TIDE OF CHANGE
Herman Nadal
A Senior Capstone Project
by:
Herman Nadal

Spring 2012

Bachelor of Landscape Architecture

Faculty Advisor: Kay Williams
This book is dedicated to someone who died so that I could live: Jesus Christ. He rose again and loves me more than I could ever imagine. He loves you a lot too. Jesus, thank you so much!

“There in the ground His body lay
Light of the world by darkness slain
Then bursting forth in glorious day
Up from the grave He rose again!
And as He stands in victory
Sin’s curse has lost its grip on me
For I am His and He is mine
Bought with the precious blood of Christ.”

-Keith Getty and Stuart Townend
Mami, Papi, gracias por todo lo que han echo por mi. Sin ustedes, no existiría este proyecto y yo estaría trabajando el grisel. Y Mami, se que me votaste la gorra de los Dolphins.

Jenny, thanks for letting me stay at Cumberland during my internship. You probably don’t, but I kind of miss that place. It was fun. For the record, I know what I’m talking about; I put my hand through the hole. Also, I was part of the extended care crew; I remember.

Kay, you are the best capstone advisor a student could ask for. Thanks for being the benevolent dictator, Great Aunt Desdemona, and the stingy city council man. They all helped in the completion of this project. Oh, and thank you for understanding when I had a physics tests and had to put capstone aside for a few days. I got an A.

Classmates, we did it. The all-nighter crew, we did it. The Big Three of buzzer beaters, we did it. Little guys, we did it (I guess those last two were the same people). You are all the coolest, smartest, funniest, and craziest people in the entire world. Congratulations.

I wish we could write fifty pages of acknowledgements because I could probably fill every one of them up, but we can’t so I’ll wrap it up like this. To everyone who has ever been a part of my life and thinks enough of me to call me a friend,

Thank you
TABLE OF CONTENTS

- **Introduction** ... 1
- **MiMo** ... 3
 - Styles of MiMo ... 4
 - MiMo Language .. 5
 - MiMo Case Studies ... 8
- **Miami Marine Stadium** .. 11
 - History ... 12
 - Architecture ... 13
 - Present .. 14
- **Site Analysis** .. 15
 - Location/Context ... 16
 - Venue Proximity .. 18
 - Virginia Key Land Use .. 19
 - Views .. 21
 - Circulation .. 23
 - Vegetation/Soil ... 25
 - Topography/Hydrology .. 27
- **Site Synthesis** ... 29
- **Program Development** .. 31
 - Users .. 32
 - UEL Workshop ... 33
 - Goals Objectives ... 34
- **Concept Development** ... 35
 - Low-Impact ... 37
 - Marine Park .. 39
 - The Wave .. 41
- **Master Plan** ... 43
 - Daily Activity Configuration ... 44
 - Event Configuration ... 45
 - Tabulations ... 46
- **Design Development** .. 47
 - Details/Sections/Perspectives 48
 - Plant Palette .. 57
- **Appendix** ... 59
 - Bibliography .. 60
 - Images .. 61
 - Presentation ... 67
INTRODUCTION

Miami Marine Stadium and its associated basin were completed in 1963. The venue was originally designed for boat racing, but it has also hosted concerts, rallies, religious ceremonies, and other events. Miami Marine Stadium is truly a one of a kind experience. It offers amazing views across Biscayne Bay to Downtown Miami. The stadium is a physical representation of the international influences that shaped Miami. It represents the city’s modernity and shift from boring civic structures to lively, grand structures. Miami Marine Stadium is a South Florida landmark and modernist icon (Mid-Century Modern, specifically Miami Modern). Currently, it lies neglected and vandalized. It has survived numerous attempts to have it demolished, but without a comprehensive plan to restore the stadium it is hard to imagine it being relevant in Miami’s culture again. That is the focus of this project: To restore Miami Marine Stadium and make it a world-class venue for major events once again.
In order to fully appreciate and design an appropriate setting for Miami Marine Stadium, it is important to understand the historical and cultural context that it was built in.
Styles of MiMo
Miami Modern Architecture (MiMo) developed as a combination of several factors. Postwar optimism and prosperity created a building boom in Miami. South Florida’s warm climate required a new approach to design. Additionally, new technologies and materials were at architects’ disposal. These factors resulted in the formation of a unique movement that would shape Miami throughout the 50’s and 60’s. MiMo is made up of two major subdivisions: Resort MiMo and Subtropical Modernism. Both were instrumental in creating Miami’s vibrant culture and iconic structures.

Resort MiMo
Resort MiMo can be summed up in the words of Morris Lapidus: “Let’s just say you like ice cream. Why have one scoop of ice cream? Have three scoops.” Lapidus, one of the most significant architects from the MiMo movement, applied this principle to his designs. Eden Roc Hotel, The Fontainbleau, and Lincoln Road Mall are just three of the many projects Lapidus completed. At the heart of each of these projects was an emphasis on style and decoration. Lapidus, and fellow Resort MiMo architects, designed artistic structures with lavish interiors that looked like they belonged in a Hollywood movie.

