tr 8q re e, tr 8p C re e, tr 

Since p, q and Pc are functions of the strain invariants, one can expand (5.48) further by 

chain rule, and then use (5.47a) and (5.47b) to obtain the following result 

(5.49) 

where 

(5.50) 
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Plugging (5.49) in (5.47) yields 

(5 .51) 

D" E R2
x
2

, consists of coefficients of base vectors 6 and n in (5.47a) and (5.47b), is 

defined as follows: 

(5 .52) 

The strain gradients of the stress invariants then take the form 

(5.53) 

where Dep E R2
x
2 is defined as 

(5 .54) 

Substituting (5.53) in (5.40) then yields consistent elasto-plastic tangent moduli 

aep =(Dep - 2q J6®6+ /2Dep6®n+ /2Depn®6 
u e Vi 12 Vi 12 

9Es (5 .55) 

2q (I -/0\-) 2 0 ep-lO\-+- -DIO'D +- Il'O'D . 
e 3 22 

3Es 

For elastic loading, D"= I, Dep = DC, and so (5 .55) degenerates to (5 .37). Thus (5 .55) 

represents a generalized expression for both elastic and plastic loading. For elasto-plastic 
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loading :oP :t; I, and so aep loses its major symmetry due to the fact that D~f :1; D~f. 

Volumetric and deviatoric responses are coupled for elasto-plastic loading even if De is 

diagonal (in case of constant elastic shear modulus, i.e., µo > 0, a.= 0), since the matrix 

Dep is generally full due to plastic volumetric and deviatoric coupling inherent in the 

Cam-Clay model. 



CHAPTER6 
HYPERELASTIC-VISCOPLASTIC MCC MODEL 

6.1 Introduction 

Hyperelastic-plastic MCC model is further extended for viscoplasticity to model 

time-dependent secondary compression of phosphatic waste clay. Elasticity response is 

based on the stored energy function [68] of (5 .9). Consequently, nonlinearity of elastic 

moduli and coupling of volumetric and deviatoric elastic responses follow the same 

constitutive relations as presented in Section 5.2. Yield function ofMCC (see (5 .13)) is 

coupled with a time rate flow rule to simulate viscid response. 

Clay is a strain hardening, rate sensitive material that has remarkable 

characteristics such as rate sensitivity of strength, secondary compression, creep and 

stress relaxation. Various elasto-viscoplastic constitutive models have been proposed to 

describe the rheological behavior of clay. Most elasto-viscoplastic constitutive models 

can be classified as overstress models or non-stationary flow surface models. Overstress 

elasto-viscoplastic constitutive model was first introduced by Perzyna [72]. The 

Zienkiewicz et al. model [73], Adachi and Oka model [74], Dafalias model [75], Katona 

model [76], Baladi-Rohani model [77] belong to this category. The key assumption in 

these models is that viscous effects become pronounced only after the material 

undergoes yielding, and that viscous effects are not essential in the elastic domain. 

Overstress model is an outgrowth of classical plasticity where viscous response is 

introduced by a time rate flow rule with a plastic yield function. As opposed to 

69 
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overstress model, in non-stationary flow surface model yield condition of a material 

changes with time as plastic straining occurs. Olszak and Perzyna [78] initiated this 

concept by introducing the time dependent yield condition. Later Sekiguchi [79], 

Dragon and Mroz [80], Nova [81 ], Matsui and Abe [82], among others, adopted this 

concept. Viscoplastic rate equations of the non-stationary flow surface model are 

characterized by the stress rate terms. 

Overstress viscoplasticity model is adopted in this study to simulate secondary 

compression behavior of phosphatic waste clay. Motivations for selecting overstress 

model are: (1) the incorporation ofMCC yield function is straightforward; (2) the 

generality of time-rate flow rule offers the capability of simulating time-dependent 

material behavior over a wide range of loading; (3) the formulation is amenable to finite 

element implementation. 

6.2 Flow Rule 

In viscoplasticity formulation, additive decomposition of e takes the following 

form 

where & is the vector of principal logarithmic stretches. &e and &vp are the elastic and 

viscoplastic components of&, respectively. 

For an associative flow E vp is given by the relation 

(6.1) 

(6.2) 
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where J3 is the vector of principal Kirchhoff stresses, y is a material property called the 

fluidity parameter (units of inverse time) that establishes the relative rate of viscoplastic 

straining, q,(f) is a scale function (dimensionless) of plastic yield function,/ . 

(J) = {q,(J), / > 0 
<p 0, /-5:0 

(6.3) 

q,(f) is called viscous flow function. Two commonly used forms of q,(/) are: 

~(/)=(!of (6.4a) 

(6.4b) 

N is an exponent; / o is a normalizing constant with the same unit as / so that q,(/) is 

dimensionless. Although more elaborate functional forms of q,(/) may be established, 

the forms given by (6.4) appear to suffice for many geologic materials [73]. 

(6.2) can be written in incremental form as 

(6.5) 

where Ay = yAt. Substituting (6.5) in additive decomposition of natural strains, i.e., 

E = Ee + Ep = Ee, tr + Eg, one can write the flow rule as 

(6.6) 

Volumetric and deviatoric components of (6.6) are as follows: 

e e tr (J) /3 a! s 
e = e , - Ay <p V2 aq fsij. (6.7) 
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In terms of unit vectors n , n tr ( 6. 7)2 takes the form 

(6.8) 

(see Section 5.5), (6.8) can be expressed in terms of scalar coefficients. Consequently, 

( 6. 7) can be rewritten as 

E~ = E~tr - iiyq>(/):; (6.9) 

In the elastic regime /(ptr qtr p ) < 0 m(/) = O · Ee = Ee, tr Ee =Ee, tr , , , C, n , Y , V V , S S · 

Viscoplastic regime is realized for the conditions: f (p tr, q tr, Pc n) > 0, q>(j) > 0. , 

ptr and q tr are the predictor values as defined in (5.31). In the viscoplastic regime, (6.9) 

can be viewed as a system of simultaneous nonlinear equations in the elastic strain 

invariants, represented by residual vector rand vector of unknowns y, as follows: 

y={:n (6.10) 

One can employ Newton's method (cf (5.33)) to solve this system iteratively while the 

tangent operator AER2
x
2 of (5.33) now takes the form 

(6.11) 

Individual components of A are derived as 
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[ (j{ 
a

2 
f J '( ) a f ( e a f e a f a f J] . A11 =l+~y ep G11 +Kp-- +ep / - D11-+D21-+Kp- , 

apapc ap ap aq ()l)c 

[ '(j) a f ( e a f e a f J (j) ] A12 = ~y ep 8p D12 8p +D22 8q +ep G12 ; 
(6.12) 

[ 
'(f) a f ( e a f e a f a f J (f )G ] A21 =~yep - D11-+D21-+Kp- +ep 21 ; 

8q ()I) 8q ()I) C 

[ '(j)af ( e 8/ e 8/J (j)G ] A22 =l+~y ep 8q D12 ap +D22 aq +ep 22 · 

Kp = ape I&~ = -0pc (see (5.25)) is the plastic hardening modulus, 

ep'(j) = acp(j)I a f. Matrices DC, Gare defined in Sections 5.2 and 5.5, respectively. 

6.3 Consistent Tangent Moduli 

Consistent tangent moduli matrix in elasto-viscoplastic regime aep ER3
x

3
, defined 

in the spaces of f3 and E, is expressed as 

ep - api - api a .. -----
IJ <3E j <7E ~' tr 

J 

(6 .13) 

Following the developments of Section 5.6, one can obtain an expression of aep, 

identical to (5.42), i.e., 

Strain derivatives of the invariants E~ and Ei are obtained from (6.9) as 

__ v_=-- E~tr -~yep(!}-; ree a ( a/J 
re e, tr re e, tr ap 

__ s_=-- E:,tr -~yep(!)- . ree a ( a/J 
ree, tr aee, tr aq 

(6.14) 
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In order to expand (6.14) to the lowest order, one will need the following strain 

derivatives: 

Coefficients of ( 6 .15 a) and ( 6. l Sb) are given as 

e of e of 
a3 = D12-+D22 -; op oq 

where 

b11 =l+a2Ayq,'(J)
0

f +Ayq,(j)G21 ; b12 =a3Ayq,'(J)
0

f +Ayq,(J)G22; op op 

{6.15a) 

{6.15b) 

(6.15c) 

(6.16) 

(6.17a) 

(6.17b) 

b21 = a 2Ay q,'(f) % + Ay q,(f )G 21 ; b 22 = I+ a3Ay q,'(f) % + Ay q,(/)G 22 ; ( 6.18) 

C1 = 1- a1Ayq,'(f) of; C2 = a1Ayq,'(j) of. 
op oq 
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Solving (6.17a) and (6.17b) simultaneously yields 

(6.19) 

Coefficients of DP E R2
x
2 are given as 

p - -1 . 
D12 - ( ) b12, det b 

p - 1 
D22 - ( ) bu, det b 

(6.20) 

Substituting (6.19) in the expression of aep (cf (5.42)) then yields consistent 

elasto-viscoplastic tangent moduli as follows: 

aep =(nfF- 2
q Jo®o+ 12nffo®ii+ 12nffn®o 

9Ee V3 V3 
s (6.21) 

2q (I - '°" -) 2 D ep- '°" -+- -DIOID +- DIOID. e 3 22 
3Es 

Dep = DeDp ER 2x
2 . Note that (6.21) and (5 .55) have identical expressions. (6.21) 

represents a generalized expression for both elastic and plastic loading. For elastic 

loading, Dep = De since DP= I and so (6.21) degenerates to an expression of ae identical 

to (5.37). 



CHAPTER 7 
LINEARIZATION 

7 .1 Preliminaries 

Some useful formulas are summarized below. These will be helpful for 

linearization of strong and weak forms of coupled equations (see Chapter 4). 

The first of these formulas is the Pio la transformation, introduced first in Section 

4.2. Let y E Rnsd be a vector field in spatial configuration <f>t(B). Then, the Piola 

transform of y in reference configuration B is 

-1 Y=JF ·y, 

provided that motion <t> is regular in 8. The following equation holds for y, Y . 

DIVY = Jdivy . 

(7.1) 

(7.2) 

Proof of(7.2) is given in Section A.7. This identity may be extended to cases where Y 

and y are vectors derived from tensors of order greater than or equal to two by fixing all 

but one of the tensor's legs (for example, fixing one leg of the Kirchhoff stress tensor 't 

produces a vector of Kirchhoff stresses). 

Following are linearization of some basic terms, one would need for subsequent 

development. Let ou be the variation of the displacement field; then the linearization of 

F and F 1 at any configuration <f>t(B) are given, respectively, by 

LF = F + grad ou · F = F + GRAD ou; (7.3a) 

(7.3b) 
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Derivations of (7.3a) and (7.3b) are given in Section A.8. Linearization of the Jacobian 

and the rate of the Jacobian at spatial configuration <f>t(B) are given, respectively, by 

LJ = J + J div(ou); 

Li= j +1[ div(ov)-gradv : gradt(ou)+div(ou)divv l 
See Section A.9 for derivation of (7.4a) and (7.4b). 

Linearization of the reference saturated mass density Po= Jp at the spatial 

configuration <f>t(B) is 

(7 .4a) 

(7.4b) 

(7.5) 

Proofof(7.5) is given in Section A.IO. Note that p0 is not constant since, as pointed out 

previously (see Section 3.5.2), the total mass of the soil-water mixture in Bis not 

necessarily conserved in <f>t(B). The variation of p0 reflects the amount of fluid that enters 

into or escapes from the soil matrix due to the variation of the Jacobian. 

7.2 Linearization of Strong Form 

The results discussed in the previous section can be applied for the lineraization 

of strong form or the field equations of linear momentum and mass conservation. Since 

the field equations are mixed formulation involving finite deformation u and Kirchhoff 

pore pressure 0, linearizations are derived consistent with the imposed infinitesimal 

variations ou and 80. 
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7.2.1 Equation ofEquilibrium 

Let E = DIVP + p0g be the linear momentum equation (see (4.3)). Substituting 

(3 .55) and (3.56), E can be rewritten as 

E = DIV~ +0F-t )+Jpg . 

Taking the variation yields 

oE = n1v(oP +eoF-t +oeF-t )+o(Jp)g 

=DIV(A :oF+0oF-t +oeF-t )+o(Jp)g . 

(7.6) 

(7.7) 

A is the first tangential elasticity tensor of order four. A has the structure Aijkl = 8Pij/8Fkl. 

One can write from (7. 5) 

o(Jp)g = PwJdiv(ou)g. (7.8) 

Now, using (7.1) and (7.2) one can express 

J div(ou) = DIV(oU) = DIV(w-l. ou), (7.9) 

where oU is the Piola transform of ou. Substituting (7.9) in (7.8) results 

o(Jp)g = PwI div(ou)g= PwDiv{w-1 .ou)g. (7.10) 

Substituting oF, 0F·1 from (7.3), o(Jp) from (7.10) in the expression of oE of(7.6), 

linearization of E may be written as 

LE= E+DIV(A: GRADou)-DIV(eF-t -GRADtou•F-t) 

+ DIV(oeF-t )+ PwDIV(JF-1 -ou) g . 
(7.11) 

A crucial step in the linearization of the linear momentum balance equation is the 

evaluation of the tangential elasticity tensors of the solid matrix. Four of them are 

introduced in this section: the tensors A, D, a and d. Each of these tensors can be derived 
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directly from others. For example, A can be obtained from Dusing the following 

expression 

(7.12) 

See Section A.11 for derivation of (7.12). D = oS/ac (i.e., Dmjn1 = 0Sm/oCn1) is the 

second tangential elasticity tensor of order four. Constitutive relation ( 4. 3 6) and pull 

backs of the Kirchhoff effective stress tensor 't yield the following expressions of the 

second Piola-Kirchhoff effective stress tensor Sas 

3 
S=F-l·'t·F-t = LPAM(A); M(A) =F-1,m(A),F-t . (7.13) 

A=l 

PA's are the principal Kirchhoff effective stresses and m<A>,s are the dyads formed by 

juxtaposing the principal directions of the elastic stretches, as given explicitly by (4.35)2. 

Using the chain rule, from (7.13)1 one can obtain the following expression for the tensor 

Das 

3 3 3 (A) 
D = as = _!_"" apAM(A) ®M<B) +"A aM ac 2 L..J L..J ae L..Jl-'A ac ' 

A=lB=l B A=l 

(7.14) 

since oeBIOC = MCB>12 (see Section A.14). 

By the symmetry of both Sand C, and by the axiom of material frame 

indifference, the tensor D possesses both the major and minor symmetries such as Dijkl = 

Djilcl = Dijlk, Dijkl = Dlclij- Spatial tangential elasticity tensors a and d may be obtained 

from the push-forwards of A and Das 

(7.15a) 

(7.15b) 
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a and d have the symmetries [83]: aijkl = clktij, dijkl = djikl = dijnc = dklij - A push-forward of 

all the indices ofD gives the following expression for the spatial tensor d 

3 3 3 

d = LL :Am(A) ®m(B) +2L~Ad(A)_ 

A=lB=l B A=l 

(7.16) 

Here d(A) is the push forward of aM<A>1ac as 

(7.17) 

For the general case of left Cauchy-Green tensor b having distinct eigenvalues "-1, A~ 

and A.2 d(A) takes the form 3, 

d(A) =-
1
-[1b-b®b+l3AA2 (1®1-I)] 

DA 

+-
1-[A,i (b®m(A) +m<A) ®b)-.!..DAA.Am(A) ®m(A)] (7.18) 

DA 2 

- DI [ I3A;;;_2 (1 ® m<A) + m (A)® 1)]' 
A 

permutation of the indices { 1,2,3}. This expression is strictly valid only if the 

eigenvalues are different since DA= 0 otherwise. Although it is possible to derive a 

similar result for the case of repeated eigenvalues [19], from a computational standpoint 

it is preferable to reduce this situation to the general case of distinct eigenvalues by 

introducing a perturbation of the repeated roots. For example, in case of repeated roots, a 
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small perturbation of ±10-6x repeated eigenvalues is used in PlasFEM to obtain a general 

case of distinct eigenvalues. 

