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GUEST EDITORIAL 

What's Your Legacy? 

At a recent AIChE annual meeting, the incoming 
division chair presented a recognition plaque to one of 
the outgoing board members. Upon thanking the new 
chair, the departing member joked, "One day my kids 
are going to wonder what to do with all these things." 
A chuckle went through the room; everyone knew 
exactly what he meant. As the spouse of a colleague 
once observed, we all have "I Love Me" walls at work 
or at home on which we display our framed certificates 
and plaques. The entrepreneurial academic culture is 
individually focused on publications, grants, awards 
for research and teaching, and "best paper" recogni
tions. Faculty candidates are scrutinized based on their 
number of thesis and post-doctoral papers. The reward 
system in academia doesn't help; it mainly reinforces 
those things that can be easily counted and displayed. 
Professors have been seduced by titles, awards, and 
indices away from what really matters-making a 
long-lasting impact on the lives of our students and 
colleagues. 

At my (hopefully distant) retirement, either my fam
ily or I will load all the plaques and certificates on my 
office wall into a box, which will go in the attic and 
sometime later be discarded. At my retirement recep
tion, when my colleagues and former students talk about 
me, I hope they will talk about my real legacy- the 
difference I made in the lives of my colleagues and 
students. 

What will your colleagues and former students talk 
about at your retirement party? What would you like 
them to talk about? 

Here are some examples of how to be intentional 
about your legacy and leave your imprint on the lives 
of others: 

• Support younger colleagues at your institution 
and within your field. Serve as a teaching or 
research mentor, encourage them to apply for 

LISA G. BULLARD 

North Carolina State University 

leadership positions that might stretch them, and 
nominate them for awards. Think about a role 
you're currently filling, such as a highly visible 
committee chair, that could provide an opportu
nity for a junior colleague to develop and grow. 

• Invest in your students-not only the "stars," 
but also those who are struggling. Be especially 
aware of students who have missed class or are 
doing poorly; invite them to meet with you, ex
press concern, and ask them what might be going 
on to affect their performance. Often you will find 
that your sincere interest causes them to open up 
about their situations, and you might then be able 
to offer helpful guidance. 

• On your website and the bulletin board outside 
your office, look for ways to affirm the accom
plishments of the graduate students and under
graduate researchers in your group. 

• Take the time to write a personal note or email to 
colleagues who have received recognition. 

• Stay in touch with former students and celebrate 
their accomplishments and important life events. 

• Donate money to your department or university 
to support something that is important to you
perhaps an endowed lectureship, an under
graduate scholarship, a graduate fellowship, or 
support of the AIChE student chapter. 

There's nothing wrong with papers and awards and 
plaques - they recognize excellence and encourage 
contributions to our universities and our discipline. 
However, the real opportunity to make a lasting dif
ference lies in your relationships, not your resume. 
While it may be difficult or impossible to quantify, 
your legacy is what will survive you when your 
plaques and papers are long forgotten. Instead of 
focusing exclusively on your next accolade, consider 
your legacy, and be proactive about making it what 
you would like it to be. 0 

© Copyright ChE Division of ASEE 2015 
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A COMPREHENSIVE REAL-WORLD 
DISTILLATION EXPERIMENT 

CHRISTOS G. KAZAMEAS, KAITLIN N. KELLER, AND WILLIAM L. LUY BEN 

Lehigh University • Bethlehem, PA 18015 

Distillation is the major separation method in indus
try, and its analysis brings together many important 
chemical engineering principles: component bal

ances, energy balances, heat transfer, and phase equilibrium. 
Distillation is a core subject in all chemical engineering edu
cational programs. The basic concepts can be very effectively 
conveyed by simple graphical methods, particularly in binary 
systems where McCabe-Thiele diagrams clearly demonstrate 
the effects of number of stages, reflux ratio, relative volatil
ity (pressure), and vapor-liquid phase nonideality. Many 
textbooks[2

-
7J covering distillation principles have appeared 

since the 1950 pioneering book by Robinson and Gilliland. [ll 

The examples used in introductory courses usually make 
many simplifying assumptions in order to not cloud the 
fundamental concepts. These include theoretical trays, total 
condenser with saturated liquid reflux and distillate, partial 
reboiler, and a single feed stream (either saturated liquid or 
saturated vapor). Operating lines are represented as functions 
of the reflux ratio (reflux flow divided by distillate flow). 
University distillation experiments[s-izi are usually small scale 
with glass components, which are not typical of industrial 
distillation systems. 

The experimental distillation column in the Lehigh Uni
versity Process Laboratory has some features that are more 
representative of actual industrial columns, and these features 
complicate the analysis. 

For many years, our senior students have found that per
forming experiments and analyzing the performance of this 
column is a very effective way to extend the basic concepts 
and theory that they learned in their junior-year mass transfer 
course. 

Vol. 49, No. 3, Summer 2015 

This paper describes the equipment, startup procedure, 
reconciliation of the raw data, energy balances around various 
sections of the column, calculation of tray efficiencies, and 
simulation of the column to compare theoretical predictions 
with experimental data. 

Safety issues are fairly minimal in the experiment. Metha
nol is flammable but is mixed with water except in the reflux 
drum. An alarm is activated if the flowrate of cooling water 
to the condenser is too low. Another alarm is activated if the 
base pressure gets too high, indicating column flooding. An in
terlock shuts off the feed pump if the base level gets too high. 

Kaitlin Keller graduated from Lehigh University 
in May 2014 with a B.S. in chemical engineer
ing and minor in Spanish with high honors. She 
works at Merck and Co. doing process devel
opment work on vaccines and biologics. Kaitlin 
is also a part of 
AIChE at the na
tional level and on 
the board of the 
local Delaware Val
ley Section. 