Subtropical Modernism
Subtropical Modernism took a more functional approach to design. Its major influence was the International Style, modified to fit South Florida’s climate. Robert Law Weed, Marion Manley, and Alfred Browning Parker were some of the movement’s notable pioneers. They designed using principles and aesthetics borrowed from Frank Lloyd Wright, Le Corbusier, and many other renowned modernists. Subtropical Modernist placed large value on ecological systems and blending of exterior and interior. Their designs were conscious of function and climate.
MiMo Language

From an aesthetics standpoint, MiMo is characterized by many common elements. The following is a sample of the shapes, materials, and architectural elements that are frequently seen in MiMo projects.

Shapes

Acute angles: Acute angles, inspired by delta-wing aircraft, gave designs a sense of motion and speed. In fact, many designs during this time featured space-age imagery.

Boomerangs: Boomerangs evoked a similar sense of motion and could be found in everything from motel signs to Formica patterns.

Curves: Curves were often used to soften the flatness of surfaces. Circular windows, curved walkways, and rounded corners all helped to contrast the lines and squares of many designs.

Woggles: This organic, kidney shape, trademarked by Morris Lapidus, was often used to create backlit, floating ceilings. It was also used for pools.
Materials

Aggregate: Paving, walls, and flooring were frequently surfaced with aggregate. The stones could be polished or left untreated.

Aluminum: Aluminum offered strength, lightweight, and affordability. It was often used to trim glass windows or to make sun grilles.

Concrete: This cost-efficient, man-made material gave designers unprecedented structural flexibility. Concrete also made sense regionally, because of the high availability of limestone, a component of concrete, in the area.

Crab Orchard Stone: This natural material became a trademark of MiMo. It was available in a wide variety of colors, including pink, tan, blue gray, and buff. It could be used to create small planters or finish walls.

Mosaic Tile: Ceramic and glass tile were used to create decorative mosaics. Brightly colored patterns were often used to embellish building facades and fountains.

Plate Glass: Lavish use of glass was made possible by steel-skeleton construction. Exterior walls no longer had to bear weight. The interior and exterior could then be visually blended through the use of large plate glass windows.

Roman Brick: Used because of its horizontally and texture, roman brick was a popular accent material. Unlike stucco, or other locally available materials, roman brick had to be shipped in, limiting its use as a building material.

Stucco: Stucco was used to give otherwise boring walls texture. Flat walls formed by concrete block could become three-dimensional artistic expressions by simply decorating them with stucco.
Architectural Elements

Built-in Planters: Built-in planters helped to incorporate nature with the architecture. They were inspired by Frank Lloyd Wright’s Prairie House designs.

Cantilever: Common in the International style, cantilevered projections demonstrated structural innovation. Cantilevered elements included balconies, awnings, and tread on staircases.

Decorative Concrete Blocks: Walls made from these blocks were structurally sound and allowed air and light to pass through.

Decorative Railings: Railings were decorated to create artistic patterns.

Flat Roofs: Flat roofs, as opposed to pitched roofs, require less materials and labor. Without the threat of snowfall in South Florida’s pleasant climate, flat roofs were an obvious choice.

Lally Columns: These load-bearing columns, composed of steel pipe filled with concrete, often supported catwalks or carports. They could be decorated with metal grills or paint making them highly customizable features.

Metal Grilles: Metal grilles were often used to block sunlight but after the invention of reflective thermal glass they became a decorative element.

Prosceniums: A proscenium is a façade that connects two adjacent buildings.
MiMo Case Studies

Lincoln Road Mall

The Lincoln Road Mall is a pedestrian shopping street in Miami Beach that is closed off to vehicular traffic. Designed by Morris Lapidus in 1960, Lincoln Road Mall is a popular destination for locals and tourists to shop, eat, and walk, but perhaps the most popular activity is people watching. Lapidus’ plan was catered specifically for pedestrians; in his own words, “I designed Lincoln Road for people – a car never bought anything.” As was customary for Lapidus, he thoroughly decorated the space with planters, fountains, shade structures, and a bold black and white striped paving pattern. Even during the scorching summer days of Miami, users remain comfortable because of Lapidus’ climate sensitive design. Lincoln Road Mall combines the comforts of an indoor shopping space with the activity of an urban center. In 2009, Raymond Jungles, Inc. redesigned the westernmost block of the Lincoln Road Mall. The firm’s design ties into Lapidus’ paving pattern and evokes a Florida native ecosystem. Water features and planters use fluid forms similar to those of Lapidus and other MiMo designers.

Bottom Left: Shade is created by combining functionality with aesthetics.
Below: Even in the summer, the various shade structures help create a comfortable microclimate.
UM Campus

Marion Manley and Robert Law Weed collaborated to design the nation’s first modern campus. Four main paths divide the campus into its major functional areas: “residence halls, the academic center, athletic facilities, and a green area with the college chapel.” Their plan included long, rectangular classroom buildings, parallel to each other to create courtyards between them. Other buildings were laid out perpendicular to one another to allow them to “radiate into an open landscape.” Paths are wide enough to allow large groups to walk together or individuals to exchange words as they pass each other. Views down paths usually terminate in landscape rather than structures. The Student Center, located next to a lake at the campus’ center, doubles as an amphitheater for viewing activity on the lake. Overall, buildings are designed using the International style.