The spatial counterpart of (7.1 I) may be derived directly from Piola 

transformation. Then, the linearization ofE in the spatial picture takes the form 

LE= E + div(a: gradou)-div( 0gradtou)+ grad(o0)+ Jpwdiv(ou)g . (7.19) 

An equivalent form to (7.19), using the spatial tangential elasticity tensor d, is 

LE= E + div[{d + T EB 1) : gradou]-div (egradtou)+ grad{o0)+ Jpwdiv{ou)g, (7.20) 

since a= d + 't EB 1 (see Section A.12). Here (-r EB l)ijkl = 't jl Oik represents the initial 

stress contribution to the spatial stiffness. Comparing term by term, equivalence between 

(7 .11) and (7 .19) can be established. Exploiting the Pio la identity of (7 .2), one can show 

that DIV{A:GRAD ou) = div(a:grad ou) since A:GRAD ou is the Piola transform of f 1 

a :grad ou and grad J = 0 (see Section A. I). Similarly, second divergence terms can be 

shown equivalent noticing that 0 F 1 
• GRADt ou • Ft = 0 gradt ou • Ft is Pio la transform 

of J"1(0 gradt ou). Expansion of the third divergence term of (7.11) yields DIV(o0 Ft)= 

GRAD 80 • F-t + o0 DIV(Ft) = grad o0 since DIV(Ft) = 0. Equivalence between the last 

terms can be derived from (7. 9). 

7.2.2 Equation of Flow Continuity 

Let M = DIVV + DIVV be the equation of flow continuity for a saturated soil-

water mixture in material reference (see (4.9)), where V and Vare the Piola transform of 
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v and v, respectively (see Section 4.2). Then, the linearization ofM at any configuration 

<l>t(B) is 

LM =M+DIVoV +DIVoV. (7.21) 

One needs expressions of oV, oV for linearization of M. First consider variation of V, 

ov = o{IB-1 -v )= oJF-1 . v + JoF-1 . v + JF-1 -ov. (1.22) 

From (7.4a), (7.9) and (7.3b), one can express 

~ -1 ( -1 l.-1 uJF · V = DIV JF ·OU,~- · V; 

~ -1 { -1 d ~ } -1 ~ -1 JuF ·V=-J F ·gra uu ·v=-JF ·GRADuu•F ·V. 
(7.23) 

Substituting (7.23), one can rewrite (7.22) as 

~ ~{. -1 ) TL -1 ~ l.-1 -1 G ~ -1 -1 ~ uV=u\JF ·V =Dlv\JF ·uU/~ ·v-JF · RADuu·F +JF ·uV. (7.24) 

From (4.50) and (4.52), generalized Darcy's law can be written as 

v = -k ·(grade+ g) . 
Jgpw g 

(7.25) 

Piola transform of v yields 

(7.26) 

where K = F-l • k • F-t is the pull-back permeability tensor. Kand k are assumed 

symmetric in following derivations. Using chain rule, one can expand oV as 

oV = -OK·(GRAD0 +JFt. g)-K·(GRADoe +o{IFt )-~) - (7.27) 
~w g ~w g 

Substituting oJ from (7.23)1 and oF from (7.3a), one can write 
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(7.28) 

Substituting (7 .28) and rearranging, (7 .27) can be rewritten as 

6V = -K·{ G~lle +[ mv(JF-1
-6u )F1 

+JGRAD
1
6u J-:} 

-oK•(GRAD0 +JFt . gJ, 
gpw g 

(7.29) 

where 

If permeability tensor k is assumed to be varying with the deformation or void 

ratio of soil skeleton variation of k can be expressed as 

where eo is void ratio of the soil-water mixture in reference configuration. See Section 

A.17 for derivations of(7.30) and (7.31). 

Using ( 4. 8) and ( 4 .17), M can be written in spatial description as 

M = J div v + J div v = j + J div v. (7.32) 

Corresponding lineraization takes the form 

LM = M +o{i +J divv) 

= M +oi +oJ divv + J o(div v). 
(7.33) 

Substituting (A.31 ), Jo( div v) can be expressed as 

J o(divv) = J div(ov)- grad(Jv): grad ton, (7.34) 
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since J grad v = grad(Jv) by knowing that grad J = 0. Substituting (7.34) in (7.33) then 

yields 

LM = M +oi +div(o(Jv)]-grad(Jv): gradtou, (7.35) 

smce 

div (o(Jv)] = div (oJ v) + div (J ov) 

= gradoJ · v + oJ div v + gradJ · ov + J div(ov) 

= (GRAD oJ · F-1 
). v + oJ div v + J div(ov) (7.36) 

= o(GRADJ)· F-1 
· v + oJ div v + J div(ov) 

= oJ div v + J div(ov) . 

Component terms of (7.35) are given as 

oi = 1[ div(ov)- grad V: gradt{ou)+ div(ou)div VJ (7.37a) 

Jv = -k ·(grade+ J gJ; 
gpw g 

(7.37b) 

o(Jv) = -k. [grad(oe)- grade· gradou + J div(ou)g] 
gpw g 

. ak [grade g] -(l+e0 )Jd1v(ou)-· --+J- . 
8e Pwg g 

(7.37c) 

(7.37a) and (7.37b) are obtained directly from (7.4b) and (7.25), respectively. Derivation 

of(7.37c) is given in Section A.19. 
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7.3 Linearization of Weak Form 

Linearization of weak form G( 4>, II, 11) of ( 4 .13) takes the form 

LG= G + f 8grad 11 : ( d + -r EB 1) : gradou dV + f 8 ( o0div 11-0 gradt11 : gradou) dV 

-f Pw J div (ou )11 : g dV -f 11 · ot dA. 
B oB 

(7.38) 

where Ou, 08 and ot are the variations of the displacement vector, Kirchhoff pore 

pressure, and traction vector, respectively. 

First integral term of(7.38) is derived from the variation of grad rr 't (see Section 

A.20). The variation o(0 div 11) = o0 div 11 + 0 o( div 11) produces the second integral term 

upon substitution of the identity o(div11)=divo11- gradt11: gradou = -gradt11 : gradou 

following (A.31) (note that 011 = 0 since 11 is a vector of arbitrary virtual displacements). 

The third integral term emanates from the linearization of po (see (7.5)). The last integral 

term is derived from a straight-forward linearization of the traction vector t. 

Upon substitution of (3.55) and (3.56), linearization of weak form G(4>, II, 11) in 

material description (see (4.12)) can be expressed as 

LG=G+ fao{GRAD11 : P-po11·g)dv-Jf)80(,1·t)dA 

= G+ fao(GRAD11 : P)dV + fao(GRAD11: (eF-t ))dv 

-JBo(po11·g)dv-Jf)80(11·t)dA. 

(7.39) 

Variation of the first integrand is given as o(GRAD 11: P) = GRAD 11: A : GRAD ou (see 

Section A.21).Variation of the second integrand in material description may take the 

form 
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Upon substitution of (7 .10), variation of the third integrand yields 

8(po11 · g) = PwDIV(JF-l. 00)11: g . 

Substituting all these identities in (7.39), one can obtain linearization of Gin material 

description as 

LG= G+ fa GRAD11: A: GRAD8u dV + fa 80GRAD11: F-t dV 

-fa 0GRAD11:~-t·GRADt8u•F-t)dv (7.40) 

-f
8

PwDIV(JF-l -6u~ :gdV- fJB 11-6t dA. 

(7.39) and (7.40) are equivalent expressions. 

Linearization of weak form H ti.t ( <I>, II, 'V) of ( 4 .25) is given as 

LHL'.lt =HL'.lt +f YJdiv(ou)dV+PPof grad'V·-k-·grad80 dV 
a& a ~W 

- 2P Po f grad 'V · Sym (-k-· grad t ouJ · grad 0 dV 
a gpw 

-PPof grad 'V · [gradou -(div ou)l] · k · g J dV (7.41) 
a g 

+PPo(l+eo)J grad'V·(div ou)l· ak •{grade +Jg}JdV 
a oo Pwg g 

- PPo f aa 'V◊Q dA. 

The first integral term of (7.41) results from the variation of J (see (7.4a)). The second, 

third, fourth and fifth integral terms result from the variation of grad 'V · Jv ( see Section 

A.22). The last term results from the variation of Q. 

Linearization of weak form H Llt ( <I>, II, 'V) of material description ( see ( 4 .26)) is 

given as 
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LH~t =H~t +f Yn1v(JF-1 •ou)dV+f3f3oJ GRADw·__!_ · GRADo0dV 
BM B ~w 

-2f3f3of GRADw·F-1 ·Sym(GRADou •__!_ ·FtJ .F-t · GRAD0dV 
B ~W 

-f3f3of GRADw ·F-1 ·GRADou•K·Ft .Jg dV 
B g 

+f3f3of GRADw ·K ·DIV(JF-1 
· OU~t .! dV 

B g 

( )f -1 ( -1 s: \ak -t {GRADS t g}dv +f3f3 0 l+e0 GRADw·F ·DIV JF ·uuJ-;:-·F · ---+JF ·-
B 8e Pwg g 

- f3f3o fas woQ dA. 

(7.42) 

The first integral term of (7.42) results from the variation of J (see (7.4a) and (7.9)). The 

second, third, fourth and fifth integral terms result from the variation of GRAD \V · V 

(see Section A.23). The last term results from the variation of Q. 

Considering term by term, one can show that (7.41) and (7.42) are equivalent 

expressions. Equivalence between first integral terms can be obtained from (7.9). 

Equivalence between second integral terms can be drawn from the relations: 

grad \V = GRAD w · F-1, grado0 = GRADo0 • F-1, and K = F-l · k-F-t . Similarly, 

the third integral terms can be proved equivalent since 

Sym(GRADou .__!_. FtJ = Sym(gradou • _k_J = Sym(-k __ gradt ouJ . 
~w ~w ~w 

By contracting and rearranging the remaining volume integral terms of (7.42) into 

equivalent spatial descriptions, one can obtain identical expressions for the fourth and 

fifth integral terms of (7. 41). 



CHAPTERS 
FINITE ELEMENT FORMULATION 

8.1 Finite Element Framework 

System of equations for consolidation problem can take a general form 

k k k 
Kn+l 0dn+l = fn+l (8.1) 

at any iteration k of time step tn+1. K is the global stiffness matrix or consistent tangent 

operator, od is the vector of incremental generalized displacement defined as 

~ k+l k+l k 
udn+l = dn+l -dn+l· (8 .2) 

For large strain consolidation, d consists of solid-phase displacement vector u and 

Kirchhoff pore pressure vector 8 . f is the vector of residual out-of-balance forces defined 

as 

(8.3) 

FExr is the vector of externally applied forces, e.g., gravity forces, prescribed surface 

tractions, fluid potential, flow rate etc. It is assumed that F EXT is constant for a given time 

step tn+ 1. F INT is the vector of internal nodal forces. f is formed from the coupled 

equations of weak form G(<P, II, 11) and H(<P, II, 'V) (see Chapter 4), integrated over the 

problem domain. 

Finite element formulation solves the system of equations ieteratively using some 

standard methods (e.g., Newton-Raphson method) so that f, at some configuration, is 
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minimized within a tolerance (e.g., 1.0xl0-4). FINT is function of the generalized 

displacement vector d, and can be approximated by Taylor series expansion 

Neglecting the higher order terms O(h), the exact solution is approximated by 

k+I k (aFINT )-I[( ) ( k )] dn+l ~ dn+I = dn+I + ad Fma n+I -FINT dn+l . (8 .5) 

The Jacobian matrix aF INT/ ad is equal to the tangent operator K of (8 .1 ). It is evaluated at 

each iteration due to material and geometric nonlinearities so that 

(
aFINT )k = Kk 

ad n+l. 
n+I 

(8.6) 

Substituting (8.6), (8.4) and (8.5) can be reduced to (8.1) 

At the end of each iteration, displacement vector d, i.e., the configuration is 

updated according to (8.5). If equilibrium is achieved within a prescribed tolerance, the 

solution is started for next time step. Otherwise, a new iteration is performed. 

8.2 Matrix Equations 

This section discusses derivation of matrix forms of the weak form equations and 

their variations (see Sections 4.3 and 7.3), amenable for finite element formulation, for 

D9P4 axisymmetric element (see Section 9.1). Because of the simplicity of the 

linearization of the integrands in spatial description, (7.38) and (7.41) are implemented 

in finite element code. 
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According to the standard procedure, one needs interpolation function or shape 

function matrices for approximating the solid phase motion 4> and pore pressure field 0. 

Let ~(x) and N8(x) be two distinct matrices of spatial interpolation functions 

representing 4> and 0, respectively. Let uh(x) E Rnsd represents spatial displacement field 

describing 4>, nsd being the number of spatial dimensions. In matrix form 

(8.7) 

where u, Ug E R0
q are the vectors of unknown and prescribed nodal displacements, 

respectively, nq is the number of displacement components for an element ( = number of 

displacement degrees of freedom per node x number of nodes). 

Similarly, 

eh(x)= N9(x){0+0r }, (8.8} 

where 9h E R 1 represents spatial Kirchhoff pore pressure field 0. 0, 0r E Rnp are the 

vectors of unknown and prescribed nodal Kirchhoff pore pressures, respectively. Now, 

arbitrary weighting functions 11and \JI may be interpolated in a similar fashion in terms of 

their nodal values ri and was follows: 

llh (x) = N4> (x)ri; \Jlh (x) = N9 (x)w, (8.9) 

where ri E R0
q and w E Rnp. For D9P4 elements nsd = 2, nd = 9, np = 4, nq =18. N♦ and 

N8 matrices for D9P4 element are given in Appendix B. 