Christos Kazameas studied chemical engi
neering at Lehigh University. A New Jersey 
native.he now resides in Lewisburg, WV. Chris-

tos is employed 
as a materials 
engineer for UTC 
Aerospace Systems where his primarily focus 
is on elastomer compounding and develop
ment of aircraft de-icing systems. 

William L. Luyben has taught at Lehigh for 
47 years in the areas of process design and 
process control. He is the author of 14 books 
and more than 280 papers. 

© Copyright ChE Division of ASEE 2015 
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PROCESS STUDIED 
Figure 1 gives the flowsheet of the unit. The distillation 

column separates methanol-water at 1 atm pressure. It is 8 
inches in diameter and has 14 trays with three Glitch V-1 
ballast caps on each tray. Feed is pumped from a tank ( cross
sectional area = 3.57 ft2) through a control valve and into 
the tube side of a heat exchanger where it is heated by the 
overhead vapor from the column. This setup is sometimes 
called an "economizer." The feed is still subcooled when it 
is fed to one of three alternative trays (4, 6, or 8). Trays are 
numbered from the bottom. 

Saturated steam at 35 psig flows through a control valve 
into the shell side of a vertical thermosiphon reboiler. Con
densate leaves through a steam trap. The steam pressure in 
the shell of the reboiler is 5 psig. Vapor flows up through the 
column and enters the shell side of the feed preheater, which 
is a horizontal tube-in-shell heat exchanger. Any liquid that 
has condensed flows out the bottom of the shell side of the 
preheater into the reflux drum. Vapor leaves the top of the 
feed preheater and goes to the shell side of two more heat 
exchangers in series with cooling water flowing countercur
rently through the tube side. The vapor is totally condensed 
and the liquid flows by gravity to the reflux drum. The shell 
side of the final condenser is vented to the atmosphere, so the 
pressure in the column is 1 atm and the reflux is subcooled. 

Liquid from the reflux drum is pumped and split into a 
reflux stream and a distillate stream with control valves in 

1 atm 
66°C 

R= 0.464 
kmol/h 

41°c 

F = 1.63 kmol/h 
z = 0.219 
20°c 

both lines setting the flowrates of the two streams. Reflux is 
fed on Tray 14 at the top of the column. Distillate goes to a 
distillate tank (cross-sectional area= 1.24 ft2). 

The bottoms stream from the base of the column goes to a 
cooler and into a pump. The pump discharge goes through a 
control valve and into a bottoms tank (cross-sectional area= 
1.24 ft2). Both the distillate and the bottoms tanks can be drained 
into the feed tank. These three tanks are used to determine 
flowrates by tank gauging during the run when steady-state 
conditions have been attained. All control valves are electronic 
and are manually positioned from five controller faceplates. 

Instrumentation includes temperature measurements of all 
streams and on all trays. Base pressure, steam supply pres
sure, and steam pressure in the reboiler are measured. Level 
indicators and sight glasses are available on the reflux drum 
and the column base. Sight glasses are available on the feed, 
bottoms, and distillate tanks. 

Liquid samples can be taken from the feed tank, from the 
line leaving the reflux drum, and from the base of the column. 
Hydrometers are used to measure the density, from which 
compositions can be calculated because of the significant 
difference in density between water (sp. gr. = 1) and methanol 
(sp. gr. = 0.792). 

STARTUP PROCEDURE 
One of the most important educational features of the ex

periment is requiring the students to develop and perform a 

D = 0.345 kmol/h 
xD =0.954 

Few= 14.1 
kg/min 

B = 1.29 kmol/h 
xB = 0.022 

safe and rapid startup from 
a cold column initial condi
tion. After electric power is 
turned on, the first step is to 
open the cooling water inlet 
valve and to guarantee by 
visual inspection that there 
is sufficient cooling water 
flowing to the two condens-
ers at the top of the column. 

The feed pump is started 
and the feed control valve is 
opened to bring liquid into 
the base of the column. The 
feed pump is shut off and the 
feed valve closed when the 
liquid level in the column 
base is about 80% full as 
indicated by both the sight 
glass and the level transmit
ter. Then steam is slowly 
introduced into the shell 
side of the reboiler. It takes 
about 15 minutes to heat 

Figure 1. Flowsheet and experimental conditions. 
up the liquid in the column 

132 Chemical Engineering Education 



base, at which point vapor begins to flow up the column. The 
rising hot vapor heats the metal of the trays and the vessel 
wall. The temperature on Tray 1 increases, then Tray 2, and 
so forth up the column. It takes about 10 more minutes for 
the hot vapor to work its way up to Tray 14. 

When vapor starts to come overhead, the liquid level in the 
reflux drum begins to rise. When the drum is about 25% full, 
the overhead pump is started and the reflux valve is opened. 
The distillate valve is completely closed. The position of the 
reflux valve is adjusted to maintain a constant liquid level in 
the reflux drum. 

Thus the initial part of the startup is putting the column on 
total reflux. The flowrates of the feed, distillate, and bottoms 
streams are all zero. The steam valve is in a fixed position 
and the reflux valve is controlling reflux drum level. The base 
level is uncontrolled, but there must be adequate liquid in the 
base. Material from the initial quantity charged to the column 
base goes to build liquid inventory on all the trays and in the 
reflux drum. If the base level gets too low during the startup, 
more feed is introduced. 

Once reflux starts flowing down the column and contact
ing the rising vapor, fractionation begins. We will analyze 
the total reflux operating conditions in a later section of this 
paper. First we will examine normal steady-state operation 
with feed and product streams. 