Right: The Student Center features a catwalk from which users can view the lake.
Below: Open lawns give students and faculty a place to take in the warm South-Florida climate.
Miracle Mile

Miracle Mile in Coral Gables is a shopping destination for tourists and South Florida residents alike. It is found along Coral Way, between Douglas Road and LeJeune Road (about half a mile). Its designer, Jon Seymour gave thought to every last detail in its layout, even down to the angle of the parking spaces. According to Seymour if the angle is just right, the door of one vehicle will open without interfering with a car in an adjacent space. He also responded to Miami’s hot climate by lining both sides of the street with trees that create ample shade on a warm summer day. What makes Miracle Mile relevant to this project is the functional, modernistic approach that Jon Seymour applied to his design. Nothing is arbitrary, and every aspect of the design serves a purpose.
ONE OF TWO RAMPS LEADING UP TO GRANDSTAND AND SECOND LEVEL CONCOURSE

EXISTING BOX OFFICE STRUCTURE

ONE OF TWO STADIUM ENTRANCES FOR GENERAL PUBLIC

FIRST LEVEL CONCOURSE

MIAMI MARINE STADIUM
History

Commodore Munroe Stadium, as it was originally called, was completed in 1963. Hilario Candela, a 28-year-old Cuban-born architect, designed the stadium. Construction of the stadium cost about $1 million dollars and dredging the stadium basin cost another million. The stadium became a centerpiece of the Miami community, hosting boat races and other events made possible by a floating stage (concerts, religious ceremonies, boxing matches, and other community events).

The stadium basin’s size allowed it to serve as a venue for a plethora of boat racing divisions including Unlimited Hydroplane, Inboard, Outboard, Performance Craft, Stock, Modified, and Grand National divisions. Among the many artists who have performed at Miami Marine Stadium are Mitch Miller, Jimmy Buffet, and the Boston Pops. Richard Nixon spoke at the stadium during a youth rally at the 1972 Republican convention. Brothers Angelo and Chris Dundee promoted fights that took place in the stadium. Notable boxers include Jimmy Ellis, Frankie Otero, Vernon McIntosh, Florentino Fernández, Roberto Ayala, and many others. Phil Donahue recorded a show from the stadium in 1991, with New York Governor Mario Cuomo as his guest.

Above: An orchestra performing for a sellout crowd on the floating stage at Miami Marine Stadium.
Design

The stadium basin’s shape was inspired by the Circus Maximus and is about the size of the Washington Mall (6,000 feet by 1,200 feet). The grandstand was constructed entirely out of poured-in-place concrete. The stadium structure consists of a cantilevered roof that projects over the grandstand, providing shade and shelter for those in attendance. The roof has the appearance of a billowing sail, held up by the cool Miami breeze. It also resembles the undulation of waves in the bay. Eight angled columns, connected horizontally by a beam, support the roof and anchor it to the ground. On the causeway side of the stadium, two slanted columns connect to each of the columns that hold up the roof structure, forming a series of triangles and creating a sense of rhythm.
Present

After Hurricane Andrew in August of 1992, the City of Miami deemed that the structure had suffered severe structural damage and needed to be demolished. An engineering study conducted by Simpson, Gumpertz, and Heger determined that the hurricane actually did not damage the structure, but rather neglect over recent years had caused the damage. Unfortunately, no action was taken to renovate the stadium and it was left abandoned. Over the following years, graffiti covered the stadium and the structure continued to degrade. What was once a symbol of Miami’s modernity and inseparable connection to the water, now stood as a relic of the past.

Several redevelopment plans for Virginia Key produced after the hurricane called for demolition of the stadium. The community, including many people who had grown up attending events at the stadium, stepped in to prevent this from happening. In 2008, Friends of Miami Marine Stadium, a volunteer group, was formed with the ultimate goal of having the stadium restored. The National Trust for Historical Preservation named the stadium to its “11 Most Endangered Historic Places List” in 2009. The World Monuments Fund named the stadium to its 2010 Watch List. It funded an engineering study that estimated that restoring the stadiums’ structure would cost between $5.5 and $8.5 million. In April of 2010, the Miami Dade County Board of Commissioners agreed to separate $3 million for the restoration of the stadium, if the rest of the funds can be secured.

Clearly, Miami Marine Stadium is a significant structure with immense historical value, as evidenced by the involvement of the mentioned organizations. Additionally, the stadium has a deep sentimental value for the scores of thousands of people that flocked to the stadium during its heyday. Although it hasn’t been easy, great strides have been made towards restoring the stadium. For the purposes of this project, it will be assumed that the stadium will be fully restored.
In 1896, Miami was incorporated, shortly after Henry Flagler extended a railroad to South Florida. The climate was hot, the terrain was swampland, and the population barely surpassed three hundred. A construction boom, lax enforcement of prohibition, and gambling helped to transform Miami into a city, earning it the nickname “Magic City,” because it sprang up so quickly.

During both World Wars, Miami played a critical role in the nation’s defense. It manufactured equipment, housed soldiers in training, and helped wounded soldiers recover. This further developed Miami’s infrastructure and established the city as a major economic center in the United States.