Employing these preliminaries of (8. 7) to (8.9), one can formulate the necessary 

finite element equations. Let the weighting function 11 be approximated by arbitrary nodal 
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values ii E R0
q via (8.9), then the finite element equation for weak form of the balance of 

linear momentum, G(4>, IT, 11) (see (4.13)) may be written as 

(8.10) 

where 

(8.1 la) 

(8 .llb) 

(8.1 lc) 

For axisymmetric element, Kirchhoff stress vector { 't} is defined as { 't11, 't22, 't33, 't12, 

't2i}\ subscripts 1,2,3 denote radial, axial and circumferential directions, respectively. B 

is the spatial strain-displacement transformation matrix, b = {l} t B . See Appendix B for 

the structures ofB and b. By expanding terms, one can have iitB t {'t} = grad Tl : 't . Thus, 

(8. lla) produces the first integral term of (4.13). (8. llb) represents the second integral 

term of ( 4 .13) following the identity hii = ii t b t = div Tl . Third and fourth integral terms 

of(4.13) can be obtained from (8.llc) using the identity Tl= iitNq>t . It is important to 

note that po is reference mass density. So, it is a non-constant term. Following (7. 5), Po is 

updated at each iteration as (p0 ) h+~1= (p0 ) h+1+ {1 div ( 8uh) }h+i; in equivalent matrix 

Next, finite element equation of weak form for the balance of mass, H t.t ( 4>, IT, \V) 

(see (4.25)) may be written as 



where 
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J(u)= f 8N
8t (Jn+1 -i;min+1-m) dV 

<1>{0) =Pf 
8 

Et (Jv)n +l dV + {I - P)J 
8 

E~ (Jv)n dV 

Hma = f
8

N9t[PQn+l +(1-P)Qn]dA 

(8.13a) 

(8.13b) 

(8.13c) 

From (8.9)2, one can have N9w = wtNSt = 'Vh, and so (8. 13a) and (8. 13c) 

produce the first and third integral term in (7.42), respectively. E, En in (8.13b) are the 

gradient-pressure transformation matrices (see (B .8)) computed with respect to 

coordinates x and Xn, respectively. Since, 'VtEt = grad'V and 'VtE~ = (grad 'V)n, one 

can obtain second integral in (7.42) from (8. 13b). Jv is computed from (7.36b) using the 

relation grad 0 = ES. 

Finite element equation for the first variation of the weak form G(<I>, II, 11) (see 

(7.38)) may be written as 

where 

K4>4> = f 8 (B1(D+ T +Ie)B-pwJN<l>tgb)dv 

K4>0 = -f BbtN0dV 

ou and 08 are the first variations of u and 0, respectively. 

(8.14) 

(8 .15a) 

(8.15b) 
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D is a rank-two material stiffness matrix. Terms of rank-four tensor din (7.38) is 

arranged in D (see (B .9)) in such a way that scalar product term ,;tB tfiB ou yields an 

equivalent expressions for grad llh :d: grad ouh. Initial stress matrix T (see (B .10)) is 

assembled from fourth-order tensor ('t EB l)ijkl = 'tjl Oik such that ,;tB t»B ou = grad 11h :c: 

grad ouh. Similarly, ,;tB tleB ou produces an equivalent expression for the scalar 

product term eh grad111h: grad ouh. ~ is defined in (B.11). The remaining terms in (7.38) 

can be proved using the identities b ou = div (ouh) and bij = div{T)h ). 

Finite element equation for the first variation of weak form H ~t ( <t>, II, 'V) ( see 

(7.41)) may be written as 

where 

Kee = - ~~oAt f E tkE dV 
Pwg 8 

(8.16) 

(8.17b) 

Matrix forms for the first two integrals in (7. 41) are trivial. With respect to the third 

integral in (7.41), which arises from geometric nonlinearity, the following identity can be 

obtained by direct expansion: 

(8 .18) 

where 

,_ ,_ ,_ 
~ =~1 +~2 · (8 .19) 
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For D9P4 axisymmetric element 

(sum on j = 1,2 ) . 

with respect to the fourth integral in (7. 41 ), which also arises from geometric 

nonlinearity, the following identity can be obtained from direct expansion: 

where 

(8 .20a) 

(8 .20b) 

(8.22) 

for D9P4 axisymmetric element. Matrix from of the fifth integral term in (7.41), 

representing the variation of permeability with Jacobian, is obtained from the following 

identity 

h . ( h ) 8k { grad 0 g} ~ t t gradw •div ou 1·-· --+J- =w E 0 2 Bou . 
8e Pwg g 

For D9P4 axisymmetric element 

ak1j 
~U,j 

ak2j u . 
ae ,J 

grade g 
where u=--+J-. 

Pwg g 

8k1j u . 
ae ,J 

ak2j u . 
ae ,J 

0 0 

0 0 
(sum on j = 1,2). 

(8.23) 

(8 .24) 



95 

Since ri and w are both arbitrary, the conditions stated in (8 .10) and (8.12) can 

be satisfied by the following coupled vector equations: 

Balance of linear momentum: 

(8.25) 

Balance of mass: 

re (u, 0) = j30~tHExr -{J(u)-J30~t<l>{0)} = 0 . (8 .26) 

For numerical analysis, the problem boils down to determining the configurations defined 

by the nodal values u and 0 at which (8.25) and (8.26) are simultaneously satisfied. 

Residual force vector and displacement vector of an element, fe and Ode, respectively, are 

given as 

-{r<t> (u, 0)} fe - re (u, 0) ' 
(8 .27) 

Consistent tangent operator discretized at element level, Ke is assembled from coefficient 

matrices (8.14) and (8.16) as 

(8.28) 

Global matrices K, f and 8d of(8.1) are assembled from Ke, fc, and 6dc, 

respectively, according to the node numbering scheme of the problem domain. In 

PlasFEM, incremental displacements 6u and pore pressures 60 are actually grouped on a 

nodal basis in order to preserve handedness of the global stiffness matrix which costs less 

CPU time for matrix inversion. 
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In general, matrix Ke is nonsymmetric and indefinite. The lack of symmetry of Ke 

is a consequence of solving a non-symmetric consolidation problem. However, there are 

conditions which results in a symmetric Ke even if the problem of consolidation is 

inherently non-symmetric. Obviously, Ke being symmetric requires that Kee =Kie, 

which is true if and only if the permeability tensor k is symmetric. Furthermore, for small 

strain analysis the Jacobian J is identically equal to unity, while the second integral in 

(8.17a) vanishes identically since it originates from geometric nonlinearity. Thus, for this 

condition, Ke4> =Kie. Under the same setting imposed by the assumption of small 

strains, the last term in the integral of (8.15a) also vanishes, since this term is simply the 

linearization of the constant Jacobian. Thus, under the assumption of small strains, 

K4>4> = K i<f> provided that material stiffness matrix D is symmetric. 



CHAPTER9 
NUMERICAL EXAMPLES 

This chapter presents numerical simulation examples of one and two-dimensional 

(plane strain) hyperelastic consolidation. Effects of large strain on consolidation 

settlement and excess pore pressure dissipation are compared with the same for the small 

strain formulation. 

Time integration for all the numerical simulations in Chapters 9 and 10 was 

carried out by the one-step, first-order accurate, unconditionally stable backward 

difference scheme (see Section 4.4) obtained by setting k = 1, and Po= P = a1 = 1. The 

simulations, both the large strain and small strain formulations, were performed by a 

displacement-based finite element code PlasFEM. 

9.1 Mixed Element 

The type of elements used for consolidation simulation greatly affects the 

accuracy of the solution. It was found that only a few combinations of interpolation 

functions were capable of providing accurate solutions without incurring problems such 

as spurious pressure modes, mesh locking or poor convergence rate. The accepted test on 

the stability and convergence of a particular element is the Babuska-Brezzi [84, 85] 

condition. Hughes [86] has proposed an approximate method, based on the constraint 

ratio. He compares the number of equations provided by the displacement unknowns to 
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the number of incompressibility constraints. If the ratio is close to unity, the element has 

a tendency to lock and will perform poorly under incompressible conditions. 

O displacement + pore pressure node 

• displacement node 

Figure 9.1 D9P4 mixed element 

For the two-dimensional problems with mixed displacement/pressure, the D9P4 

element (biquadratic 9-node displacement interpolation with a bilinear 4-node pore 

pressure interpolation) passes the Babuska-Brezzi condition and has a high constraint 

ratio. Consequently, D9P4 mixed elements, as shown in Figure 9.1, were employed for 

all finite element meshes used in Chapters 9 and 10. 

9.2 One-dimensional Hyperelastic Consolidation 

A stress-free hyperelastic porous solid skeleton is considered for one-dimensional 

consolidation example. The free energy function 'I' for linear elasticity is given in (5.38). 
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The assumed values ofthe material parameters are A= 57.7 kPa, µ = 38.5 kPa (equivalent 

to a Young's modulus E = µ(3A + 2µ) /(A+µ)= 100 kPa and a Poison's ratio v = 0.5A / 

(A+µ)= 0.3), and constrained modulus D =A+ 2µ = 134. 7 kPa. 

The FE mesh, represented by a column of 10 D9P4 axisymmetric elements, is 

shown in Figure 9.2. The bottom base of the mesh is impervious and fixed with respect to 

vertical displacements. Free drainage (i.e., zero excess pore pressure) is allowed on top. 

The vertical permeability is assumed to have a value kv = 8.46xl04 m/day and the unit 

t t 
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Figure 9 .2 FE mesh and initial pore water pressures for one-dimensional 
consolidation problem 
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weight of water Pwg = 10 kN/m3
. The coefficient of consolidation can be calculated as Cv 

= kvD/(pwg) = 1.14x10-2 m2/day. Normalized time factor is calculated as T = evt / Ha2, 

where Ho is the initial thickness of the soil column. During the consolidation stage, time 

steps are increased according to the equation L\t0 +1 = 1.5 L\t0 . This results in nearly equally 

spaced data points when the time history responses are plotted on a logarithmic time axis. 

Excess pore pressures are generated by applying a vertical downward Cauchy step load 

of L\q (Cauchy)= 90 kPa at the top of the soil column. 
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Figure 9.3 One-dimensional hyperelastic consolidation: variation of total potential 

with time 

Figure 9. 3 shows a comparison of the variations with respect to time of the fluid 

potential II= rr8 + rr = 0 / (Jpwg) + x2 at a Gauss Point A near the impervious base. 
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Point A is initially situated at a distance of the 4.894 m from the top of the undeformed 

soil column. Here the potential II takes the physical meaning of being the total hydraulic 

head at this particular Gauss point. PlasFEM prediction of small strain formulation 

matched quite well with the analytical solution from the one-dimensional linear 

consolidation model of Terzaghi. Prior to consolidation, the fluid potentials for the small 

strain and the large strain models are the same and are 14 m, 9 m of which is the transient 

part produced by the 90 kPa imposed vertical load. Figure 9.3 shows that the fluid 

potential predicted by the Terzaghi solution decays to the initial steady state value of 

rr<small) = 5 m since the height the soil column remains essentially the same at 5 m due to 

the small strain assumption. The large strain solution however approaches a steady-state 

value ofrr<targe) = 3.24 m representing the final compressed height of the soil column. The 

large strain prediction is compared with the same reported in [87]; both the predictions 

are in exact match (see Figure 9.3). 

The validity of the large strain solution can be checked by simple manual 

calculations (see Section A.24). The Jacobian J at the steady-state condition is calculated 

as 0.6484, which is the ratio of the final to initial column heights for the case of one

dimensional compression. Thus, J = 0.6484 = 3.24/5, and is constant throughout the 

height of the soil column. The final Kirchhoff effective vertical stress is equal to 

.1.q(Kirchhofl) = J.1.q(Cauchy) = 58.35 kPa, which is also distributed uniformly throughout the 

height of the soil column at steady-state condition. 

Figure 9. 4 shows the isochrones of Cauchy pore pressures plotted for different 

values of equivalent time factor T. Cauchy pore pressures were calculated as 9(Cauchy) = 
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9(Kirchhofl)/J at the Gauss points. Kirchhoff pore pressures at Gauss points were 

interpolated from the global solution of nodal values. Note that isochrones predicted by 

the large strain model move spatially as a result of the large deformation effect. For 

comparison purposes, the isochrones computed from the Terzaghi model are also plotted 
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Figure 9.4 One-dimensional hyperelastic consolidation: isochrones of constant 

Cauchy pore pressure 

in Figure 9 .4 for the small strain formulation. The explicit expression of excess Cauchy 

pore pressure for one-dimensional small strain consolidation is given by [88] 

m=oo 20e(Cauchy) { ) 
9e(Cauchy) = L o sin(MZ) exp\-M2T ; 

m=O M 

7t 
M = -(2m + 1), (9.1) 

2 
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where Z = z / Ho is normalized depth, e~(Cauchy) is initial excess pore pressure at t = 0. 

Zand z are measured from the top of the consolidating stratum (see Figure 9.2). 

Finally, the variation of average degree of consolidation U with respect to time 

factor Tis compared in Figure 9.5 for large and small strain formulations. The analytical 

expression for U for one-dimensional small strain consolidation, based on Terzaghi's 

linear consolidation model [30], is given by [88] 
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average degree of consolidation with time factor 
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U(T) for FEM solutions is plotted as the ratio of settlement at time T to the ultimate 

settlement at the end of consolidation. The small strain solution predicts a slower rate of 

consolidation than the large strain solution because the latter solution considers the 

reduction in length of the drainage path, which enhances the dissipation of excess pore 

pressure. Reduction of coefficient of permeability of the soil as it consolidates could have 

offset this effect, but this factor is not taken into account in this example. 

9.3 Plane Strain Hyperelastic Consolidation 

Closed-form solutions are available for the problem of plane strain, small 

deformation consolidation of an elastic half-space subjected to a uniform strip load. This 

problem may be simulated with a numerical algorithm for the case of small strain 

formulations and solutions compared. An attempt was made to replicate these solutions 

numerically and demonstrate the significance of the large strain effects on the response of 

a consolidating hyperelastic soil medium deforming in plane strain. 

Figure 9.6 shows the finite element mesh used for the two-dimensional plane

strain problem. The problem consists of a strip load of half-width a = 5 m applied over a 

hyperelastic soil layer 20 m thick. The mesh is composed of 132 D9P4 elements with 575 

displacement nodes and 156 pore pressure nodes. The bottom of the clay layer is assumed 

rigid against vertical displacement, perfectly draining, and subjected to a constant value 

of total potential equal to II= 20.0 m. The material parameters are A= 0 andµ= 250 kPa 

(corresponding to a Young's modulus E = 500 kPa and a Poisson's ratio v = 0). A strip 

load of Aq (Cauchy)= 120 kPa is applied nearly instantaneously (At= 10 days, which is 

negligible compared to the t = 10000 days required to reach complete consolidation) at 
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the ground surface, and is then held constant while the soil undergoes consolidation. 

Permeabilities are k = k11 = k22 = 8.64x 104 m/day, and k12 = k21 = 0; fluid mass density is 

Pw = 1.0 Mg/m3
. The soil elements are assumed to be initially stress-free. 

Figure 9.7 shows the closed-form solution for the time-variation of the centerline 

excess pore pressure at depth z = a beneath the strip load on a semi-infinite elastic half 

space [89] . Along with this solution are the predictions of the numerical model. For 

convenience, the excess pore pressures have been normalized with respect to the strip 

load intensity ~q according to the expression (0 - 00) / ~q, where 00 is the reference 
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hydrostatic Cauchy pore pressure. The point corresponding to z = a in the mesh of Figure 

9.6 is node A, which is situated at a depth of 5 m from the base of the embankment. The 

small strain FE solution readily provides the time variation of the pore pressure at this 

point, since node A is a pore pressure node. However, the large strain model needs the 

values of the Jacobian to determine the Cauchy pore pressures, which are not readily 
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Figure 9.7 Plane strain hyperelastic consolidation: variation of centerline excess pore 
pressure at depth z = a with time 

available at the nodal points. The nearest Gauss point to node A is chosen to assess the 

accuracy of the numerical model. For consistency in presentation, both the small strain 

and large strain FE solutions are evaluated at Gauss point B located at horizontal and 

vertical distances of 0.21 lm from node A, see Figure 9.6. A normalized time factor, T = 
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ct/ a2
, where c = 2µk / (pwg) and tis elapsed time since the beginning of the 

consolidation, is used to describe the solutions in the time domain. Large strain prediction 

matched well with the results of [87]. 