NORMAL FEED RUN 
The transition from total reflux to feed operations is 

achieved by starting the feed pump and opening the feed 
valve to about 40%. The steam valve is set at about 50%. The 
distillate valve is opened to about 15% and a level controller is 
put on automatic to adjust the distillate valve to maintain the 
liquid level in the reflux drum. The bottoms pump is started 
and the bottoms valve is opened to about 25%. A second level 
controller is put on automatic to adjust the bottoms valve to 
maintain the liquid level in the base of the column. 

Raw data 

It takes about 45 minutes for the column to come to a 
steady-state condition as indicated by constant temperatures 
and levels. During this period the bottoms and distillate 
tanks are draining back into the feed tank. When the valves 
in the exit lines of these product tanks are closed, the level 
in the feed tank falls and the levels in the product tanks 
climb. Recording level changes over a period of time gives 
flowrate information for feed F, distillate D, and bottoms 
B. This "tank gauging" procedure is what would often be 
done in industry using feed and product tank level changes 
over a prolonged test period. Cooling water and steam 
condensate flowrates are determined by the "bucket and 
stopwatch" method (ice is used in the bucket to catch the 
hot steam condensate). 

Liquid samples are taken of the feed, reflux (distillate), and 

Vol. 49, No. 3, Summer 2015 

bottoms in a graduated cylinder, and hydrometers are used to 
find densities, from which compositions can be calculated. 
Temperatures of all streams and on all trays are recorded. Table 1 
gives some of the important raw data from a typical run. 

The flowrate of the reflux cannot be determined during the 
run, but it can be obtained after the column has been shut 
down. Liquid is retained in the reflux drum. The overhead 
pump is started and the reflux valve is set in the same posi
tion that it was during the run. Nothing is entering the reflux 
drum, so the drop in level with time gives the reflux flowrate 
that we had during the run. 

Data reconciliation 

A major educational feature of the experiment is exposing 
the students to real data with its inherent inaccuracies. Flow 
and composition measurements are imprecise in an industrial 
environment. Material balance calculations show that "In" is 
not equal to "Out" in terms of both mass ( and molar flowrates 
in this non-reactive process where moles are conserved) and 
components. The students are forced to develop a rational data 
reconciliation procedure to make the total molar and compo
nent balances perfect before getting into further analysis to 
generate McCabe-Thiele diagrams, determine tray efficien
cies, and check energy balances. 

The data given in Table 1 are used to calculate molar com
positions and molar flowrates. The first and second columns in 

TABLE 1 
Raw data from feed run 

sp. gr. Flowrate 

Feed 0.927 677 cm3/min 

Distillate 0.797 226cm3/min 

Bottoms 0.992 396cm3/min 

Reflux 0.797 304cm3/min 

Steam 0.433 kg/min 

cw 14.1 kg/min 

Temperatures 
(C) 

Feed Tank 20 

Feed to Column 63 

CW Into Condenser 5.8 

CW Out Condenser 11.9 

Reflux Drum 47 

Tray 1 89 

Tray 14 66 

The specific gravity of methanol is 0.7815 and that of water is 1. The 
molecular weights are 32 and 18, respectively. 
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assume 
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are 

correct 
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is the sum 
of the two 

product 
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This 
makes 

the total 
molar 

balance 
perfect. 

TABLE2 
Calculated and adjusted results 

Calculated Molar Calculated Mole Adjusted Molar Adjusted Mole 
Flowrate (kmol/h) Fraction Methanol Flowrate (kmol/h) Fraction Methanol 

Feed 2.056 0.2322 1.631 0.2191 

Distillate 0.345 0.954 0.345 0.954 

Bottoms 1.286 0.022 1.286 0.022 

Reflux 0.464 0.954 0.464 0.954 

Table 2 give the calculated molar flowrates of the feed F, bottoms B, the distillate D, and the reflux R, together 
with the molar compositions of these streams (z, x

8
, and xD). Ideal mixing of methanol and water is assumed. 

Adding D and B gives 1.621 kmol/h, which is not equal to F (2.056 kmol/h). Do we have a leak in the 
equipment? No, the flow measurements are not precise. In addition, the feed tank has an internal heat ex
changer of unknown size, which occupies a portion of the cross-sectional area. So the tank gauging of the 
feed would be expected to give calculated flowrates that are too high. 

Therefore one possible data reconciliation procedure is to assume that the flowrates of the distillate and 
bottoms are correct and that the feed flowrate is the sum of the two product flowrates. This makes the total 
molar balance perfect. The adjusted feed flowrate is Fadj. 

To make the methanol component balance perfect, the feed composition z is back calculated assuming 
the distillate and bottoms compositions and flowrates are correct. The adjusted feed composition is zadj. 

Fadj = D+ B = 0.345+ 1.286 = 1.631 kmol/h 

zadj= Dx0 + BxB (0.345)(0.954 )+(1.286)(0.022) 
0

_
2191 

Fadj 1.631 
( 1) 

The experimental value of z is 0.232, and the adjusted zadj is 0.219, so there is only a minor adjustment. 
The last two columns in Table 2 give the flowrates and compositions used in the subsequent analysis. 

McCabe-Thiele diagram 

Figure 2 gives the McCabe-Thiele diagram using a rectifying operating line (ROL) with a slope that 
considers the effect of subcooled reflux. The slope of an operating line in any section of the column is the 
ratio of the liquid to vapor flowrates in that section. The flowrate of the subcooled reflux is 0.464 kmol/h 
and its composition is 0.954 mole fraction methanol. It is not at its bubblepoint temperature but is subcooled 
at 46.9 °C while the temperature on Tray 14 is 66.3 °C. An energy balance is used to calculate the internal 
liquid flowrate LR in the rectifying section of the column. 