Miami developed as a diverse city, as well. Between the 60’s and 80’s about 500,000 Cubans moved to South Florida, after Castro’s rise to power. Cuban culture became an integral part of Miami and positioned it as a Latin American hub for business and leisure. Other major groups include the Jewish and black communities that were established early in Miami’s beginnings.
Venue Proximity

Adrienne Arsht Center for the Performing Arts
- Capacity: 4,500
- Distance: 5.5 miles

Jackie Gleason Theatre
- Capacity: 2,700
- Distance: 12 miles

American Airlines Arena
- Capacity: 20,000
- Distance: 5 miles

Bayfront Park Amphitheatre
- Capacity: 10,000
- Distance: 5.5 miles

Miami Convention Center
- Capacity: 28,000
- Distance: 4 miles

Tennis Center at Crandon Park Beach
- Capacity: 13,000
- Distance: 3 miles

BankUnited Center
- Capacity: 8,000
- Distance: 14 miles

Sun-Life Stadium
- Capacity: 75,000
- Distance: 18.5 miles

Hard Rock Hotel and Casino
- Capacity: 5,500
- Distance: 23 miles

BankAtlantic Center
- Capacity: 22,000
- Distance: 39 miles
Virginia Key Land Use

Rusty Pelican: The Rusty Pelican is a restaurant, lounge, and event space that offers amazing views to Downtown Miami. It has been recently renovated and attracts a steady clientele.

Miami Rowing and Watersport Center: With programs for both novice and experienced rowers, the Miami Rowing and Watersport Center is South Florida’s premiere rowing club. They use the basin for many of their programs.

MAST Academy: The MAST Academy is a public high school with a primary focus on maritime studies. It is home to the only Coast Guard JROTC unit in the country.

Dry-Stack Storage: Directly adjacent to the site is a dry-stack boat storage facility.

Miami Seaquarium: This 38-acre oceanarium has been in operation for over fifty years. It is a popular destination for locals, tourists, and schoolchildren on field trips.

UM Rosenstiel School of Marine and Atmospheric Science: The school researches essentially every marine-related science. It is one of the top academic oceanographic and atmospheric research institutions in the world.

Virginia Key Beach Park: This park is listed on the National Register of Historic Places. It was originally established as a beach for only African-Americans in 1945. It was closed in 1982, but reopened in 2008.

Sewage Treatment Plant: The sewage treatment plant occupies a large part of the northern portion of Virginia Key.
Views

- **Trees and bushes obstruct view to stadium property**
- **Excellent view to downtown Miami and basin**
- **Only unobstructed view into stadium property**
- **Excellent view to Biscayne Bay**
- **Overgrown vegetation obstructs view to and from stadium**
- **Miami Rowing and Water Sport Center**
One of the things that sets Miami Marine Stadium apart from other stadiums is its unique setting. Its location on Virginia Key creates a series of views that are unmatched in the typical event venue. From the grandstand one can see the entire basin and get a good view of the racing action. The view terminates at the other side of the basin where pines trees line the horizon. Towards the open end of the basin, one gets a stunning view of Biscayne Bay and Miami.

Equally important are the potential views that are hindered currently. From Rickenbacker Causeway, it is hard to see into the stadium property. Rows of palms and an overgrown patch of grass, make noticing the stadium nearly impossible. Someone driving by at 45 mph can easily drive by without the slightest idea that a Mid-Century Modern icon is just yards away. The only opening in the sight line offers a narrow glimpse into the property. Even this view is limited, however, as a group of large trees obstructs the view to the stadium.

This obstruction of views is part of the reason why the stadium is in its current abandoned condition. The lack of views into the stadium allows for trespassing. It is easy to enter the property unnoticed, hide behind the protection of overgrown vegetation, and vandalize without the slightest fear of being seen. This condition not only affects the stadium’s quality, but also poses a serious threat from a safety standpoint. Decreased visibility makes the area around the stadium unsafe, further alienating it from the South Florida community.
Circulation

Dry-Stack Boat Storage

Vero's Street leads to Dry-Stack Boat Storage to the Northwest

Vero's by the Bay

Pedestrian circulation is disconnected from parking lot

Rickenbacker Causeway is the only road that connects Virginia Key to the mainland

Note: $1.50 toll for southbound traffic. No toll for northbound traffic

Bus stop for Route 162 (Brickell Metrorail Station to Cape Florida State Park)

Approx. 1,000 parking spaces

Existing sidewalk and waterfront is well maintained and provides access to southwest shore

Wide bike-lanes on both sides of Rickenbacker Causeway

Miami Rowing and Water Sport Center

0' 100' 200' 400' N
Rickenbacker Causeway is the only connection between Key Biscayne, Virginia Key, and the mainland. Where it passes in front of the site, it is composed of three lanes in each direction (southeast and northwest). The speed limit for the causeway along that stretch is 45 mph. There is a $1.50 toll only for cars entering the causeway from the mainland. The only opening in the causeway into the site is located directly in front of the stadium’s rear side. From that entrance, one can either proceed straight into the site, or left or right on Vero’s Street.

Vero’s Street runs parallel to Rickenbacker Causeway and is located between the stadium and the causeway. It consists of one lane in each direction. The road’s current purpose is connecting several uses to Rickenbacker Causeway (dry stack storage, Vero’s by the Bay, rowing club). It handles a relatively small amount of traffic.