A comparison of the curves shown in Figure 9. 7 suggests that higher pore 

pressures are induced in the large strain case by the sudden application of the external 

load at the early stage of the consolidation process. Thereafter the dissipation occurs at 

almost the same rate up to a time factor T ~ 5.0, when the large strain solution stabilizes 

while the small strain solution is still decreasing. Note that the large strain solution 

asymptotically approaches a nonzero excess pore pressure since the final steady-state 

pore pressure is numerically different from the initially hydrostatic pore pressure due to 

variation in the geometric configuration of the problem. As expected, the small strain FE 

solution agrees better with the closed-form solution, but is not identical because of the 

limitation of the FE model in representing a half space and because of the use of a finite 

time increment to impose the strip load, among other factors. Both the closed-form and 

FE solutions exhibit the Mandel-Cryer effect, or the initial increase in excess pore 

pressure, which is a characteristic feature of the coupled solution [60]. 

Figure 9.8 shows the isochrones of constant Cauchy pore pressures predicted by 

the small and large strain models along the vertical line X1 = 0.211 m beneath the strip 

load. This line is defined by the column of Gauss points closest to the axis of symmetry. 

Note that the large strain solution predicts a steady-state isochrone defined by a nearly 

straight line with an apparent slope equivalent to a fluid with mass density of about 1.23 

Mg/m3
, which is greater than the assumed fluid density of 1. 0 Mg/m3

. This is a result of 

local artesian condition characterized by steady-state upward seepage created by the 
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pressure 

reduction in thickness of the consolidating layer, as the top and bottom drainage 

boundary conditions remain unchanged. The Cauchy pore pressure at the bottom 

boundary converges toward a steady-state value that is slightly higher than the initial 

value. This is a consequence of prescribing the essential boundary condition in the form 

of Kirchhoff pore pressure, which is amplified by the inverse of Jacobian that is less than 

unity due to volumetric compression of the soil. 



CHAPTER 10 
POLK COUNTY EXPRESSWAY 

The Polk County Expressway is a multi-lane toll expressway constructed around 

Lakeland, Florida. The length of the expressway is about 39.4 km (24.5 miles). Major 

parts of the road construction crossed land areas that had retention ponds of phosphatic 

waste clay, deposited approximately 40 years ago as slurry from the phosphate 

beneficiation process. This chapter discusses the numerical predictions using finite 

element analysis ofboth primary (consolidation and swell) and secondary (creep) 

consolidation settlement of the phosphatic waste clay found in the construction site, in the 

presence of vertical wick drains and subject to surcharge loading, unloading and 

subsequent reloading (i.e., road construction). 

Two different constitutive relations, hyperelastic-plastic MCC and hyperelastic

viscoplastic MCC models, are used for prediction of nonlinear responses of the soil 

skeleton of the phosphatic waste clay. The first addresses inviscid (time-independent) 

plasticity, i.e., for a given effective stress, deformation of the soil skeleton is constant 

over time. This is evident in Figures 10.18 to 10.20 where settlement reaches an 

equilibrium state once the excess pore pressure due to preloading has dissipated and the 

clay deposits have attained static effective stresses. The second model simulates the 

secondary compression response of the clay. Secondary compression (or creep 

settlement) continues even after the excess pore pressures have significantly dissipated 

(see Figures 10.23 to 10.25) since the stress-deformation response of the clay skeleton is 

109 
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usually time-dependent, i.e., clay deposits under sustained effective stress undergo a slow 

rate of compression over a long period of time. 

In the case of very thin specimens such as those used in laboratory consolidation 

tests, compression usually occurs in two distinct phases (see Figure C. I): an 

instantaneous primary consolidation and a delayed secondary compression. For 

specimens of finite thickness, e.g., retention ponds of phosphatic waste clay, the 

instantaneous and delayed effects are both present during the primary consolidation 

phase. Secondary compression becomes predominant after dissipation of most of the 

excess pore pressures. 

IO. I Phosphatic Waste Clay 

Phosphate, the primary source of phosphorous in inorganic fertilizers, is obtained 

from mining. The matrix of the excavated material is typically composed of 1/3 

phosphate, 1/3 granular materials (sand), and 1/3 clays (montmorillonite, illite, and 

kaolinite) [90]. The beneficiation process converts the matrix to a dilute solution from 

which the phosphate is skimmed, and the granular material screened, leaving a dilute clay 

slurry for disposal. 

Initially, the slurry (at the construction site of the Expressway) was introduced to 

mine cuts with a solid content of about 5%. Over the years the clay deposits underwent 

self-weight consolidation rendering higher solid content. At the time of the expressway 

construction the solid contents were in the range of33% to 50% and the natural moisture 

contents were in the range of I 00% to 200%. 
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Crucial to numerical simulations is the obtaining of representative material 

properties for use in the proposed constitutive models (Chapters 5 and 6). Studies of soil 

characteristics, both field and laboratory, performed by PSI (a geotechnical consulting 

firm), FDOT's Materials Office and the University ofFlorida's Geotechnical Centrifuge 

Laboratory were utilized for this purpose. A brief summary of soil characteristics data, 

obtained from different sources, is presented in the following. 

Soil characterization conducted by PSI in 1995 classified the phosphatic waste 

clay as very soft with SPT blow counts typically ranging from 2 to 4. The average depths 

of the slime deposits were on the order of 7.6 m (25 feet) and were underlain by 

undisturbed soils. In some cases slime deposits were close to the existing ground surface, 

but in several cases they were overlain by 0.9 to 2.1 m (3 to 7 feet) of very loose to loose 

clayey sand spoils which were knocked over from spoil mounds during reclamation. 

Hard, indurated clay/silts were found at depth ranging from 9.1 to 13 .7 m (30 to 45 feet) . 

PSI concluded the following soil properties from both insitu and laboratory tests. The unit 

weight was in the order of 11.80 to 13.36 kN/m3
• The field vane shear strength in the area 

of interest varied from 12.3 to 22.3 kPa. The tri-axial undrained shear strength varied 

from 4.8 to 27.6 kPa. Wide variation was noticed in the field vane and tri-axial shear 

strengths depending on the site or location of the soil specimens. Series of laboratory 

consolidation tests were conducted by PSI at two different stages: initially at the 

reconnaissance stage and later after the placement of the surcharge loading. Summaries 

of these test results are presented in Tables 10.1 and 10.2 and corresponding SPT boring 

logs are shown in Figures 10.1 and 10.2, respectively. 
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Figure 10.1 SPT boring logs for tests reported in Table 10.1 (Source: PSI) 
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Table 10.1 Summary of laboratory consolidation test results (initial exploration) 

Test Boring Station Offset Depth of Initial Precon. 
Date No. No. Shelby Void Cc Cs Pressure 

Tube Ratio (tsf) 
07/28/92 TB-5-67 742+00 131' R 10' - 12' 2.09 0.82 0.07 0.83 
07/28/92 TB-5-71 746+00 133' R 10' - 12' 5.93 2.93 0.25 0.41 
07/28/92 TB-5-93 774+00 155' R 10' - 12' 7.67 3.76 1.00 0.30 
07/28/92 TB-5-96 778+00 158' R 10' - 12' 5.50 2.90 0.41 0.26 

Table 10.2 Summary oflaboratory consolidation test results (later exploration) 

Test Boring Station Offset Depth of Initial Precon. 
Date No. No. Sample Void Cc Cs Pressure 

Ratio (tsf) 
08/01/97 BH-lA 1744+80 60'R 36'0" 2.38 0.95 0.215 1.48 
08/25/97 BH-2 1774+40 100' L 38'0" 3.40 1.51 0.36 1.47 
07/31/97 BH-3 1775+10 100' R 36'0" 2.97 1.33 0.37 1.68 
08/14/97 BH-4(1) 1779+50 80'L 36'0" 3.46 4.01 0.25 1.13 
08/01/97 BH-4(2) 1779+50 80'L 40'0" 3.41 1.55 0.462 1.05 

The station numbers reported in Table 10.1 are survey baseline stations which 

were numbered differently from construction stations of Table 10.2. Survey baseline 

stations 742+00 to 778+00 are the same as construction centerline stations 1742+00 to 

1778+00. 

The centrifuge tests performed at the University of Florida revealed that the clays 

would not clog as a result of the consolidation process (i.e., sealing the drainage 

boundary). The following parameters were determined from centrifuge and laboratory 

tests [91] on recovered clay samples. 

The Atterberg limits of the slime were as follows: 

Liquid limit (LL): 215% 
Plastic limit (PL): 67.15% 
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Plasticity index (PI): 148.85% 

Water contents, determined before each individual test, were in the order of 190% to 

205%. Solid contents for the recovered samples were consistently in the order of 33%. 

The specific gravity was estimated as 2.70. This is recognized as a reasonable value for 

phosphatic clays (92]. Void ratios, determined prior to each test, typically ranged from 4 

to 5.5. A series ofCRS (constant rate of strain) consolidation tests was performed to 

study correlations among void ratio, effective stress, coefficient of permeability, 

coefficient of consolidation, etc. Figure 10.3 and 10.4 present variations of coefficient of 
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Figure 10.3 Permeability versus void ratio plot from CRS consolidation test 

permeability and average effective stress with void ratio, respectively. See (91] for study 

of the other test results. 
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Figure 10.4 Void ratio versus effective stress plot from CRS consolidation test 

10.2 Wick Drain and Instrumentation 

To facilitate faster consolidation, an embankment acting as surcharge of 4.6 to 7.6 

m (15 to 25 ft) of sand was placed on top of the existing ground surface of the slime 

deposit area. The surcharge load was aided by vertical wick drains, approximately 30,000 

in number, installed in a triangular pattern with side lengths of 1.52 m. Figure 10.5 shows 

a plan of the wick drain installation. The wick drains, consisted of a polypropylene core 

of fluted configuration, designed for flexibility and maximum water flow. The 

permeability of the geotextile membrane surrounding the plastic core was l .48x 10·1 

m/day. A schematic of the consolidation process through the wick drains is shown in 

Figure 10.6. 
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Figure 10.6 Principle of consolidation with wick drains 

Surcharge Area No. I (station 1727 to 1746) and Surcharge Area No. 2 (station 

1768 to 1782) of the Polk County Expressway, Section 5, were instrumented by Atlanta 
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Testing & Engineering (a geotechnical consulting firm) for monitoring field settlements 

and pore pressures. Figures 10.7 and 10.8 show the instrumentation plans. 

Instrumentation included settlement plates, pneumatic settlement cells, piezometers, and 

vertical inclinometers. Monitoring was carried out over a period of approximately 700 

days from the beginning of embankment placement. Field observation data were 

subsequently compared with numerical prediction as presented in the following. 

10.3 Constitutive Model Parameters 

Due to nonlinear elasticity, estimation of appropriate elastic moduli parameters 

such as µo, a, po, E~o is crucial for using the constitutive models discussed in Chapters 5 

and 6. For this purpose, laboratory one-dimensional consolidation (oedometer) tests were 

simulated to obtain the constitutive model parameters for primary and secondary 

consolidation. The hyperelastic-plastic MCC model was used for the prediction of 

primary consolidation only while the hyperelastic-viscoplastic MCC model was used to 

predict both primary and secondary consolidation. A FE mesh for the oedometer cell 

(radius 3.18 cm, height 2.54 cm), composed of2x2 D9P4 axisymmetric elements, is 

shown in Figure 10.11 . 

Figures 10 .12 and 10 .13 present the predictions and measurements of laboratory 

void ratio vs. log ( applied pressure) response for large and small strain primary 
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Load 

Figure 10 .11 FE mesh for oedometer cell 
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consolidation, respectively. Table 10.2 contains a summary of the laboratory 

consolidation test results. Constitutive model parameters, used for the simulation of 

laboratory results, are presented in Tables 10.3 and 10.4. For all the simulations it was 
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Figure 10 .13 Small strain, hyperelastic-plastic simulation of laboratory consolidation tests 

assumed that the critical state slope M = 1. 0, E ~o = 0. 0, saturated unit weight of clay Ysa1 = 

12.58 kN/m3
. The permeability coefficient k was assumed to have a constant value of 

6.9xlff5 m/day. See Figure 10.3 for estimation of permeability coefficient. 
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Preconsolidation pressures pc0 (see Table 10.2) were obtained from the laboratory test 

plots using the Casagrande construction method. 

Note that the MCC model's compressibility parameters').., and K. are different from 

the Cs and Cr (compression and swell indices, respectively) of the laboratory test data (see 

Tables 10.3 and 10.4) due to the different stress paths. ').., and K. are defined for isotropic 

loading while Cs and Cr are obtained from the one-dimensional consolidation test (K-0 

condition [64]). Also note in Tables 10.3 and 10.4 that the').., and K. for small strain were 

slightly different than those for large strain in order to produce similar stress-deformation 

responses. Since the large strain model updates geometry whereas the small doesn' t, the 

stresses which are function of geometry, will be different unless the stiffness is adjusted. 

Table 10.3 Hyperelastic-plastic MCC model parameters for large strain simulation of 
laboratory consolidation tests 

Boring µo a Po ').., K. Laboratory Data 
No. (kPa) (kPa) Cc Cs 
BH-lA 25.0 1.0 0.8 0.22 0.04 0.95 0.215 
BH-2 25 .0 1.0 0.6 0.28 0.05 1.51 0.36 
BH-3 25.0 1.0 1.2 0.25 0.045 1.33 0.37 
BH-4(1) 25 .0 1.0 0.5 0.43 0.065 4.01 0.25 

Table 10.4 Hyperelastic-plastic MCC model parameters for small strain simulation of 
laboratory consolidation tests 

Boring µo a Po A K. Laboratory Data 
No. (kPa) (kPa) Cc Cs 
BH-lA 25.0 1.0 0.8 0.12 0.036 0.95 0.215 
BH-2 25 .0 1.0 0.6 0.145 0.048 1.51 0.36 
BH-3 25 .0 1.0 1.2 0.135 0.045 1.33 0.37 
BH-4(1) 25.0 1.0 0.5 0.40 0.065 4.01 0.25 
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Table 10.5 presents material parameters for the large and small strain simulations 

of the laboratory consolidation test that produce similar stress-deformation responses 

(Figure 10.14). The A and K. values in Table 10.5 fall within the range ofvalues presented 

a, 3.0 +------------"""l~------i 
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,:, ·o 
> 2.0 +--------------':::::,,,,,,,;;i~~.-:;;.,,~-;::_----; 
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Figure 10 .14 Hyperelastic-plastic simulation of laboratory consolidation 

test: large strain versus small strain 

Table 10.5 Hyperelastic-plastic MCC model parameters for 
simulation of laboratory consolidation test 

Parameter Large Strain Small Strain 

L1() (kPa) 25 .0 25 .0 

a. 1.0 1.0 

1C 0.06 0.05 
A, 0.3 0.18 
M 1.0 1.0 
Po (kPa) 1.0 1.0 
Pc0 (kPa) 142.0 142.0 

e 
Evo 

0.0 0.0 

Ysat (kN/m3
) 12.58 12.58 
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in Tables 10.3 and 10.4. As a result, this set of A and K values are used for subsequent 

predictions of field primary consolidation data for different pond depths. 