LR=R[l+ Cp (T;~TR)] 

=(0.464 kmol/hr)[l+ (30·8 kJ/kmol-K)(663 - 46·9)]=0.484 kmol/hr (2) 
36,200 kJ/kmol 

LR/VR=~ = 
0

·
484 

0.584 
LR+D 0.484+0.345 

Liquid heat capacity is calculated using the molar composition and the component liquid molar heat capaci
ties (methanol = 81.03 kJ kmol 1 K 1 and water= 74.93 kJ kmol 1 K 1

). Heat of vaporization is calculated 
using molar composition and component heats of vaporization (methanol = 36,000 kJ/kmol and water = 
40,860 kJ/kmol). In later calculations of enthalpy, vapor molar heat capacities are used (methanol= 49.28 
kJ kmol 1 K 1 and water= 36.0 kJ kmol 1 K 1

). 

A similar energy balance around the feed tray gives a q value of 1.035 because the subcooled feed temperature 
is 62.6 °C while the temperature on the feed tray (Tray 4) is 81.1 °C. Now the operating lines can be drawn. 

A value for Murphree vapor-phase efficiency is guessed, and stages are stepped off between the stripping 
operating line (SOL) and a fraction of the vertical distance to the vapor-liquid equilibrium line, starting at the 
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bottoms composition x
8

. The partial reboil er is assumed to be an equilibrium stage. 
Aspen NRTL physical properties are used to generate the VLE curve at 1 atm. 

Unlike a design problem in which the optimum feed tray occurs at the intersec
tion of the ROL and SOL, the analysis of an operating column has a fixed feed 
stage. So we must step back and forth between the SOL and the VLE curve until 
we reach Tray 4. Then we can step to the ROL. 

By trial and error, an efficiency of 65 % was found to give a vapor composition 
leaving Tray 14 that is equal to the distillate composition xD = 0.954. See Figure 2. 

The experimental temperature profile ( the circles) is shown in Figure 3 (follow
ing page). The solid line is the predicted temperature profile from a simulation 
discussed later in this paper. 

Energy balances 

Energy balances can be made around various sections of the column. The 
heat removed in the three overhead heat exchangers condenses and subcools the 
vapor leaving the top of the column. The flowrate of this vapor is the sum of the 
flowrates of the reflux and the distillate. The heat transferred into the cooling 
water in the condenser is: 

QCW =FCW*Cp (Tout-Tin) 

= (14.1 kg/min)( 4.163 kJ/kg- K)(l 1.92-5.85)(mini 60 sec)= 5.94 kW (3) 

:::c: 
0 
(1) 

~ -E -lo., 

0 a. 
~ 

0 0.1 0.2 0.3 04 0.5 0.6 

Liquid (mf MeOH) 

Unlike a design problem 
in which the optimum 
feed tray occurs at the 
intersection of the ROL 
and SOL, the analysis of 
an operating column has 
a fixed feed stage. So we 
must step back and forth 
between the SOL and the 
VLE curve until we reach 
Tray 4. Then we can step 
to the ROL. 

0.7 0.8 0.9 

Figure 2. McCabe-Thiele diagram;feed run. 
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Figure 3. Temperature profiles; simulation and experimental diagram; total reflux. 

The heat transferred into the feed in the preheater is: 

QPH=Fadj*Cp (Tout-Tin) 

The = (1.631 kmol/h)(76.28 kJ/kmol-K)(62.6-20)(h/ 3600 sec)= 1.473 kW (4) 

overall 
energy 

balance for 
the whole 

system 
shows a 

very 
significant 

heat loss. 
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Thus the total heat removed from the overhead vapor is 7.41 kW according to these cold-side calculations. 

They can be checked by energy calculations on the hot process side. The heat removed in the three heat 
exchangers condenses and subcools the process vapor, which is the sum of the reflux and the distillate (0.464 
+ 0.345 = 0.809 kmol/h) with a composition of 0.954 mole fraction methanol. The enthalpy of the vapor 
leaving Tray 14 at 66.3 °C is 39,450 kJ/kmol, and the enthalpy of the subcooled liquid (reflux+ distillate) 
is 37,900 kJ/kmol). Thus the total heat removed from the process vapor is: 

Qtotal = (D+ R) (H14- hR) 

= (0.809 kmol/h)(39,450-3790 kJ/kmol)(h/ 3600 sec)= 8.104 kW (5) 

This independent check of the heat transferred in the overhead system is quite close to the 7.41 kW calcu
lated from the cold sides of the preheater and condenser and is well within experimental error. There are 
some heat losses to the atmosphere from the hot vapor, so we would expect the hot-side heat removal to be 
higher than the cold-side heat pickup, which these calculation show to be the case. 

The overall energy balance for the whole system shows a very significant heat loss. Most of the column shell 
is not insulated and at temperatures significantly higher than ambient. The reboil er duty is calculated from the 
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condensate flowrate and the difference between saturated steam at 35 psig and saturated condensate at 5 psig. 

QR = FS (H35 - h5) 

= (0.433 kg/min)(2731-4546 kJ/kg)(min/ 600 sec)= 16.4 kW 

The overall energy balance is 

iiH=Q-W 

Dh0 + BhB - FhF = QR -QCW -Qloss 

(0.345 kmol/h)(3790 kJ/kmol)+ (1.286 kmol/h)(7131 kJ/kmol) 

-(1.631 kmol/h)(1526 kJ/kmol) = 16.42 kW-5.94 kW-Qloss 

2.22 kW= 10.48 kW -Qloss 

Qloss = 8.26 kW 

Half of the reboiler duty is lost to the atmosphere. 

TOTAL REFLUX 

(6) 

(7) 

Under total reflux conditions, there are no feed and no products. The liquid and vapor flowrates are the 
same in all sections of the column, which means the slope of the operating line is unity. Hence the operating 
line is the 45° line on the McCabe-Thiele diagram as shown in Figure 4. 