Rickenbacker Causeway does feature wide bike lanes on both sides of the road. It is a pleasant bike ride, as one going from the mainland to Key Biscayne, or vice versa, sees crystal blue water on both sides when crossing the two main bridges. Those same bridges, however, can be somewhat of a challenge to the less experienced biker. There are also a number of trails, for experts and beginners, that can be accessed along Rickenbacker Causeway.

There is no sidewalk along the side of Rickenbacker Causeway close to the site. Additionally, pedestrian traffic on-site is disconnected from any network. The single sidewalk directly in front of the stadium sits independent of the rest of the site. Along the opposite side of Rickenbacker Causeway there is a public waterfront that has recently been redeveloped. There is no existing connection from the site to this park.

Parking on site is handled by a massive parking lot (about 9 acres). The lot can park approximately 1,000 cars. Apart from its occasional use as event parking for other functions in Virginia Key and Key Biscayne, the lot lies unused. The parking surface is damaged in many areas and spaces are poorly defined. It is surrounded by a fence, that does little to deter trespassers, because it has several breaks around the perimeter.
Vegetation / Soil

- Healthy palm trees along waterfront
- Trees and palms in median are healthy and maintained
- Note: entire site classified as NRCS soil: urban land
- Large established shade trees
- Trees in parking lot are in poor condition
- MIAMI ROWING AND WATER SPORT CENTER
- DRY-STACK BOAT STORAGE
- VELO’S BY THE BAY
- GRASS FIELD
- LARGE ESTABLISHED SHADE TREES
- LARGE ESTABLISHED SHADE TREES
With the exception of the trees directly in front of the stadium, the site is barren. Scattered trees and shrubs throughout the parking lot do little to soften the amount of pavement or provide shade. Most of the vegetation is in poor condition and has no potential to be retained.

The strip of land that the site is located on was once underwater. It was filled to give its current size and shape. The NCRS soil survey for the area classifies the soil as “urban land.” As expected, the land is infertile, lacking a good layer of topsoil. This makes establishing any kind of vegetation a challenge. Additionally, plants in the area have to deal with salt from the ocean and heavy breezes at different times of the year.

Virginia Key has been overrun by a number of invasive species, including Casuarina equisetifolia (Australian pine), Schinus terebinthifolius (Brazilian pepper), Colubrina asiatica (latherleaf), and other undesired species. Some of these can be found in the median between the site and Rickenbacker Causeway. Apart from disturbing the native ecosystems these plants block views into the site and take up valuable land.

The rest of Virginia Key, unlike the site, is home to an array of natural ecosystems. Mangrove forests dominate much of the island. They are responsible for much of Virginia Key’s formation, as their root systems help to retain sediment from the current. Mangroves are also critical in preventing erosion, especially during hurricanes. Virginia Key also has coastal hammock coastal dune communities. Together, these ecological communities contribute to Virginia Key’s extensive biodiversity.

1925

2012

Top: Trees growing rampant in front of the stadium
Middle: Trees in the parking lot are in poor condition.
Bottom: Just the trunks of these palms remains.
Left: Over time, Virginia Key has expanded due to natural and human processes.
Topography / Hydrology

Dry-Stack Boat Storage

Vero's by the Bay

Existing elevation changes are subtle

Shore slopes gently into basin

Some of the runoff flows unobstructed into the basin

Most of the runoff flows across Vero's Street and into marshy strip

Miami Rowing and Water Sport Center

Note: Entire site classified as FEMA flood zone AE
The site’s topography is relatively subtle. From the edge of the water, the shore slopes up to an elevation of about 4 feet.

With its close proximity to the water, the stadium property’s hydrology is of great importance. Because a majority of the site is composed of surface parking, storm water simply sheet flows into either the basin or into the median between Rickenbacker Causeway and Vero’s Street. There is no system in place to collect or treat runoff. Pollution from vehicles, erosion, or other sources can negatively affect the quality of the natural ecosystems of Biscayne Bay.

Another important aspect to consider in the planning of this project is the effects of sea level rise. Peter Harlem and Dr. John Meeder, research ecologists at FIU, predict that by 2098 the sea level will have risen by about four feet. This would essentially put half of Virginia Key, and a majority of the site, underwater. Although the rate of sea level rise may be debated, there is no doubt that sea level is rising around the world. However, for this project, sea level rise will be viewed as a future threat and not as an imminent threat to the stadium or its function, because it is impossible to predict sea level rise with complete accuracy.

Top left: Sea level rise diagram as predicted by Peter Harlem and Dr. John Meeder
Left: The shore slopes gently into the basin.
Above: There is no system in place to treat storm water.
Users

Key Biscayne Residents

Key Biscayne is heavily developed and lacks sufficient park space. Key Biscayne residents will most likely be the everyday users of the site.

Downtown Miami/ South Florida Residents

Miami’s beautiful weather makes parks usable year-round. Residents of Miami-Dade County and nearby Broward County will frequent the stadium.

Event Attendees

The stadium’s capacity is about 6,500. For major events, both the open space and parking for the stadium must be sufficient to comfortably accommodate these users.

Tourists/ Sightseers

South Florida attracts tourist from around the world. The stadium’s status as a historically significant structure and the opportunities it offers will draw visitors from abroad.