Figure 10.15 presents predictions and measurements of laboratory axial strain rate 

data, primary and secondary consolidation combined, for the case of the large strain 
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Table 10.6 Hyperelastic-viscoplastic MCC model parameters for large strain simulation 
of laboratory consolidation tests 

Boring µo a. Po y N A K Laboratory Data 
No. (kPa) (kPa) Cc Cs 
BH-lA 25.0 1.0 0.8 7.0xl0-7 1.5 0.12 0.036 0.95 0.215 
BH-2 25 .0 1.0 0.6 7.0xl0-7 1.8 0.145 0.048 1.51 0.36 
BH-3 25.0 1.0 1.2 7.0xl0-7 1.5 0.135 0.045 1.33 0.37 
BH-4(2) 25 .0 1.0 0.5 7.0xl0-7 1.8 0.40 0.06 1.55 0.462 

formulation. The viscoplastic constitutive model parameters used for the simulation are 

presented in Table 10.6. To be consistent with the elasto-plastic simulation, it was 

assumed that M =1 .0, eio = 0.0, Ysat = 12.58 kN/m3 and k = 6.9x 10-5 m/day. 

Preconsolidation pressures pc0 were obtained from laboratory test results (see Table 10.2). 

In the prediction of the laboratory consolidation test data and subsequently, the 

secondary (creep) settlement of the phosphatic waste clay, the viscous flow function q,(J) 

(see (6.4a), (6.4b )) was normalized as follows 

q,{f) = ( 2 / JN, 
Pc,n 

(10.1) 

where Pc.n is the converged preconsolidation pressure at the previous load step n. Use of a 

power function for q,(J) did a better job matching the laboratory axial strain rate profile 

than an exponential function. Tables C.1 to C.4 show that the contribution of the 

secondary settlement to the total settlement for a sustained load increment in laboratory 

consolidation tests is significant (on average ranging from 8% to 15%). In order to ensure 

a higher contribution of viscoplastic strain e vp , the yield function / was normalized 
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adaptively with Pc,n rather than a constant value so that product term yep(!) of (6.2) 

remains small resulting in a yield condition. 

Also notice that the compressibility parameters A and K for the viscoplastic model 

are slightly lower, thus resulting in a higher hardening modulus 0 = ll(A - K) (see 

(5.24)2), than in the elasto-plastic model, even though both formulations produced 

similar stress-deformation responses (compare between Tables 10.3 and 10.6). This 

phenomenon can be explained from analytical expressions of incremental strain in the 

plastic regime, since the hyperelasticity responses are identical for both the constitutive 

models. Incremental volumetric plastic strains are given by the following expressions for 

the viscoplastic and elasto-plastic MCC models, respectively (see (6.3) and (5 .29)1 for 

reference). 

(10.2a) 

(10.2b) 

For the same stress level, i.e., for a given value of p, llycp(f) of (10.2a) is consistently 

lower than llcp of (10.2b). Now, in order to produce similar value of incremental 

volumetric plastic strain, (pc)vicoplastic < (pc)eiasto-plastic~ (llpclpc)vicoplastic < (llpclpc)etasto-plastic, 

Consequently, (A - K)viscoplastic < (A - K)etasto-ptastic (see (5.24)). 

10.4 FE Mesh 

Due to the variability of the depths of the clay slime deposit (see Figures 10.9 and 

10.10), three different pond depths: 2.44m, 4.57m, and 7.62m (8 ft, 15ft and 25 ft), were 

selected for FE meshes. Surcharge area no.2 had thicker slime deposit ponds then 
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surcharge area no. I (compare Figures 10.9 and 10.10). Accordingly, a 7.62 m deep pond 

was selected for simulation of field data of the settlement cells located in surcharge area 

no.2. 2.44 m and 4.57 m deep ponds represented the slime deposits of surcharge area 

no.I. Tables 10.7 to 10.9 list the settlement cells and plates (see Figures 10.7 and 10.8 for 

their locations) that were represented by FE meshes of different pond depths. 

Table 10.7 Settlement cells/plates represented by 2.44 m deep pond 

Cell/Plate Station Offset Max. Surcharge 
No. No. Height (m) 
SC-5 1732+50 I00'R 7.16 
SP-23 1729+00 45'R 8.20 
SP-33 1739+00 0 6.37 
SP-37 1743+50 45'L 6.04 

Table 10.8 Settlement cells/plates represented by 4.57 m deep pond 

Cell/Plate Station Offset Max. Surcharge 
No. No. Height (m) 
SC-9 1740+50 50'R 6.58 

SC-11 1743+00 70'R 6.52 
SC-13 1745+00 80'R 6.55 
SP-36 1742+00 0 6.40 
SP-38 1743+50 45'R 6.52 
SP-39 1745+00 0 6.55 

Table 10.9 Settlement cells/plates represented by 7.62 m deep pond 

Cell/Plate Station Offset Max. Surcharge 
No. No. Height (m) 

SC-17 1772+50 130'R 8.23 
SC-18 1772+50 130'L 8.35 
SC-20 1775+00 120'L 7.89 
SC-21 1777+50 120'L 7.68 
SC-23 1778+00 l00'L 8.08 
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The meshes, comprised of axisymmetric D9P4 elements, are shown in Figure 

10 .17. Left vertical boundaries of the meshes are exposed to wick drains and so are 

subject to prescribed hydrostatic pore water pressures. The equivalent diameter of the 

cylinder of soil around each drain, shown in Figure 10 .16, in the case of a triangular 

installation pattern (see Figure 10.5) is calculated as D = 1.06s = 1.61 m [93], wheres is 

the spacing of the wick drain ( = 1.52 m). The equivalent diameter of the wick drain, de is 

calculated as de= 2(B + t)ht = 6.56 cm [93], where Bandt are the width and thickness of 

the wick drains, respectively. B = 10 cm, t = 0.3 cm for the wick drains used in the field . 

Accordingly, the radial distance of the left vertical boundaries of the meshes from the 

axis of symmetry is 3.28 cm (equivalent radius of wick drains). Bottom edges are 

assumed to be rigid, impervious while the top edges are subject to free drainage. Meshes 

are subdivided in four layers of materials to take into account the variability of material 

properties with depth, e.g., preconsolidation pressure, shear strength, etc. Layers of 

elements of any mesh are of equal height. 

Pore water 
migration 

Figure 10.16 Schematic of contributive cylinder of soil surrounding 

wick drains 
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10.5 Prediction of Primary Consolidation 

Material properties used for the prediction of primary consolidation are presented 

in Tables 10.10 to 10.12 for the different pond depths. Constitutive model parameters 

such as: J..lo, a., A, K, p0 are obtained from Tables 10.3 to 10.5. The top layer of the meshes 
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(height~ 0.6 m) was assumed to be slightly overconsolidated due to dessication. As a 

result, µo and pc0 have higher values for the top layers. Values of preconsolidation 

pressure, pc0 are estimated from Table 10.1. Notice that Table 10.1 shows lower pc0, 

higher initial void ratio and higher Cc than those in Table 10.2. This is because the tests 

reported in Table 10.1 were performed before the slime deposits were subjected to 

increased overburden pressure either due to the placement of the surcharge load or 

fillings during the land reclamation process. Compare the boring logs in Figures 10.1 and 

10.2. Consequently, pc0 values reported in Table 10.1 represent true estimates of the 

maximum past preconsolidation pressure of the slime deposits. For all the simulations, 

both large and small strain, it was assumed that eio = 0.0 and the initial value (for large 

strain) of the saturated unit weight, Ysa1 = 12.58 kN/m3
• Coefficients of permeability were 

assumed to be constant: kv = kh = 6.9x I 0-5 m/day. 

Table 10.10 Material parameters for hyperelastic-plastic consolidation 
(pond depth 2. 44 m) 

Parameter Layer I Layer 2 Layer 3 Layer 4 

µo (kPa) 25.0 25.0 25.0 35.0 
a. 1.0 1.0 1.0 1.0 
A (large strain) 0.3 0.3 0.3 0.3 
1e (large strain) 0.06 0.06 0.06 0.06 
A (small strain) 0.18 0.18 0.18 0.18 
K (small strain) 0.05 0.05 0.05 0.05 
M 1.0 1.0 1.0 1.0 
Po (kPa) 1.2 0.8 0.8 0.8 
pc0 (kPa) 40.0 37.5 35.0 40.0 
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Table 10.11 Material parameters for hyperelastic-plastic consolidation 
(pond depth 4.57 m) 

Parameter Layer 1 Layer 2 Layer 3 Layer 4 

µo (kPa) 25.0 25 .0 25.0 35.0 
a, 1.0 1.0 1.0 1.0 
A (large strain) 0.3 0.3 0.3 0.3 
K (large strain) 0.06 0.06 0.06 0.06 
A. (small strain) 0.18 0.18 0.18 0.18 
K (small strain) 0.05 0.05 0.05 0.05 
M 1.0 1.0 1.0 1.0 
Po (kPa) 1.5 1.0 1.0 1.0 
pc0 (kPa) 50.0 42.5 37.5 40.0 

Table 10.12 Material parameters for hyperelastic-plastic consolidation 
(pond height 7.62 m) 

Parameter Layer 1 Layer 2 Layer 3 Layer 4 

µo (kPa) 25.0 25.0 25.0 35.0 
a, 1.0 1.0 1.0 1.0 
A (large strain) 0.3 0.3 0.3 0.3 
K (large strain) 0.06 0.06 0.06 0.06 
A. ( small strain) 0.18 0.18 0.18 0.18 
K (small strain) 0.05 0.05 0.05 0.05 
M 1.0 1.0 1.0 1.0 
Po (kPa) 1.5 1.0 1.0 1.0 
pc0 (kPa) 60.0 47.5 37.5 40.0 

The surcharge load of sand was placed in steps over approximately 305 days and 

kept for about 180 days before unloading. Based on the existing surface elevation, 

surcharge height varied for locations of different settlement cells/plates. The maximum 

surcharge height (see Tables 10.7 to 10.9) varied within a range of 6.1 m to 8.23 m (20 ft 

to 27 ft); an average value of 7.32 m (24 ft) was selected for the numerical simulation. 
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Unloading of surcharge was done in a short period ohime followed by reloading due to 

placement of the pavement. In the simulations, unloading was assumed completed within 

48 days, kept for 32 days before the placement of pavement. The roadway construction 

period was estimated to be 48 days. 

Figures 10.18 to 10.20 present the small strain and large strain primary 

consolidation predictions for the different pond depths. Note that the small strain 

formulation predicted higher settlement than the large strain formulation since the latter 

uses natural strain. The thicker the clay deposit, the higher was the ratio of small strain 

settlement to large strain settlement due to primary consolidation. Table 10.13 shows the 

comparison of settlements at the end of 485 days, immediately before unloading. 

0 

20 

SETTLEMENT DATA FROM POLK COUNTY EXPRESSWAY 
Area 1: (04/06/96 -11/13/97), Pond depth 2.44 m 

Time, days 

8 

-+-SC-5 
---SP-33 

1 

~SP-23 
--+-SP-37 

8 

6 E 
~ 

4 
.r; 
c:::,, ·; 

2 :c 

0 ii: 

1 

; 40 +------' 
-+- Large Strain - SmaU Strain 

e+-----+-----+--+-----1 __ FiU 
E 
Cl> 

= 
~ 60 -+-----

Figure 10.18 Hyperelastic-plastic consolidation settlement: pond depth 2.44m 



E u 
.;-
C 
a, 
E 
a, 

E a, 

"' 

E u 
.;-
C 
a, 
E 
a, 

E a, 

"' 

0 

20 

40 

60 

80 

100 

120 

140 

160 

136 

SETTLEMENT DATA FROM POLK COUNTY EXPRESSWAY 
Area 1: (04/10/96 -11/13/97), Pond depth 4.57 m 

4 

-+--------+---+-sc-9 
_._sp-36 

Time, days 

~sc-11 

-+-sp-38 

-.-sc-13 

-sp-39 

_._ large Strain__._ Small Strain - Fill 

8 

6 

4 

2 

0 

1 

Figure 10.19 Hyperelastic-plastic consolidation settlement: pond depth 4.57 m 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

220 

SETTLEMENT DATA FROM POLK COUNTY EXPRESSWAY 
Area 2: (04/06/96 -11/13/97), Pond depth 7.62 m 

4 

_._SC-17 
--+--------l 

-+-SC-21 

~SC-18 

-SC-23 

-+- large Strain__._ Small Strain 

_._SC-20 

-Fill 

8 

6 

4 

2 

0 

Figure 10.20 Hyperelastic-plastic consolidation settlement: pond depth 7.62 m 

E 
~ 
~ 
0) ·; 
::c 

ii: 

E 
~ 
~ 
0) ·; 

::c 

ii: 



137 

The small strain solution predicted a slower rate of consolidation than the large 

strain solution because the latter considered the reduction in length of the drainage path 

resulting in faster excess pore pressure dissipation. Consider the 4.57 m pond for a given 

time, e.g., 245 days (see Figure 10.19). Even though the small strain formulation shows 

111.2 cm of settlement versus 99 .2 cm for the large strain, the degree of consolidation 

(assuming 100% primary consolidation at 485 days) for the small strain is 75.7% 

(=111.2/146.9x 100) versus 80% (=99.2/124.1 x 100) for the large strain. For all the ponds, 

primary consolidation reached a steady-state condition at around 700 days followed by 

elastic rebound during unloading. The large strain formulation did a good job predicting 

the primary consolidation field results for different pond depths. 

Table 10.13 Comparison of primary consolidation settlements at 485 days: 
large strain versus small strain 

Pond depth Psmall strain Plarge strain Psmall strain 
(m) (cm) (cm) Plar2e strain 

2.44 77.8 70.0 1.11 
4.57 146.9 124.1 1.18 
7.62 206.1 155.8 1.32 

Field piezometer pore pressure data are compared with numerical predictions. For 

both the large and small strain simulations are conducted. Figure 10.21 shows the total 

Cauchy pore pressures at node point A (see Figure 10.17) of the 4.57 m deep pond. 

Piezometers PT-I and PT-2 are represented by 4.57 m deep pond due to their location in 

surcharge area no. 1. See Table I 0.14 for locations of piezometers. For the large strain 
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formulation, total Cauchy pore pressure, 9cauchy is computed as 9Kirchhoff / J, J being the 

Jacobian at the Gauss integration point closest to node point A. 

Table 10.14 Location of piezometers 

Piezometer Station Offset 
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Similarly, piezometer data from PT-7, PT-8, PT-10 and PT-11 are compared with 

predictions from the 7.62 m deep pond due to their locations at the site of deeper the 

retention ponds, i.e., surcharge area no. 2 (see Tables 10.14, 10.8 and Figure 10.10). 

Figure 10.22 presents the field data and numerical predictions. Total Cauchy pore 

pressures are evaluated at node point B of the 7. 62 m deep pond ( see Figure IO .17). 

9Cauchy is computed following the same technique as mentioned above. 
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ecauchy from the small strain prediction are higher value than the large strain 

model; the ratio increases over time. This is due to the fact that the large strain 

formulation updates geometry. So, as the mesh undergoes settlement, the increasingly 

shorter drainage path results in a faster rate of excess pore pressure dissipation and lower 

values of0Cauchy_ This phenomenon is demonstrated in Figure 9.5 in the case of the one

dimensional example. 

10.6 Prediction of Secondary Consolidation 

Secondary compression assists hydrodynamic lag from the beginning of the 

consolidation process but becomes dominant after the excess pore pressures have 

substantially dissipated. Actually there must be small excess pore pressures during 

secondary compression to cause water to flow from the soil. However, secondary 

compression proceeds very slowly and the velocity of flow is very small. Hence the 

associated excess pore pressures are immeasurably small. Secondary compression ( or 

creep settlement) is a time-dependent phenomenon: the longer the clay remains under a 

constant effective stress, the denser it becomes. 