Total Reflux 
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Figure 4. McCabe-Thiele. 
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no 
products. 
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Data from a total reflux run are 
given in Table 3. The specific gravity 
data are used to calculate the compo
sitions of the reflux (xR = 0.987) and 
of the base (x

8 
= 0.0143). Both of 

these purities are higher than in the 
feed run, as expected since the reflux 
ratio is infinite and more fractionation 
should occur. 

The heat duty in the condenser 
from the cooling water data is 7.038 
kW. From the overhead vapor, which 
is now only reflux, the duty is 8.368 
kW. Heat losses could account for this 
difference. 

The reboiler duty is calculated 
from the steam flowrate (13.54 kW). 
Since no streams are fed or leave the 
process, the ~H term in the overall 
energy balance is zero. 

Base 

Reflux 

Steam 

cw 

CW Into Condenser 

CW Out Condenser 

Reflux Drum 

Tray 1 

Tray 14 

TABLE3 
Data from total reflux run 

sp. gr. Flowrate 
Composition (mole 
fraction methanol) 

0.997 0 0.005 

0.793 559cm3/min 0.995 

0.357 kg/min 

14.7 kg/min 

Temperatures 
(C) 

6.0 

12.9 

38.6 

99.4 

64.7 

Therefore the heat added 105 ~---~---~---~----~---~---~---~ 

in the reboiler should 
equal the heat lost in the 100 
condenser plus heat lost to 
the surroundings. The loss 95 
is 13.54 - 7.038 = 6.50 
kW, which is similar to the 

90 
heat loss in the feed run. 

Figure 5 gives the ex- - 85 
perimental temperature (.) -profile (the circles) under C. 

E 80 total reflux conditions. ~ 
The other curves come 
from the simulation and 75 

are discussed in the next 
section. Notice that the 70 
experimental temperature 
profile is fairly flat at both 65 
ends of the column, indi-
eating quite high product 60 
purities. 0 

COMPUTER 
SIMULATION 

Sim lation 
Xs = 0.002 
X = 0.987 

2 4 6 

0 

8 10 12 14 

Tray 

An Aspen Plus simula
tion is developed to model 

Figure 5. Temperature profiles; total reflux; simulation and experimental. 

the process. An Aspen "Radfrac stripper" model (reboiler but 
no condenser) is used for the column. Aspen "HeatX" models 
are used for the feed preheater and condensers. The NRTL 
physical property package is used. The process flow diagram 
is given in Figure 6. 
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Feed run 

The experimental values that were specified for input data 
to the simulation are listed below. 

1. Adjustedfeedjlowrate = 1.631 kmol/h 
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2. Adjusted feed composition= 0.2191 mole fraction 6. Cooling water jlowrate = 0.433 kg/min 
methanol 

7. Cooling water inlet temperature= 5.8 °C 
3. Feed tank temperature= 20 °C 

8. Partial reboiler stage efficiency= 100% 
4. Bottoms jlowrate = 1.286 kmol/h 

9. Stage efficiency = 65% 
5. Rejluxjlowrate = 0.464 kmol/h 

All of the other variables are calculated by the model. Table 4 

Table 4 
Comparison of experimental and simulation results; feed run 

compares experimental and simulation results. 
The agreement is quite good. Figure 3 com
pares the temperature profiles. 

XD mfmethanol 

XB mfmethanol 

QPH kW 

Qcw kW 

QR kW 

Tovhd "C 

Treflux "C 
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Experiment Simulation 

0.965 0.956 

0.022 0.021 

1.473 1.547 

5.938 6.797 

16.40 9.404 

66.3 65.8 

50.6 46.9 

TO COLUMN 

Total reflux run 

How to set up a total reflux simulation is not 
completely obvious. The Aspen Plus "Radfrac" 
model requires feed and product streams, but 
these are all zero under total reflux operation. 
The reflux flowrate is set at the experimental 
value (0.8343 kmol/h). Efficiency is set at 65%. 

A small feed flowrate (0.01 kmol/h) is 
specified with composition 0.211 mole fraction 

OUTOOND 

RDRU M 

TOTAL 

Figure 6. Aspen Plus process flow diagram. 
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methanol. Then the bottoms flowrate is varied and the calcu
lated values of the reflux xR and the base x8 are observed. A 
bottoms flowrate of 0. 0078 kmol/h gives a reflux composition 
(xR = 0.987) that matches the experimental value. But the 
base composition is 0.002, which is much smaller than the 
experimental x8 = 0.0143. The predicted temperature profile 
under these conditions is the solid line shown in Figure 5. 

The predicted temperature profile is not as flat in the lower 
part of the column as the experimental profile. This indicates 
that the real bottoms composition is lower than that calculated 
from density. Considerable inaccuracy is to be expected when 
purities are high. 

A very small decrease in the specified bottoms flowrate to 
0.00775 kmol/h changes the calculated compositions to xR = 
0.973 and x8 = 0.0001. The resulting temperature profile is 
the dashed line in Figure 5. 

There are multiple experimental temperature measurements 
and only one bottoms composition measurement, so it is logi
cal to assume that the composition measurement is inaccurate. 

ASSESSMENT OF STUDENT LEARNING 
Several student comments about the utility of the experi

ment are given below. The major contribution is permitting 
students to relate theory with real equipment. 
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I. "The pilot-scale distillation experiment is very useful 
in understanding how a distillation column oper-
ates in real life. We were able to familiarize ourselves 
with proper start-up and shutdown procedures of the 
plant, and also how to make measurements of physical 
parameters such as the flow rate and the purities of the 
components. In addition, the energy requirements of the 
plant are also computed, which makes it very relevant 
to industrial operation." 