Boaters/ Water Sports

The site’s location by the water and proximity to a marina make it a popular destination for boaters. Their functional and recreational needs should be considered.

Row and Swim Club/ MAST Academy

The MAST Academy and Miami Row and Swim Club are the closest user groups to the property. They will likely frequent the site as well as they share the basin.
Urban Environment League (UEL) Design Workshop:
On September 27, 2009, the Urban Environment League (UEL), a Miami advocacy organization that promotes environmentally responsible development and smart growth, held a design workshop with South Florida residents. Their main goal was to engage with the community and begin to assess the needs of the site's potential users. The following important recommendations resulted from the workshop:

Welcome Center
- create a welcome center on Miami Marine Stadium property
- include a space for education, recreation, food, information, etc.

Transportation
- make the causeway a scenic drive
- encourage public transportation from mainland

Ecology
- protect manatees and other wildlife in area

Waterfront
- maximize public access to waterfront

The workshop also revealed that the community did not want the site to become a heavily commercialized area. The following uses were deemed undesirable as a result of the workshop:

Hotels
Condos
Shopping Centers
Goals and Objectives

Build Upon Stadium’s Significance

Use MiMo principles including function, place, character, and sustainability.

Allow for interpretation of the stadium’s significance, history, and regional ecology.

Create an iconic image and experience for the stadium as well as the site.

Capitalize on the stadium’s unique setting and views.

Design a Multi-Purpose Site

Allow for a variety of recreational, entertainment, and educational experiences.

Design a space that meets the needs of a wide range of users.

Make parking a flexible space that can be used for other purposes.

Ecology

Create a healthy and stable ecological system.

Treat storm water on site to prevent pollution into the adjacent water bodies.
This concept builds upon the existing layout of the site. A majority of the parking is preserved, minimizing the impact and cost of a total redesign. Emphasis is placed in a 2 acre park and plaza space located directly in front of the stadium’s entrance. The space divides parking into two separate lots. The smaller one can be used for small events, while both can be used together for a major event. In the park space, a network of paths and palm trees create an elegant setting for the stadium.

A vegetated area, found between the parking and shore, helps to capture and filter runoff from the parking lot. It also provides some relief from the large area of hardscape.

The activity center is located in close proximity to the water. It is composed of two wings, with a breezeway down the middle, to create a comfortable space and frame breathtaking views into the basin. A playground and public waterfront allow for recreational experiences for guests of all ages. Along the beach, a series of shade tents, inspired by sails, are available to watch races or other shows from the beach.
Concept 2: Marine Park

- Shade Tents
- Boardwalk
- Views
- Observation Platform
- Public Waterfront
- Staging Area
- Stadium
- Plaza Area
- Recreated Wetland
- Flat Area
- Flat Area Parking
- Landform Park
- Open Space
- Fountain Artpiece

Scale: 0' 100' 200' 400'
This concept turns the site into a public park. Access to the park is made possible using the existing entrance to the site. Vero’s Street is redirected to go through the park, dividing it into two major areas. The area closest to Rickenbacker Causeway consists of large open spaces that allow for active recreation and double as large event parking. Because this space would not be able to park sufficient vehicles in a major event, this proposal would need to have a heavy emphasis on alternative methods of arriving to the stadium, something that may or may not sit well potential patrons. A small, paved parking lot is located close to the activity center but it is dedicated more to daily users.

The other major area in the park is the waterfront. A small beach near the stadium creates a fun place to visit in the summer or to watch a race from. An observation deck extending past the shore gives visitors a chance to see the water and city from within the basin. In the southeast portion of the site, dramatic landforms mimic the waves of nearby Biscayne Bay. A vegetated buffer encompasses the area in front of the stadium. Its form is inspired by the curves of MiMo architecture.
Concept 3: The Wave

- Staging Area
- Welcome Center
- Abstracted Wetland
- Shade Tents
- Connection to Stadium
- Public Waterfront
- Plaza Area
- Open Space
- Parking Garage
- Performers
- Guests
- Overflow Parking
This concept combines form with functionality. The focal point is a lively plaza directly in front of the stadium. In this plaza, race teams, sponsors, and other groups can set up tents for guests to visit before and after the action. A grand entrance from the road is created to enhance the sense of arrival to the stadium. The welcome center is located close to the stadium for the convenience of guests. For major events, guests are directed towards the southeast portion of the site, while performers or teams go to a staging area in the northwest zone.

A four-story parking garage handles the majority of parking, freeing-up additional space for other uses and immensely reducing the area of surface parking. To not compete visually with the stadium, it is located away from it. It can also be screened with vegetation to further reduce its visual impact. When users park in the garage, they follow a path along the shore to the stadium. This makes for a pleasant, scenic connection between the two.

The rest of the site can handle overflow parking in a series of waves formed by plants and hardscape. Even with cars in these rows, several pockets of open space are left over, giving visitors a place to gather, tailgate, etc.