Material parameters used for the prediction of viscoplastic consolidation (both 

primary and secondary) are presented in Tables 10.15 to 10.17. Hyperelasticity model 

parameters such as µo, a, p0 and viscoplasticity parameters such as y and N are obtained 

from Table 10.6. Higher values of µo and pc0 are used for the top layer of elements (layer 

no.4 in Figure 10.17) assuming slight overconsolidation of the top layer. To be 

consistent, same variations of µo and pc0 as in Tables 10.10 to 10.12 are used for the 
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prediction of secondary consolidation. For all the ponds, it was assumed that e~0 = 0.0 

and the initial value ofysat = 12.58 kN/m3
. Coefficients of permeability, kv and kh are 

assumed to have a constant value of6.9x10·5 m/day (an average value taken from 

laboratory test result, see Figure 10.3). Figures 10.23 to 10.25 present the large strain 

predictions of hyperelastic-viscoplastic consolidation for the different pond depths. 

Table 10 .15 Material parameters for large strain, hyperelastic-viscoplastic consolidation 
(pond depth 2.44 m) 

Parameter Layer 1 Layer 2 Layer 3 Layer 4 

µo (kPa) 25.0 25 .0 25.0 35 .0 
a 1.0 1.0 1.0 1.0 
A, 0.3 0.3 0.3 0.3 
K 0.05 0.05 0.05 0.05 
M 1.0 1.0 1.0 1.0 
Po (kPa) 1.2 0.8 0.8 0.8 
Pc0 (kPa) 40.0 37.5 35 .0 40.0 
y 7.0x10·7 7.0x10·7 7.0x10·7 7.0x l0-7 

N 1.5 1.5 1.5 1.5 

Table 10.16 Material parameters for large strain, hyperelastic-viscoplastic consolidation 
(pond height 4.57 m) 

Parameter Layer 1 Layer 2 Layer 3 Layer 4 

µo (kPa) 25.0 25.0 25.0 35.0 
a 1.0 1.0 1.0 1.0 
A, 0.3 0.3 0.3 0.3 
K 0.05 0.05 0.05 0.05 
M 1.0 1.0 1.0 1.0 
Po (kPa) 1.5 1.0 1.0 1.0 
pc0 (kPa) 50.0 42.5 37.5 40.0 
y 7.0xl0-7 7.0xl0-7 7.0xl0-7 7.0x l0"7 

N 1.5 1.5 1.5 1.5 
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Table 10.17 Material parameters for large strain, hyperelastic-viscoplastic consolidation 

Parameter 

µo (kPa) 
a 
A, 

1C 

M 
Po (kPa) 
pc0 (kPa) 
y 
N 

(pond height 7.62 m) 

Layer 1 Layer 2 Layer 3 Layer 4 

25.0 25 .0 25.0 35.0 
1.0 1.0 1.0 1.0 
0.3 0.3 0.3 0.3 
0.05 0.05 0.05 0.05 
1.0 1.0 1.0 1.0 
1.5 1.0 1.0 1.0 
60.0 47.5 37.5 40.0 
7.0xl0-7 7.0xl0-7 7.0x10-7 7.0x10-7 

1.5 1.5 1.5 1.5 
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SETTLEMENT DATA FROM POLK COUNTY EXPRESSWAY 
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Monitoring of the field settlement was discontinued after approximately 700 days. 

Consequently, creep settlement over long periods of time could not be compared with 

numerical predictions. Figures 10.18 to 10.20 show that primary consolidation reaches 

equilibrium stage immediately after the pavement construction. So it is fair to assume that 

the settlement that occurs after road construction would be predominantly secondary 

compression under a constant effective stress. Table 10.18 compares the creep 

settlements that occurred over 3000 days for different pond depths. The deeper the clay 

deposit, the higher the creep settlement and the longer it took to reach an equilibrium 

stage. This phenomenon is self-explanatory. Column 3 of Table 10.18 presents time to 

reach a rate of settlement negligibly small, in this case < 2mm/year. 

Table 10.18 Comparison of creep settlements for different ponds 

Pond depth Creep settlement Time to reach 
equilibrium 

(m) (cm) (day) 
2.44 3.6 1760 
4.57 7.3 2200 
7.62 10.0 3000 



CHAPTER 11 
CONCLUSIONS 

This study involved the prediction of primary ( consolidation and swell) and 

secondary (creep) settlement of a phosphatic waste clay found at the construction site of 

the Polk County Expressway. Central to this research work was the development and 

implementation of large strain based consolidation model in finite element code to predict 

both the laboratory and field data. Laboratory consolidation test data were numerically 

simulated in order to obtain constitutive model parameters which were subsequently used 

for prediction of field data. Both large and small strain formulations were used for the 

numerical predictions. The large strain approach is observed to do a better job simulating 

the field data than the small strain solution. 

Following is a summary of the important findings of the research and some 

suggestions and recommendations. 

Stress-deformation response, i.e., void ratio versus log (applied pressure) curves 

from one-dimensional laboratory consolidation tests, was predicted using both the large 

and small strain formulations. It was found that the Cam-Clay model ' s compressibility 

parameters A and K are different from Cs and Cr ( compression and swell indices, 

respectively) of the consolidation test data since they are obtained from loading along 

two different stress paths. Also, A and K for small strain were found to be different than 

those for large strain though they produce similar stress-deformation responses. Since the 

145 
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large strain model updates geometry whereas the small doesn't, the stresses which are 

load/area (i.e., a function of geometry), will be different unless the stiffness is adjusted. 

Though the small strain formulation performed well predicting the laboratory 

consolidation test data its prediction of field settlement data was poor, whereas the large 

strain model did a good job for both the laboratory and field data. The small strain 

formulation predicted higher settlements than the large strain formulation since the latter 

uses natural strain. The thicker the clay deposit, the higher the ratio of small strain 

settlement to large strain settlement due to primary consolidation. 

The small strain solution predicted slower rates of consolidation than the large 

strain solution because the latter considered the reduction in length of the drainage path 

resulting in faster dissipation of excess pore pressure. Total Cauchy pore pressures, 

9cauchy' predicted from the small strain model were higher than those from the large 

strain model; the ratio increased over time. This is due to the fact that the large strain 

formulation updates the geometry. So, as the mesh undergoes settlement the increasingly 

shorter drainage path results in a faster rate of excess pore pressure dissipation and lower 

values of 9Cauchy_ 

The viscoplasticity model parameters y and N were obtained from numerical 

simulation of laboratory consolidation test data. The proposed hyperelastic-viscoplastic 

MCC model did an excellent job predicting the rate of axial strain from laboratory 

consolidation tests which included both primary and secondary settlements. Monitoring 

of the field settlement was discontinued at an early stage (around 700 days). 

Consequently, creep settlement over long periods of time could not be compared with 

numerical predictions. Large strain simulations with the viscoplastic MCC model were 
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run for a period of 3000 days in order to predict creep settlement. The deeper the clay 

deposit, the larger the creep settlement and the longer it took to reach an equilibrium 

stage (rate of settlement is negligibly small, e.g.,< 2mm/year). 

A closed-form solution of one-dimensional large strain, hyperelastic consolidation 

is needed for verification of the numerical code. Such analytical solutions are already 

documented in the literature in reduced convective coordinates. A more generalized, 

elegant closed-form solution needs to be derived in full material description. 

Matrix formulation in full material description turned out to be cumbersome 

compared to a mixed formulation of spatial description in reference configuration. This is 

due to the fact that constitutive models for both solid and fluid phases were derived in 

spatial quantities such as Kirchhoff stresses and pore pressures. Constitutive models in 

terms of reference configuration, e.g., first Piola-Kirchhoff stresses and pore pressures, 

could have rendered an elegant matrix formulation in full material description. 

A small number of laboratory consolidation tests were available for determining 

the necessary constitutive model parameters. More laboratory data would have helped 

better understand correlations between laboratory soil parameters and corresponding 

constitutive model parameters. For example, no definite relations could be outlined 

between the viscoplastic model parameters y and N and the laboratory secondary 

compression index Ca due to limited data availability. 

A viscoelasticity model rather than hyperelasticity could better represent the 

stress-deformation responses during the unloading and subsequent reloading phases. 
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The mathematical framework for large strain consolidation ( quasi-static case), as 

presented in this research, can be extended for dynamic responses of saturated soil media 

in the large strain regime. Such a development, though tedious, is worthwhile pursuing. 

" 



APPENDIX A 
MATHEMATICAL DERIVATIONS 



150 

A. I Gradient of the Jacobian, J 

One can show from matrix algebra that if a(z) is a matrix of function z, then 

d da ·· / ) 
-(det(a)) = _iJ : COF\aij 
dz dz 

(A.I) 

where COF(aij) is (i, j)th cofactor of the element au of the matrix a. Therefore, 

~ = {___E__( oxj )} :COF(Fjk)= {-a-(auj)} : COF(Fjk)= 0. (A.2) 
ox- ox- axk axk ox-

• 1 1 

x and X represent spatial and material coordinates of a point X in undeformed 

configuration B, respectively. 

Using the identity (A.2), one can obtain from (3 .58) that grad nw = 0. Since n5 + 

n w = 1, grad n5 = 0. From (3 .11 ), one can also derive that grad p = 0 knowing the fact that 

grad Pa= 0 (a= s, w). Putting together, an important corollary emanates from the 

identity (A.2) as follows 

grad J = grad p = grad n 8 = grad n w = 0. 

In reference configuration B, gradient of J takes the form 

GRADJ = ~ = aJ ox j = 0. 
ax· ~-·ax· l UJ\. J 1 

A.2 Balance of Energy of Saturated Soil 

From (3.56), one can obtain the relation 

(A.3a) 

(A.3b) 

(A.4) 
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where 1 is the second order identity tensor. Now, localized balance of energy of soil

water mixture in material form (3 . 61) can be rearranged as 

Expanding the volume conservation equation ( 4.6) and using (A.3a), one can obtain 

(A.6) 

Substituting (A.6) in (A.5), one can deduce 

Jp£=,' :d'+nw0(1- n1., }ivv' =•' :d'+(l- n1., }wel:gradv' 

=•' :d' +(!- n1., }w :I'=•' :d'+(l- n1., }w :d' (A.7) 

= [ •• +(i- n 1., } w] d s = , d s. 

A.3 Weak Form of DIVP + p 0g = 0 

Weak or variational form of field equation of stress equilibrium ( see ( 4. 3)) can be 

written as 

f 
8

11 · (nIVP + p0g)dv = o, 

(A.8) 

11 is vector of virtual displacement as defined in (4.11). Using Green's theorem, one can 

write 
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(A.9) 

where N is the unit outward normal to the surface 88 in reference configuration. 

t = P • N is the traction vector prescribed on 88. Substituting (A.9) in (A.8) yields 

f Tti ti dA-f ( 8rti Pii - PoTtigi J dV = 0, 
oB B 8Xj ~ (A.IO) 

⇒ f (GRAD rt : P -p011 · g)dV -f rt· tdA = 0. 
B M 

(A.10) presents the weak form described in (4.12). 

A.4 Weak Form of div v + div v = 0 

Weak form of the field equation of flow continuity (see (4.8)) can be written as 

f 
O 

\V(div v + div v )dn = 0, 

f ( av· av·) ⇒ \j/-
1 + \j/-1 dO = 0, 

0 &q l7Xi 

(A.11) 

where \JI represents an arbitrary virtual pore pressure filed as defined in (4.15). Using 

chain rule, one can write 

ovi 8 ( ~) d ~ \jl-= - \j/Vi -gra \jl · V . 
l7Xi l7Xi 

(A.12) 

Substituting (A.12) in (A.11) yields 

f \JI avi dn+J {~(\Jlvi)-grad\jl· v}dn = o, 
0 l7Xi O axi 

⇒ f (\Vdivv-grad\jl·v)dn+J ~(\Jlvi)dO=O. 
0 oax• l 

(A.13) 

Using Green's theorem, one may obtain 
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f ~ ( \VVi) dn = f 'V V . n dr = -f 'V q dr . 
n&q r r 

(A.14) 

Here q = -v • n is the volumetric flow rate along the boundary rh = <l>t( aah) ( see 

( 4.2b )); and q is positive when fluid is being supplied to the system. n is the outward unit 

normal to the deformed surfacer. Substituting (A.14) in (A.13) yields 

f 
O 

('Vdiv v - gard 'V · v)dn-fr \{/q dr = 0. (A.15) 

(A.15) represents variational form H(q>,II, 'V) = 0 in spatial description (see (4.16)). 

A.5 Area Transformation of Flow Rate 

Push-forward of an infinitesimal area drE r in spatial configuration to dAE aa in 

material configuration follows the relation [56] 

ndr = JN -F-1dA . (A.16) 

N and n are the outward normals to the undeformed surface aa and deformed surface r = 

<l>t(88), respectively. Fis the deformation gradient (see (3.44)). Multiplying both sides of 

(A.16) by v and exploiting the Piola identity V = JF-1 
• v, one can deduce the 

following relation 

-Villi dr = -viJNJ•F:1 dA 
Jl 

⇒ qdr = -(JF-1
. v)jNj dA 

⇒ qdr =-V -NdA = QdA, 

(A.17) 

where Q and q are the volumetric flow rates along per unit area of the boundaries 

aah E aa and <l>t(88h), respectively. See Section 4.2 for definitions of v, V, Q and q. 
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A.6 Additive Decomposition of Principal Natural Strain 

In the space of principal natural strain E E R3
, deformation gradient matrix F can 

be written as 

(A.18} 

AA's are the stretches in principal directions. In matrix form, product decomposition ofF 

(see ( 4.27)) can be written as 

0 AT 0 0 AP 
1 0 0 

[} A2 ~1= 0 A~ 0 0 AP 2 0 ⇒ A A = A~ A~ ; VA= 1,2,3 . (A.19) 

0 A3 0 0 A~ 0 0 AP 3 

Taking the natural logarithms of (A.19) yields 

Trial elastic left Cauchy-Green tensor be,tr, defined in (4.41)1, can be written in 

following product form: 

=~F:/}F:/)1 ={fFn(Ff r}{fFn(Ff fr 
={F(Ff r}{F(Ff r r 

(A.20) 

(A.21) 

In the space of principal strains, be, tr and FC can be expressed in the following matrices: 
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( "-i' tr r 0 0 

be, tr= 0 ( A;,tr )2 0 

0 0 ( A;,tr)
2 

Now, from (A.18) and (A.22)2, one can write 

A1 

Af n 
> 

F(Fxr = 0 

0 

Substituting (A.23) and (A.21) yields 

Fp -n -

0 0 

A2 
0 

A~ n 
> 

0 
A3 

A~ n 
> 

'le,tr _ AA 
"'A - -- VA= 1,2,3 . 