2. "I was honestly most excited to run this experiment be
cause we had learned so much in theory and my design 
project was based upon distillation. It made it more 
real and helped with understanding how flow rates are 
actually measured and how the temperature rises up the 
column during start-up before reaching steady state. 
Those sorts of things aren't taught in the classroom." 

3. "The distillation experiment gave a lot of insight to how 
a distillation actually operates. We spent a lot of time in 
class studying how separations take place in distillation 
columns, and this lab allowed us to apply and actually 

see the theories in action. The most interesting part 
about this experiment for me was seeing the difference 
between theory and actuality. Comparing the physical 
data to what is expected from theory and seeing how 
heat loss and efficiencies affect the results was a good 
learning experience." 

4. "In my opinion it was the most valuable experiment in 
the lab. The distillation experiment solidified the core 
foundations of mass transfer, as well as provided insight 
into proper unit operation beyond the textbook aspects. 
The experiment truly required teamwork. The construc
tion of the unit allowed thorough understanding of the 
possible degrees of separation for a two-component 
system. The full-size column gave a unique experience 
in the senior operations lab." 

CONCLUSION 
The experimental procedure and analysis of a realistically 

complex distillation experiment is described in detail. Edu
cational objectives include reviewing mass transfer theory, 
developing a safe startup procedure, adjusting imperfect raw 
data, calculating tray efficiencies, and performing energy 
balances. Three generations of Lehigh chemical engineering 
students have found this experiment the most industrially 
relevant part of our two-semester senior-year process analysis 
laboratory. They gain very useful experience in operating a 
fairly complex process with multiple inputs and outputs that 
challenge their technical skill and develop their common 
sense. 
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IMPROVED PERFORMANCE VIA 

THE INVERTED CLASSROOM 
RANDY D. WEINSTEIN 

Villanova University • Villanova, PA 19085 

Lecturing in the classroom has been the historical 
method of delivering information to students at the 
university level. However, this method of delivery 

has been shown to not be the most effective with millennial 
students (born between 1982 and 2005)[1, 2i that are our cur
rent traditional college-aged population. These students have 
had technology consistently in their lives and particularly 
computer use is an integral part of their personal and educa
tion experiencesYl 

Active learning, where students do something course
related in the classroom other than just watching and listening 
to the instructor and taking notes, has been used for a while 
in higher education and has been shown to improve student 
learning. [47l The flipped or inverted classroom is the extreme 
of active learning where all lecture material is delivered 
outside of class (by online videos or other modules) and the 
time spent in class is dedicated to working on problems or 
projects, asking questions, and taking assessments. The in
verted concept is not novel,l8l but improved technology and 
software along with the ease of implementation has made the 
inverted classroom recently accessible to a large number of 
faculty without significant assistance_ [9l 

Using the inverted classroom, student performance has 
been shown to be improved compared to a traditional lecture 
version of the course. Various metrics were used to show 
improved learning including pre- and post-material testing 
compared to a previous year,l1°l content coverage whereby 
students' time to comprehend material is shorter compared to 
previous year as measured by examinations,l11 l and through 
self-evaluations via surveys_[9l Some studies have shown no 
significant student learning enhancementsY2l However, there 
are subtleties in the way the inverted classrooms are imple
mented that could account for the differences in measured 
student learning enhancements. For example in an inverted 
classroom study by Lape and coworkers[12i students were 
not given daily assessments to force their watching and un
derstanding of material in advance of class. The first 10-15 
minutes of class were spent reviewing the material from the 
videos; therefore, students could gain knowledge of material 
presented in the videos from the instructor without ever having 
to watch them. At the end of the class period the instructor 
reviewed and often presented the solutions to problems done 
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in class and therefore students could get the answers without 
having to do the problems. Interestingly, the investigators 
themselves identified that in future implementations students 
would be required to do some work based on the videos prior 
to coming to class and hence force the students to be respon
sible for the material. Another inverted classroom studyl13l 
found that on average only about 50% of the students watched 
the lecture material before coming to class. There were no 
daily assessments given in this study. Pre-class work based 
on the lectures that had an influence on the student's grade 
helps ensure students' full use of the inverted class material. [l4J 

The literature does not present clear evidence supporting 
or refuting the use of the inverted classroom for improv
ing student learningY 5l The inverted classroom can be 
implemented for many reasons including improving student 
learning, increasing student-teacher interactions, providing 
opportunities for real -time feedback, allowing for self-paced 
learning, improving the homework problems and practice 
provided to students, and enhancing student engagement 
with the materialY5l 

METHOD 
An inverted class was implemented in a first-semester 

junior-level chemical engineering thermodynamics course 
at Villanova University-a medium-sized private university 
with undergraduate emollments of 6,800 students-in Fall 
2013 and 2014 for the purpose of determining if students 
learned better under this mode. There were four sections total
ing 108 students for an average section size of 27 students. 
The inverted class was compared to the previous four years 
(Fall 2009-2012) of traditional lecture classes consisting of 

Randy D. Weinstein is a professor of chemi
cal engineering at Villanova University. He 
is former department chair and is currently 
serving as the associate dean for Academic 
Affairs in the College of Engineering. He 
received his B.S.degree from the University 
of Virginia and his Ph.D.from the Massachu
setts Institute of Technology. His research 
areas include the fields of supercritical 
fluids, nanomaterials, and thermal manage
ment of electronics. 
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seven sections and 188 students for an average section size 
of 27 students. Each class met for 50 minutes three times a 
week for 14 weeks. This course had been taught 15 times prior 
to the inverted class by the same instructor as a traditional 
lecture course. An identical set of course notes prepared by 
the instructor was given to all sections (inverted and lecture). 
Each section was also given identical sample problems (158) 
and their solutions. Three in-class exams and a comprehensive 
final were given to each section. All sections were given ap
proximately weekly homework problem sets done in teams. 
The inverted class had video lectures assigned (one to four) 
for each class consisting of the same material that would have 
been given in a lecture class from the previous years. Daily in
class quizzes were given to the inverted class that were closed 
book, but a one-page hand-written set of notes was allowed 
along with a calculator. In 2011, unannounced quizzes were 
given at the end of several lecture periods. Table 1 provides 
a quick reference for how each course offering was handled. 