Left: The entrance is composed of a large plaza, intermixed with small ponds and vegetation. Middle: The concept is inspired by the waves of the ocean and MiMo architecture. Above: The parking garage can double as event space.
Daily Activity Configuration

A. Stadium
B. Entrance
C. Daily Use Parking (123 spaces)
D. Parking Garage
E. Dock
F. Covered Walkway
G. Plaza
H. Picnic Area
I. Welcome Center
J. Garden Area
K. Playground
L. Grass Beds
M. Staging Area
N. Open Space
O. Public Waterfront

Note: 123 total spaces available for non-event days
Large Event Configuration

A. Stadium F. Covered Walkway K. Playground P. Public Waterfront
B. Entrance G. Plaza L. Grass Beds
C. Daily Use Parking (123 spaces) H. Picnic Area M. Staging Area
D. Parking Garage (650 spaces) I. Welcome Center N. Overflow Parking (400 spaces)
E. Dock J. Garden Area O. Open Space

Note: 1,173 total spaces available for events
<table>
<thead>
<tr>
<th>Tabulations</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardscape (excluding structures)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing: 493,000 sq ft</td>
<td>11.3 acres</td>
<td></td>
</tr>
<tr>
<td>Proposed: 220,000 sq ft</td>
<td>5 acres</td>
<td></td>
</tr>
<tr>
<td>Difference: 273,000 sq ft</td>
<td>6.3 acres</td>
<td>LESS</td>
</tr>
<tr>
<td>Open space (lawn and beach)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing: 28,000 sq ft</td>
<td>.63 acres</td>
<td></td>
</tr>
<tr>
<td>Proposed: 343,000 sq ft</td>
<td>7.9 acres</td>
<td></td>
</tr>
<tr>
<td>Difference: 315,000 sq ft</td>
<td>7.3 acres</td>
<td>MORE</td>
</tr>
<tr>
<td>Parking Spaces (total)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing: approx.</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td>Proposed:</td>
<td>1,173+</td>
<td></td>
</tr>
<tr>
<td>Difference:</td>
<td>173+</td>
<td>MORE</td>
</tr>
</tbody>
</table>
Section A-A’

Welcome Center

Parking Garage

Above: Rendering of public waterfront showing the beach, basin, and covered walkway.
Left: Parents watch their children play as they sit under a large shade tree. The playground is conveniently located near the Welcome Center and the daily use parking.
Above: Large umbrellas create a comfortable gathering space. Concessions sold at the Welcome Center, or snacks brought from home, can be enjoyed in this area.
Left: The picnic area has views to the water and stadium. It is a good meeting spot for groups.
Below: A deck jet fountain runs during large events, or other select days. It gives visitors a fun way to cool down.
Left: Detail of one of the three interpretive focal points on site.
Below: Original seats from the stadium serve as a reminder of the stadium’s past. A semi-circular seat wall surrounds the seats giving guests an ideal vantage point for viewing the stadium.
Above: A boardwalk leads from the park space into the plaza. Grass beds hide the plaza from view making the stadium the focal point.
Left: The main plaza is where the action occurs on race day. Teams and sponsors set up tents with promotions and activities. Below: Seat walls form elevated lawns, where guests can sit or lay down and take in the South-Florida sun.
Above: The main entrance gives guests a stunning sense of arrival. Views to the stadium are unobstructed.
Section D-D'

Above: Detail of overflow parking during a large event. Large spaces are intentionally left vacant to allow room for tailgating and recreation.
The staging area gives teams and other performers a place to park and set up. The lot is buffered from the plaza area for privacy and aesthetics.
Plant Palette
The following plant list offers a brief glimpse of the species that could be used in the proposed plan. Common characteristics between these species include salt tolerance, drought tolerance, the ability to grow in sandy soils, and hardiness. Additionally, these plants feature colors and textures that both compliment and contrast each other.

Trees

a. Buttonwood, *Conocarpus erectus*

b. Chaste Tree, *Vitex agnus-castus*

c. Geiger Tree, *Cordia sebestena*

d. Lignum-vitae, *Guajacum sanctum*

e. Sand Live Oak, *Quercus geminate*

Palms

f. Bismarck Palm, *Bismarckia nobilis 'Silver Select'*

g. Brittle Thatch Palm, *Thruxton morrisii*

h. Cabbage Palm, *Sabal palmetto*
Shrubs

a. Seagrape, Coccoloba uvifera
b. Ti Plant, Cordyline spp. & cvs.
c. Yaupon Holly, Ilex vomitoria and cvs.

Grasses

d. Muhly Grass, Muhlenbergia capillaris
e. Panic Grass, Panicum virgatum and cvs.
Bibliography

Images
In order of appearance:

Presentation images:

No Trespassing

By order of City of Miami Police.

Persons failing to leave the premises after being instructed may be arrested for trespass by the City of Miami Police.

Fla. State Statute 810.08 and 810.09
The National Trust for Historical Preservation named the stadium to its “11 Most Endangered Historic Places List” in 2009.
Macchu Picchu was named to the World Monuments Fund’s 2010 Watch List (so was this place).
The City of Old Jerusalem was named to the World Monuments Fund’s 2010 Watch List (so was this place).
This basin was dredged in 1963 for $1 million.
This entire strip of land was man-made.
Users

Key Biscayne Residents

Key Biscayne is heavily developed and lacks sufficient park space. Key Biscayne residents will most likely be the everyday users of the site.