A~ n 
> 

Taking natural logarithms of (A.24) produces 

Af n 
> 

0 

0 

A. 7 Proof of Piola Identity: DIV Y = J div y 

0 0 

A~ n 0 . (A.22) 
> 

0 A~ n 
> 

(A.23) 

(A.24) 

(A.25) 

Piola transform of vector y is given by Y = JF-1.y. Now DIV Y can be expanded 

using chain rule as follows: 
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a ( ) a I -1 ) a ( axi J 
DIVY = ax· Yi = ax· \JFij Y j = ax· 1 ax • Y j 

1 1 1 J 

_ a1 ( axi . J 1 a ( axi J . 1 axi oy j -- --y + -- -- y + ---
ax· ax · J ax· ax · J ax · ax· 1 J 1 J J 1 

_ 1 a (axi) . 1 oy j ---y+-
ax· ax· J ax· J 1 J 

= J divy, 

(A.26) 

since GRAD J = 0 (see (A.3b). x and X represent spatial and material coordinates of a 

point XE B, respectively.Bis the undeformed, reference configuration. 

A.8 Linearization ofF, F 1 

Linearization ofF and F-1 is given by 

LF =F+oF· 
' 

(A.27) 

Let ou be the variation of the displacement field u. One can express variation ofF as 

oF = ~ a(x+Eou) = a(ou) = a(ou). 8x = gradou•F= GRADou . (A.28a) 
&le=O ax ax ax ax 

F-F-1 
= 6; 6 is the Kronecker delta. So, o( F·F1

) = O; F-oF1 
= - oF• F 1

. One can write 

F · 6F-1 = -(grad ou · F) · F-1 = -grad ou 

⇒ oF-1 = -F-1 · gradou = -F-1 · GRADou • F-1 . 

(A.28b) 

Substituting (A.28a) and (A.28b) in (A.27), one can deduce to (7.3a) and (7.3b). 
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A. 9 Linearization of J, j 

Linearization of J, j is given by 

LJ = J +oJ· 
' 

(A.29) 

In order to expand (A.29), one needs to obtain expressions for oJ, oi. Variation of J, oJ 

can be written as 

oJ = ~ det F(x + eou) = ~ det(a(x + eou)J 
de &=0 de &=0 ax 

= [~ a(x +eou)]: COF(F) = (gradou · F): COF(F) 
de &=0 ax 

= (grad ou )ik F kj COF(Fij ) 

= (grad ou )11 F1j COF(F1J+ (grad ou )22 F2j COF(F2J 

+ • · ·· • · · · ·· · · + (grad Ou )nn F nj COF(F nJ 

= J{(gradou)11 + (gradou)22 + ......... + (gradou)nn} 

= J divou 

Now j = aJ/at = J div (au/at)= J div v. So, oi = o(J div v) = J o(divv )+ oJ divv. 

o(divv)=o( GRADV :F-t) 

=o(GRADV):F-t +GRADV : oF-t 

= GRADOV: F-t -GRADY: (F-t -grad Ou y 
= divov-grad V: gradt Ou . 

From (A.30) and (A.31), one can write expression for oi as 

oi = i[ div(ov)- grad V: gradt (ou)+ div(ou)div V l 

(A.30) 

(A.31) 

(A.32) 
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A. IO Linearization of Po 

Lpo = Po +opo = Po +o(Jp). 

Using the relation {3.48), one can derive 

o(Jp)= poJ +Jo{Ps(I-n w )+pwn w} 

= poJ + J(pw -ps)on w 

= poJ + J(pw -ps)o{1-(1- n~) 1-1} 

= poJ +J(pw -ps)(1-n~ )1-201 

=pwoJ 

= PwJ div(ou). 

ops = opw = 0, since solid and fluid phases are assumed incompressible. 

A.11 Relation between Tensors A and D 

By definition (see Section 7.2.1), 

aP:· a 
A .. kl - lJ - (F· S . ) lj - -- - -- tm mJ 

aFkl aFkl 

as · ac = F- mJ ab + S ·1 o "k . 
tm ac ab aFkl J t 

Cab = FcaFcb (cf (3.59)). Taking derivative of C yields, 

{A.33) 

(A.34) 

(A.35) 

{A.36) 

Substitution of{A.36) in (A.35) results Aijkl = 2FimFknDmjnl + S jlOik, since Dmjnl = 

Dmjln• 
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A.12 Relation between Tensors a and d 

Using (7.12), (7.15a), (7 .15b) and the relation 't = F·S·F\ expression of spatial 

tangential elasticity tensor a can be rearranged as follows : 

So, a=d+'tEBl. 

aijkl = Fjm F1n Aimkn 

= Fjm F1n {2Fia FkbDambn + Smn °ik} 

= 2FiaFjmFkbF1nDambn + (FjmFln Smn )oik 

= dijkl + 't jl Oik. 

A.13 Spectral Decomposition of b, C 

(A.37) 

Left and right Cauchy-Green tensors, band C, respectively, are isotropic tensor 

functions since the transformations 

(A.38) 

holds for all orthogonal tensors Q. Let f(b) = bm12
, m need not be restricted to integer 

values. Spectral decomposition of f(b) then takes the form 

3 
f{b)= bm/2 = LA.Tn(A) ®n(A), (A.39) 

A=l 

where AA and n<A>, respectively, are the eigenvalues and eigenvectors of the left stretch 

tensor V = b112
. Following the representation theorem [94], f(b) in a space E R3 may be 

expressed as a polynomial in b with scalar coefficients which are functions of the 

invariants of b: 

(A.40) 
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Here Oo, 01, and 02 are functions of the principal invariants of b given by 

(A.41) 

Consider b and hence f(b) as diagonalized, permitting the substitution of b and bm/2 with 

their corresponding principal values, Ai and A'X, respectively, then (A.40) yields 

f(A.1 )= 0o + 01 A-1 + 02A1 =Ai' 

f(A} )= Oo + 01 A} + 02 Ai = A-2' 

f(A;)= oo +o1A~ +o2A~ = AT . 

In case distinct eigenvalues, (A.41) has a unique solution for oo, 01, and 02 given as 

where DA = 2Ai - 11 Ai + l3A.j. Substituting (A.42) in (A.40), one can obtain the 

following expression 

The eigenvalues AA' s are solutions of the characteristic polynomial 

VA= 1,2,3. 

The equation has the solutions 

VA= 1,2,3, 

where 

(A.41) 

(A.42) 

(A.43) 

(A.44) 

(A.45) 
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(A.46) 

Comparing (A.43) with spectral representation of (A.39), one can write 

(A.47) 

An analogous representation for cnv2 follows from the above procedure. For 

general case of distinct eigenvalues, spectral decomposition of C takes the form 

3 

C = LAiN(A) ®N(A)' (A.48) 

A=l 

since C is symmetric positive definite tensor i.e. CE st. WA) of (7.13) is defined as 

(A.49) 

where like (A.47), the product term N(A) ® N(A) can be obtained as 

N(A) ®N(A) = '),_2 c-{I1 -A.i)1+I3A.J\
2
C-l 

A 4 2 2 
2,.;A - l1AA + l3AA. 

VA= 1,2,3. (A.50) 

(A.51) 

while 

(A.52) 
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A.14 Derivation of &A/OC 

Differentiation of (A.48)1 gives 

dC = ± [ 2A A dA A N(A) 0 N(A) + fi {dN(A) 0 N(A) + N(A) 0 dN(A))] ( A. 53) 

A=l 

Contracting dC with N(A) ® N(A) yields 

±de: {N<AJ 0N(A) }= ±dCjjNr)Nr) 
A=l A=l 

= ± [ 2AA dAA (Nr)Nr)) (Nr)Nr)) (A.54) 
A=l 

+Ai {dNr)NjA) )(NrNr )+{Nr)Nr) )(dNrNri )) 

From (A.48)2 N~A)N~A) = 1. So iN~A)N~A) )= 0 or N~A) dN~A) = 0. Substituting these 
1 1 '\1 1 1 1 

identities in ( A. 54) produces 

dC: {N(A) ® N(A) }= 2')..,,A d')..,,A 

⇒ dC: A,i M(A) = 2')..,,A d')..,,A 

⇒ o)..,A = _!_')..,,AM(A) 
8C 2 

Since EA= In (AA), one can obtain 

A.15 Derivation of 8M(A) / 0C 

From (A.49) and (A.SO), WA) can be written as 

(A.55) 

(A.56) 

(A.57) 
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permutation of the indices { 1,2,3} . I1 and l3 are invariants of C, defines as 

(A.58) 

Now, 

(A.59) 

where u = c-(11 -11.i )1 + I3)..;;_2c-l . Consider (A.59) by parts. First, ou/8C can be 

expanded using the chain rule as 

(A.60) 

I is the fourth order identity tensor defined as Iijkl = ~ [oikO jl + OiJ 8 jk] . 

(Ic-1 )..kl = -ac~1 I ackl = .!_ L:-k1c-:-11 + c:-11c-:-k1] . In order to expand (A.60) to lowest 
lJ lJ 2 ~l J 1 J 

order, one would need expressions for aI1/8C, aI3/8C and a11.Ai8C. 

ar1 = t 
ac 

ar3 = _a_ {det(Cmn )} = acmn COF{Cmn) 
ac ac kl ac kl 

-I COF{Cmn)_ 1 c-1 _ 1 c-1 
-3 -3 kl-3 · 

l3 

(A.6la) 

(A.6lb) 

See (A.55) for ~Ai8C. Substituting (A.55), (A.6la) and (A.6lb), one can rewrite (A.60) 

as 
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(A.62) 

Next, consider 8DAIOC. 

(A.63) 

where DA = 8A~ - 2I1AA - 2l3A1. Upon substitution of (A.55) and (A.6la), (A.6lb) 

takes the form 

a~A) = DIA ~-101+13:l.-;;.2(c-I 0c-I -le•!] 

+-1-[,.,i{t@MCA) +MCA) 01)-.!_DAAAMCA) ®MCA)] (A.65) 
DA 2 

__ 1_~3,.,A2(c-1 ®MCA) +MCA) ®c-1]. 
DA 

A.16 Push Forward of aM<A>1ac 

Push forward of all the indices of 8MA>1ac yields d(A) as given by (7.17). In tenor 

form d fj~ = Fia Fjb FkcFid aM~~) / ac cd. Consider push forward of each of the fourth 

order tensors on the right hand side of (A.65). Following expressions can be obtained. 

FjaFjbFkcF(d Iabcd = ~ [~icFik HFjdF J1 }+ {FidFJ1 HFjcFik ~ 
= ~ (bik b jl + bn b jk) = (lb )ijkl · 

(A.66a) 
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n. F· F F M(A)s: - (A)b rta Jb kc Id b ucd - m.. kl· a 1J 

(A.66b) 

(A.66c) 

(A.66d) 

(A.66e) 

(A.66f) 

F. F F F M(A)M(A) {F M(A)pt }{F M(A)pt } (A) (A) (A 66 ) 
ta jb kc Id ab cd = ia ab bj kc cd di = m ij m kl . . g 

F. F· F F c-1 M(A) - {F· c-1 Ft }{F M(A)pt }- s:.. (A) 
ia Jb kc Id ab cd - ta ab bj kc cd di - u1Jmkl . 

. . (A)c-1 (A)s: 
F1aFJbFkcF1dM b d = m.. uk}. a C lJ 

(A.66h) 

(A.66i) 

Now, substituting (A.66a) to (A.66i) would yield push forward of aM<A>;ac in 

tensor form as follows 

(A.67) 
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A.17 Variation of k, K 

Permeability tensor k varies with the void ratio e, or equivalently with the 

Jacobian J. Using chain rule variation of k can be expressed as 

ok = ak iJe oJ = ak iJe J div(ou ). 
ae a1 ae a1 (A.68) 

Expression of oJ is substituted from (7.4a). Assuming incompressibility of the solid 

phase, Jacobian J can be expressed as a function of void ratio given by 

J=~= l+e 
V 1 +ea' 

(A.69) 

where v and e are the volume and void ratio of soil-water mixture, respectively, in spatial 

configuration with corresponding values in reference configuration being V and e0. Now, 

8e/8J = 1 + eo. Substituting 8e/8J in (A.68) yields ok = (1 + ea )J div (ou)8k/iJe. 

K is the pull-back permeability tensor defined as K = F-1 
• k • F-t. Variation of 

K takes the form oK = oF-1 · k · F-t + F-1 
· ok · F-t + F-1 

· k · oF-t. Substituting 0F·1 

and ok from (7.3b) and (7.31), respectively, yields 

~ -1 ~ -1 -t ( ) d. (~ ) -1 8k F-t uK = -F · GRAD uu · F · k · F + 1 + ea J 1v uu F · - · ae 
-1 -t t ~ -t -F ·k·F -GRAD uu·F 

-1 { 1 / t t ~ )~ -t =-2F · 2\GRADou_·K·F +F·K·GRAD uu'.f"F (A.70) 

( ) 
. ( ) -1 8k -t + l+ea Jd1v ou F •-·F ae 

= -F-1 
·{ 2Sym(GRAD6u •K· Ft)-(! +e0 )mV(JF-1 •6u):}-F-t 

K is symmetric since k is assumed symmetric for most practical purposes. 
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A. 18 Variation of grad 0 

(A.71) 

From (5 .3b), oF-1 can be expressed in tensor form as oF.-:-1 = oXi o(ouk} _ (A.71) can 
IJ OXk ox j 

then be rearranged as 

o{gradS)= a(oe}_ DB a(ouk) 
ox· oxk ox· J J (A.72) 

= grad (08 }- grad 0 • grad{ou}. 

A.19 Variation of Jv 

Variation of Jv is given by o(Jv) = oJ v + J ov. Using the expressions of oJ and 

o(grad 0) from (A.3O) and (A. 72), respectively, one can expand o(Jv) as 

o(Jv) = oJ{-k · (grad0 + gJ} + J o{-k · (grad0 + !J} 
Jgpw g Jgpw g 

= -k·[oJgrad0 +oJg]-~-[Jo(grad0)-oJgrad0] (A.7J) 
Jgpw g gpw J2 

-ok •[grad0 +Jg] 
gpw g 
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g k [grade g] = -8Jk ·----· 8(grade)-ok · --+J-
g gpw gpw g 

= J div(ou)k · g __ k_•o{grad(oe)-grade · grad(ou)}-ok. [grade+ Jg] 
g gpw gpw g 

= -k. [grad(oe)-grade · grad(ou) + J div(ou)!] 
gpw g 

-(l+e0 )Jd1v(ou)-· --+J- . . 8k [grade g] 
ae gpw g 

A.20 Variation of grad n: 't 

Variation of grad T): 't of takes the form 

8 ( grad 11 : -r) = 8 ( GRADd 11 : P) 
= GRADd 11 : 8P = GRADd 11 : 8 (F · S) 

= GRADd 11 :(oF · S + F · 8S) . 

(A.74) 

Since 11 is vector of arbitrary virtual displacement, 811 = 0. See Section 3.5.3 for relations 

among P, 't and S. 

First, consider expansion ofF• 8S. From the expression ofD (see (7.14)), one can 

write 8S = D oC, or in tensor form 8Su = DijklOCkl, Using (3 .59) and (7.3a), oC can be 

expanded as follows 

8Cij = 8 (Fki Fkj) = 8Fki Fkj + Fki OFkj 

= (grad ou )kl Fn Fkj + Fki (grad ou )km Fmj 

= 2Fli Fkj (grad ou )kl . 

(A.75) 

Collecting the expressions for 8S and oC, one may obtain following expansion for F· 8S 

(A.76) 

Substituting (A. 76) and (7 .15b ), it can be derived as 
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GRAD11: o(F · oS) = (GRAD11)ij (F · oS)ij 

= (grad11)icFcjFikDkjmn {2FamFbn (gradou)ab} 

= (grad11\c {2FikFcjFamFbnDkjmn Xgradou)ab (A.77) 

= (grad 11)ic d icab (grad Ou) ab 

= grad 11 : d : grad o u . 