Performances on the three exams and final exam were 
compared between the lecture and inverted classes. Identi
cal exams were not given since these tend to be available 
to students and in fact were handed out by the instructor as 
practice exams. Instead exam questions were developed based 
upon historical performance of the students on the material. 
The exams will be the primary method of determining the 
performance of the students. 

An exam consisted of four questions. One question was 
targeted to have a 60% average and the remainder were tar
geted to have an 80% average producing an overall average 
target of 75% on the exam. The exam questions from Fall 
1998-2008 and their student results were used to find types 
of questions that produce the desired average scores. Besides 
passing the t-Test (described in Statistical Analysis section) 
to verify equal means, exam questions had to address similar 
concepts and have the same number of steps and types of 
calculations to be considered the same, but obviously they 
were not identical questions. Calculations were broken down 
into unit conversions, algebra, and calculus steps. 

Approximately weekly homework sets were assigned to all 
sections and were completed in teams of two to three students. 
Homework groups have been shown to be beneficial to student 

learning if implemented well. [l 6l All homework problems were 
created by the instructor. Homework length and difficulty 
were designed to be the same from year to year. Each of 
the years of 2009-2012 when compared to its previous year 
produced statistically similar mean scores on the cumulative 
homework average using the two sample t-Tests for equal 
means verifying that the homework degree of difficulty was 
consistent from year-to-year. Students also reported similar 
hours for time spent outside of class on assignments. For the 
years 2009-2012, the traditional lecture model was used and 
all homework was completed outside of class. For the inverted 
class in 2013, homework assignments were identical to that 
of the class of 2006 (a traditional lecture class not included in 
this study); however, a significant amount of class time was 
spent allowing students to work on their homework and ask 
questions of the instructor. For the inverted class in 2014, new 
homework assignments were developed. The average home
work grade for the inverted classes was not statistically the 
same as the any of the previous five years of classes, having 
a higher average (92 ± 1.8 % versus 85 ± 2.3% ). 

For the inverted class, lecture videos were prepared using 
voice and screen capture software on a tablet. The course notes 
provided to all classes had blanks in them and these were filled 
in with writing during the lecture as would have been done 
during a traditional lecture class. A typical SO-minute lecture 
was broken down into one to four videos of varying lengths. 
Each video was targeted at covering one topic, concept, or 
problem. If students were allowed to work on a problem or a 
question as part of the lecture as would have been done in the 
traditional lecture class an opportunity for them to do so was 
provided in the video. The time the students spent on these 
active-learning activities was not included in the video length. 
Students were required to log in to watch the videos and the 
system tracked student access to the videos. At the start of each 
class, students were given an online IO-minute quiz consisting 
of four to five questions on the material in the videos assigned 
for that class. The quizzes were closed book but each student 
was allowed to prepare their own page of notes for the quiz. 
Calculators were allowed. Each question was targeted to a 
particular video and aimed at the basic concepts of the lower 
levels of Bloom's taxonomy of learning objectives in the 

TABLE 1 
Format of the course each year 

Lecture Practice 
Daily Random Pop Weekly 3 Exams 

Inverted Traditional 
Notes Problems Video in-Class 

Provided Provided 
Quizzes Quizzes Homework and Final 

Lectures Lectures 

2009 X X X X X 

2010 X X X X X 

2011 X X X X X X 

2012 X X X X X 

2013 X X X X X X 

2014 X X X X X X 
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Figure 1. Average exam scores from the inverted classes (2013-2014) and the traditional lecture classes 
(2009-2012) based upon class rank percentile. 

These were 
not announced at the start of the class so students would 
not know if they would receive a quiz based upon the day's 
lecture while listening to the lecture. This was instituted to 
see if the students would gain more knowledge during the 
lecture if they were immediately held responsible for the 
lecture material once it was delivered. These quizzes were 
not given online and were open notes as compared to the 33 
quizzes given during the inverted course (which were online 
with students only allowed a one-page sheet of notes). Both 
sets of quizzes addressed lower-level learning objectives and 
48% of the questions were identical in both sets. A comparison 
of the exam results from the class in 2011 to those in 2009, 
2010, and 2012 can explore the effect of frequent quizzing of 
the lecture material on student learning. The lecture course in 
2011 with quizzes can be used as a control to compare student 
learning to the inverted courses in 2013 and 2014, which 
also utilized frequent quizzing, and potentially eliminate the 
quizzes as having an effect on student learning objectives. 

STATISTICAL ANALYSIS 

To compare two data sets to verify if they were from dif
ferent populations a two-sample t-Test for equal means[17l if 
normally distributed or Welch's adaptation of the t-Test[lSJ 
if not normally distributed was implemented. The normal 
distribution was tested using the Shapiro-Wilk normality 
test which has been shown to be a very accurate method for 
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testing normalityY9l A 95% confidence interval was selected 
for this analysis. 

Averages throughout the manuscript are reported at 95% 
confidence intervals. The Mann-Whitney non-parametric 
test[20l was used to show that there was a significant differ
ence between the average scores from one set of data when 
compared to another set. 