Downtown Miami/ South Florida Residents

Miami’s beautiful weather makes parks usable year-round. Residents of Miami-Dade County and nearby Broward County will frequent the stadium.

Event Attendees

The stadium’s capacity is about 6,500. For major events, both the open space and parking for the stadium must be sufficient to comfortably accommodate these users.

Tourists/ Sightseers

South Florida attracts tourists from around the world. The stadium’s status as a historically significant structure and the opportunities it offers will draw visitors from abroad.

Boaters/ Water Sports

The site’s location by the water and proximity to a marina make it a popular destination for boaters. Their functional and recreational needs should be considered.

Row and Swim Club/ MAST Academy

The MAST Academy and Miami Row and Swim Club are the closest user groups to the property. They will likely frequent the site as well as they share the basin.
Urban Environment League (UEL) Design Workshop:
On September 27, 2009, the Urban Environment League (UEL), a Miami advocacy organization that promotes environmentally responsible development and smart growth, held a design workshop with South Florida residents. The following important recommendations resulted from the workshop:

Welcome Center
Create a welcome center on Miami Marine Stadium property
Include a space for education, recreation, food, information, etc.

Transportation
Make the causeway a scenic drive
Encourage public transportation from mainland

Ecology
Protect wildlife in area

Waterfront
Maximize public access to waterfront

The workshop also revealed that the community did not want the site to become a heavily commercialized area. They would not like any plan for redevelopment to feature hotels, condos, or shopping centers.
Goals and Objectives

Build Upon Stadium’s Significance

Use MiMo principles including function, place, character, and sustainability.

Allow for interpretation of the stadium’s significance, history, and regional ecology.

Create an iconic image and experience for the stadium as well as the site.

Capitalize on the stadium’s unique setting and views.

Design a Multi-Purpose Site

Give visitors a wide variety of recreational, educational, and entertainment opportunities.

Design a space that meets the needs of a wide range of users.

Make parking a flexible space that can be used for multiple purposes.

Enhance Ecology

Create a healthy and stable ecological system.

Treat storm water on site to prevent pollution into the adjacent water bodies.
Design for Flexibility

- Festivals
- Racing
- Entertainment
- Practice
- Hobbies
- Water sports
- Fun
- Passive Rec.
- Active Rec.
ILLUSTRATIVE MASTER PLAN
Daily Activity Configuration

A. Stadium
B. Entrance
C. Daily Use Parking (123 spaces)
D. Parking Garage
E. Dock

F. Covered Walkway
G. Plaza
H. Picnic Area
I. Welcome Center
J. Garden Area

K. Playground
L. Grass Beds
M. Staging Area
N. Open Space
O. Public Waterfront

Note: 123 total spaces available for non-event days
Large Event Configuration

A. Stadium
B. Entrance
C. Daily Use Parking (123 spaces)
D. Parking Garage (650 spaces)
E. Dock
F. Covered Walkway
G. Plaza
H. Picnic Area
I. Welcome Center
J. Garden Area
K. Playground
L. Grass Beds
M. Staging Area
N. Overflow Parking (400 spaces)
O. Open Space
P. Public waterfront

Note: 1,173 total spaces available for events
Above: Rendering of public waterfront showing the beach, basin, and covered walkway.

Section A-A'

Welcome Center

Parking Garage

Daily Use Parking

Road

Open Space

Road

Open Space
Left: Parents watch their children play as they sit under a large shade tree. The playground is conveniently located near the Welcome Center and the daily use parking.
Above: Large umbrellas create a comfortable gathering space. Concessions sold at the Welcome Center, or snacks brought from home, can be enjoyed in this area.

Left: The picnic area has views to the water and stadium. It is a good meeting spot for groups.

Below: A deck jet fountain runs during large events, or other select days. It gives visitors a fun way to cool down.
Left: Detail of one of the three interpretive focal points on site.
Below: Original seats from the stadium serve as a reminder of the stadium’s past. A semi-circular seat wall surrounds the seats giving guests an ideal vantage point for viewing the stadium.
Above: A boardwalk leads from the park space into the plaza. Grass beds hide the plaza from view making the stadium the focal point.
Left: The main plaza is where the action occurs on race day. Teams and sponsors set up tents with promotions and activities.

Below: Seat walls form elevated lawns, where guests can sit or lay down and take in the South-Florida sun.
Above: The main entrance gives guests a stunning sense of arrival. Views to the stadium are unobstructed.
Section D-D'

Above: Detail of overflow parking during a large event. Large spaces are intentionally left vacant to allow room for tailgating and recreation.
Left: The staging area gives teams and other performers a place to park and set up. The lot is buffered from the plaza area for privacy and aesthetics.
Goals and Objectives

Build Upon Stadium’s Significance

Use MiMo principles including function, place, character, and sustainability.

Allow for interpretation of the stadium’s significance, history, and regional ecology.

Create an iconic image and experience for the stadium as well as the site.

Capitalize on the stadium’s unique setting and views.

Design a Multi-Purpose Site

Give visitors a wide variety of recreational, educational, and entertainment opportunities.

Design a space that meets the needs of a wide range of users.

Make parking a flexible space that can be used for multiple purposes.

Enhance Ecology

Create a healthy and stable ecological system.

Treat storm water on site to prevent pollution into the adjacent water bodies.