Next, consider expansion of OF· S. Substituting (7.3a) and (3.57), one may obtain 

following tensor expansion: 

(oF · S)ij = OFik Skj 

= (gradOu)il F(k ~~ <mnF;;;'} 
= (grad Ou )ii o Im 't mn Fj~

1
. 

Then, using (A. 78) following contraction with GRAD 11 is possible. 

GRAD 11: (oF · s) = ( GRAD 11\j (oF · s)ij 

= (grad 11\k Fkj (grad Ou }j1 o Im 't mn Fj~1 

= (grad11)ik hjF;i' }gradOu)il 01m <mn 

(A.78) 

= {(grad 11\k Okn ¼(grad Ou \1 Olm }tmn (A. 79) 

= {(grad 11\k o kn ¼(grad Ou \1 o lm }t mn 

= (grad 11\n 't mn {grad Ou )il 

= (grad 11)ij {'tlj Oki Xgrad Ou )kl 

= grad Tl: ('t EB 1) : gradou 

Substituting (A.77) and (A.79) in (A.74), one can write variation of grad 11 : 't as 

o ( grad 11 : 't) = grad Tl : ( d + 't EB 1 ) : grad ou. (A.80) 
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A.21 Variation of GRAD n: P 

Following (A.74), variation of GRAD 11: P of can be written as 

o( GRADd11 : P)= GRADd11 :(oF•S +F-oS). (A.81) 

First, consider expansion ofF-oS. From the expression ofD (see (7.14)), one can write 

F -oS = F·(D oC), or in tensor form (F-oS)ij = FikDkjmnOCmn. Using (3.59) and (7.3a), oC 

can be expanded as follows 

oCmn = o(FamFan)= oFamFan +FamOFan 

= (GRADou)am Fan+ Fam (GRADou)an . 

Substituting (A.82), one can further expand F-oS as 

(F-oS)ij =FikDkjmn {(GRADou)amFan +Fam(GRADou)an} 

= Fik {o kjmn + D kjnm X GRAD ou )am Fan 

= 2FjkDkjmn (GRADou)amFan 

= {2 Fia D ajbl Fkb }( GRAD ou )kl , 

since Dkjmn = Dkjmn- Next, consider the following expansion of oF-S. 

(oF · S}jj = oFikSkj 

= ( GRADou )ik Skj 

= ( GRADou )kl SJjOki. 

Now substituting (A.83), (A.84) and (7.12)2 in (A.81), one can obtain 

o( GRADd 11 : P) = ( GRADrt )ij ( oF · S+ F · oS )ij 

= ( GRAD rt )ij {2FiaDajbIFkb + SJjOki X GRADou )kl 

= ( GRAD rt )ij Aijkl ( GRAD ou )kl 

= GRAD rt: A: GRADou. 

(A.82) 

(A.83) 

(A.84) 

(A.85) 

(A.80) and (A.85) are equivalent expressions since both are obtain from variation of same 

quantity i.e. GRAD 11: P. Following push forward of (A.85) would prove that. 



171 

o ( GRADd 11 : P) = ( GRAD 11 )ij { 2Fia D ajbl Fkb + S1j o ki X GRAD ou )kl 

= (grad 11 )ic Fcj { 2FiaDajbl Fkb + Sljoki Xgradou )kd Fdl 

= (grad11)ic {2FiaFcjFkbFd1Dajbl +FcjSljokiFd1Xgradou )kd 

=(grad11)ic 2FiaFcjFkbFd1Dajbl +FcjSj1F1~oik 
(A.86) 

(gradou )kd 
'---v----' 

"t cd 

= ( grad 11 \c { dickd + "tcdOik }( grad ou )kd 

= grad 11 : ( d + -c EB 1 ) : grad o u . 

See (7.15b) for push forward ofD to d. (A.80), (A.85) and (A.86) can be combined to 

following equivalent expressions 

o ( grad 11 : 't) = o ( GRAD 11 : P) 
= grad 11 : ( d + 't EB 1 ) : grad ou = GRAD 11 : A : GRAD ou . 

A.22 Variation of grad \!I · Jv 

Expansion of o (grad 'V • Jv) takes the form 

o (grad 'V · Jv) = o (grad 'V) · Jv + grad 'V · o (Jv). 

Following the same derivation of o(grad 0) (see Section A.18), one may obtain 

o(grad 'V) = -grad 'V · grad (o u), 

since O'V = 0. 

Substituting o(grad 'V), Jv and o(Jv) from (A.89), (7.37b) and (7.37c), 

respectively, one can expand (A.88) as 

(A.87) 

(A.88) 

(A.89) 
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o { (grad 'V )i (Jv)i } 

J ((grad0)· J )} 
= {-(gradllf)k(gradliu)ki ~ - kij Pwg J + g 8j 

( ) {
(grado0)m -(grad0)1 (gradou)1m J . ( ) } - grad'V ikim ______ _;;__ __ -=-c..c....+-d1v Ou gm 

Pwg g 

-(1 + e0 )J div (ou)(grad 'V)i _J!_ J + J-J 
Bk·· {(grad0)· g ·} 

8e Pwg g 

(A.90) 

-(1 + e0 )(grad 'V\ J div (ou)Oim mJ J + J-J 
8k • {(grad0)· g ·} 

Be Pwg g 

k = -grad 'V • --• grad o0 
Pwg 

+ 2{ (grad 'V\ .!._((-k . gradtouJ .. +(gradou • ~J J(grad0)j} 
2 Pwg 11 Pwg •· 

'J lJ 

+ { grad 11f • [gradliu -(div 6u)l] · k ·: J} 
-(l+e0 )grad'V·(Jdiv(ou)l)· Bk •{grade +Jg} 

Be Pwg g 

= -grad 'V · _k_ · grad 08 + 2{ grad 'V · Sym (-k-· grad touJ ·grade} 
Pwg Pwg 

+ { grad llf • [gradliu -(divliu)t]- k ·: J} 
-(l+e0 )grad'V·(Jdiv{ou)l)· Bk •{grade +Jg}· 

Be Pwg g 
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A.23 Variation of GRAD \JI• V 

o(GRAD\JI· v)= GRAD\Jl•OV since O\JI = 0. Substituting (7.27) and (7.28), 

GRAD \JI• oV can be expanded as 

~ (GRADS t gJ GRAD \Jl•OV = -GRAD \Jl·OK· ---+JF ·-
gpw g 

(
GRADo0 ( ( -1 Lt t ) gJ -GRAD\jl·K· ---+ DIV JF •OuJ~- +JGRAD ou ·- . 

~w g 

Substituting expression of oK from (7.30), one may obtain 

(
GRADS t gJ GRAD \Jl ·OK· ---+JF ·-

gpw g 

-1 ( s: K tJ -t S =-2GRAD\jl·F ·Sym GRADuu·--·F ·F ·GRAD 
gpw 

-1 { s: t) g -2GRAD\jl·F ·Sym\GRADuu·K·F ·J-
g 

( ) -1 ( -1 s: ) 8k -t ( GRAD 0 t g J + l+e0 GRAD\jl·F ·DIV JF •uu -·F · ---+JF ·- . 
ae gpw g 

Second term of (A.92) can be further expanded as 

2GRAD\jl·F-1 -Sym(GRADou•K·Ft ).Jg 
g 

= GRAD\jl·F-1 -(GRADou•K·Ft +F·K·GRADt ou)-J g 
g 

= GRAD\jl·F-1 ·GRADou•K·Ft .Jg +GRAD\jl·K· GRADt ou-Jg 
g g 

Substituting (A.92) and (A.93) in (A.91) yields 

(A.91) 

(A.92) 

(A.93) 
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~ K 
GRAD \If· oV = -GRAD \If· --· GRAD oS 

gpw 

+2GRAD\j/·F-1 ·Sym(GRADou•___!__·Ft)·F-t ·GRADS 
gpw 

+GRAD\j/·F-1 ·GRADou•K·Ft .Jg 
g 

-GRAD\j/·K·DIV(JF-1 -ou)Ft .! 
g 

(1 )GRAD F -1 ( -1 ~ )Bk -t {GRADS t g} - +e0 \If• •DIV JF ·uu -·F · ---+JF ·-
Be Pwg g 

(A.94) 

A.24 Hand Calculation of One-dimensional Large Strain, Hyperelastic Consolidation 

For the large strain example of one-dimensional hyperelastic (axisymmetric) 

consolidation (see Section 9.2) 

(A.95) 

& and pare the vectors of principal natural strains and principal effective Kirchhoff 

stresses, respectively. Subscript 1 represents radial and circumferential directions while 

subscript 2 represents the vertical direction. Using (5.3) one can obtain 

(A.96) 

From (5.6), Kirchhoff stresses can be expressed in terms of stress invariants as 

(A.97) 

Stress invariants p and q can be obtained from the derivative of free energy function 'P 

given by 
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(A.98) 

See (5 .38) for the expression of'¥ in case of isotropic, linear elasticity. Substituting 

(A.98) in (A.97), f32 can also be written as 

(A.99) 

D is the constrained modulus. At steady-state condition Jacobian J is constant throughout 

the height of the soil column, so is f32 since f32 = JAq(Cauchy)_ For one-dimensional 

constrained compression J = )..2; Al being the principal stretch in vertical direction i.e. the 

ratio of the final to initial column height. Equivalent expressions for f32 yield f32 = De2 = 

D ln()..2) = Aq(Cauchy)A.2. Unknown quantity )..2 can now easily be obtained from the 

following equation 

(A.100) 

For this example, D = 134.7 kPa, Aq(Cauchy) = -90 kPa. Plugging these values in (A.100), 

one can obtain A.2 = 0. 6484. 
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Matrices for D9P4 axisymmetric elements, discussed in Chapter 8, are given in 

the following. 

(a) Interpolation matrices: 

N~ =[N! 0 N<t> 0 N<f> 
0~ J 2 9 

N<f> 0 N<f> 0 1 2 N9 
(B .l) 

Ne=[ N;e 0 N~ 0 N~ 0 N~ 00 l N8 0 N~ 0 N~ 0 1 N4 
(B .2) 

WE R2
x

18
, N9 

E R2
x

8
. N~ 's (i = 1,2, ... ,9) and N~ 's G = 1,2,3,4) are biquadratic 

I J 

displacement interpolation functions and bilinear pore pressure interpolation functions, 

respectively. See any reference book of finite element for the interpolation function in 

natural coordinates~' 11 E [-1,1] (see Figure 9.1). 

(b) Strain-displacement transformation matrix: 

B=[B1 B2 B3 ...... B9]ERSXl& 

where 

aN~ 
I 0 ox 

aN~ 
0 I 

O'j 

Bi= 
N~ 

I 0 
r 

aN~ 
I 0 

O'j 

aN~ 
0 I 

ox 

(B.3) 

(B.4) 
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9 

x, y are spatial coordinates in R2 space. Radius r in (B.4) is interpolated as r = L Nf Xi. 
i=I 

Volumetric counterpart ofB matrix is defined as 

b = {1}1B, {1} = {l 1 1 0 o}t ; (B.5) 

b = [b1 h2 b3 ...... b9]ER1x1s_ (B.6) 

Here 

[ ilN~ N~ ~~l b· _ 1 + I .-----ox r 
(B.7) 

( c) Gradient-pressure transformation matrix: 

aN? 
0 aN~ 0 aN~ 0 

E= ox ox ox 
aN? aN~ aN~ 

0 0 0 

(B .8) 

O'j O'j O'j 

( d) Material stiffness matrix: 

d1111 d1122 d1133 d1112 d1121 

d2211 d2222 d2233 d2212 d2221 
D= d3311 d3322 d3333 d3312 d3321 (B.9) 

d1211 d1222 d1233 d1212 d1221 

d2111 d2122 d2133 d2112 d2121 

Components of D are obtained directly from fourth-order tensor d of (7 .16). 
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( e) Initial stress matrix: 

't11 0 0 't12 0 

0 't22 0 0 't12 

T= 0 0 't33 0 0 (B .10) 

't12 0 0 't22 0 

0 't12 0 0 't11 

(f) Pore pressure matrix: 

1 0 0 0 0 

0 1 0 0 0 

l9 =0h 0 0 1 0 0 (B .11) 

0 0 0 0 1 

0 0 0 1 0 
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Boring No. BH-4(2), Load = 1.0 tsf 

0.0340 
0.0380 
0.0420 

.5 0.0460 
~ 0.0500 
:S 0.0540 c,s 
~ 0.0580 
cu 0.0620 
c 0.0660 

0.0700 
0.0740 
0.0780 

0.1 1 10 100 

Elapsed Time, min 

Primary 
Settlement 

1000 10000 

Figure C.1 Primary and secondary settlement from laboratory consolidation data 

Table C.1 Settlement Data from Consolidation Test Results (Boring No. BH-lA) 

Load Total Primary Secondary Primary Secondary 
Settlement Settlement Settlement Settlement Settlement 

{tsf) {in} {in} {in} {%} {%} 
0.5 0.0202 0.018 0.0022 89.11 10.89 
1.0 0.0292 0.0289 0.0003 98.97 1.03 
2.0 0.0613 0.053 0.0083 86.46 13 .54 
4.0 0.0801 0.0744 0.0057 92.88 7.12 
8.0 0.084 0.0753 0.0087 89.64 10.36 
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Table C.2 Settlement Data from Consolidation Test Results (Boring No. BH-2) 

Load 

(tsf) 
0.25 
0.5 
1.0 
2.0 
4.0 
8.0 

Total 
Settlement 

(in) 
0.00736 
0.01814 
0.0408 
0.0809 
0.1077 
0.0989 

Primary 
Settlement 

(in) 
0.00648 
0.01324 
0.0341 
0.0683 
0.0937 
0.0897 

Secondary 
Settlement 

(in) 
0.00088 
0.0049 
0.0067 
0.0126 
0.014 

0.0092 

Primary 
Settlement 

(%) 
88.04 
72.99 
83 .58 
84.43 
87.00 
90.70 

Secondary 
Settlement 

(%) 
11 .96 
27.01 
16.42 
15 .57 
13 .00 
9.30 

Table C.3 Settlement Data from Consolidation Test Results (Boring No. BH-3) 

Load Total Primary Secondary Primary Secondary 
Settlement Settlement Settlement Settlement Settlement 

(tsf) (in) (in) (in) (%) (%) 
0.5 0.0098 0.0089 0.0009 90.82 9.18 
1.0 0.0294 0.026 0.0034 88.44 11.56 
2.0 0.0669 0.0606 0.0063 90.58 9.42 
4.0 0.096 0.083 0.013 86.46 13 .54 
8.0 0.0982 0.0877 0.0105 89.31 10.69 

Table C.4 Settlement Data from Consolidation Test Results (Boring No. BH-4(2)) 

Load Total Primary Secondary Primary Secondary 
Settlement Settlement Settlement Settlement Settlement 

(tsf) (in) (in) (in) (%) (%) 
0.5 0.0195 0.0175 0.002 89.74 10.26 
1.0 0.0433 0.0366 0.0067 84.53 15.47 
2.0 0.0972 0.0869 0.0103 89.40 10.60 
4.0 0.105 0.0978 0.0072 93 .14 6.86 
8.0 0.1033 0.0935 0.0098 90.51 9.49 
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