RESULTS AND DISCUSSION 

Exam Performance: The three exams and final exam 
were averaged (equal weight given to each) and the Mann
Whitney non-parametric test[zoi verified that there was a dif
ference between the averages from the lecture classes when 
compared to the inverted class. With all four lecture classes 
combined the significance value of the test was 0.031 and 
is below 0.05 for 95% confidence limits. If each year was 
examined separately versus the inverted years, there was still 
statistical difference between the data sets. Even the lecture 
course from 2011 that instituted frequent quizzes to hold stu
dents accountable for the lecture material showed statistical 
difference when compared to the results from the inverted 
class, which also had frequent quizzing. Therefore frequent 
quizzing alone could not account for the improved student 
performance observed in the inverted class. The averages 
for all four exams combined (equally weighted) are shown 
in Figure 1. The exam averages (95% confidence interval) 

143 



TABLE2 
Average exam scores (95% confidence limit) for inverted versus traditional classes. 

In all groupings the exam aver
ages were higher for the inverted 
cohort compared to the traditional 
lecture cohort and the data sets 
are different. For the traditional 
lecture cohort the averages from 
questions 1-3 were statistically 
different than the averages from 
question 4 using the Mann
Whitney non-parametric test.[201 

For the inverted cohort there was 

Class was partitioned based upon average exam score. 

2009-2012 2013-2014 Normal 
(Traditional) (Inverted) Distribution 

t value p value 

Overall 79.8 + 1.4 83.2 + 1.3 3.29 0.001 

Top 1/3 89.2 ± 0.7 91.1 + 1.0 3.04 0.003 

Middle 1/3 81.4+ 0.6 83.3 + 0.6 X 3.98 0.00007 

Bottom 1/3 68.6 ± 1.6 75.3 ± 1.5 X 5.62 <0.00001 

TABLE3 
Average scores (95% confidence interval) for the bottom third (partitioned 

no statistical difference between 
the averages of questions 1-3 compared to 
question 4 at the 95% confidence limit. The 
weaker students in the lecture course tended 
to perform poorly on problems requiring 
higher-level learning objectives compared 
to problems requiring lower-level skills. 
However, the students in the inverted course 
showed equal performance across exam 
questions addressing different levels ofleam
ing outcomes. The inverted method showed a 

using exam average) of the class based upon question type for traditional 
lecture versus inverted classes. 

2009-2012 2013-2014 
(Traditional) (Inverted) 

t value 

Overall 68.6 ± 1.6 75.3 + 1.5 5.62 

Questions 1-3 70.9 + 0.4 76.0 + 0.4 4.89 

Question 4 60.1 ± 0.6 73.7 + 0.6 5.56 

are also presented in Table 2 along with t and p values from the 
two-sample t-Test for equal means[171 for normal distributions 
or for Welch's adaptation when the distributions were not nor
mal. [!SJ The bottom and middle third averages were normally 
distributed while the overall and top third averages were not. 

Interestingly, the lower third of the class (based upon exam 
average) performed significantly better in the inverted class 
compared to their lecture-class counterparts. Their exam aver
age went from a D+ to a Con the traditional grading scale, 
improving almost seven points. The top third of the class 
only increased exam averages by two points. It is important 
to note that the qualifications (cumulative GPA and math and 
verbal SAT scores) between these classes were not statisti
cally different. For example the inverted cohort had their SAT 
scores only 1 point higher than the traditional cohort and the 
populations were deemed identical. 

As noted before, each exam consisted of four questions. 
Three of the questions were targeting an 80% average while 
the fourth was targeting a 60% average. The first three ques
tions addressed the fundamental lower-level Bloom's Tax
onomy in the cognitive domain of knowledge, comprehension, 
and application learning objectives while the more difficult 
problem also required analysis, synthesis, and/or evaluation. 
Since the bottom third of the class performed significantly bet
ter on their exams it was desired to see if their skills increased 
across Bloom's Taxonomy. Exam averages were created using 
just the first three problems and then another average created 
using just the fourth problem across all exams. In all cases 
the scores were normally distributed. The results are shown 
in Table 3. Similar trends were not observed in the better 
performing students. 
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p value 

<0.00001 

<0.00001 

<0.00001 

5.1 exam point increase in lower-level skills 
and a 13.6 point increase on higher-level skills when com
pared to the lecture method. The inverted classroom method 
appears to help the weaker students more than the stronger 
students in the course. A larger increase in higher-level skills 
occurs with the inverted method. 

Student Perception: It has been shown that the students 
in the inverted class perform better than the students in the 
traditional lecture class. A common belief for this enhance
ment is that the students in the inverted class do more work 
or put in more time outside of class to achieve their perfor
mance enhancement. In the third to last week of the semester 
of the inverted classes the students were asked to rank their 
perception of the inverted class on a five-point scale where 
1 represented strongly disagree and 5 represented strongly 
agree. There was one student out of the 107 who had previous 
experience in an inverted course before this one. The results 
of this survey are present in Table 4. 

TABLE4 
Survey of student perceptions of the inverted classes, 

1 = strongly disagree and 5 = strongly agree. 

I feel the format of this course improved my overall 4.5 ± 0.3 
learning compared to a traditional lecture course. 

I feel the format of this course required a substan- 4.4 ± 0.3 
tial amount more time compared to a traditional 
lecture course. 

Solving problems in class prepared me better for 4.1 ± 0.4 
solving problems on my own. 

I feel that because of the format of this course. I 4.3 ± 0.4 
received more personal attention compared to a 
traditional lecture course. 
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TABLES From the survey results it appears that 
the students believe they are putting in 
more work when compared to a lecture 
course; however, this may not actually be 
the case. On the last day of class anony
mous course surveys are administered 
to the students in all courses. One of the 
questions asks the students in the thermo
dynamics course to identify on average 
how many hours a week outside of class 
they spent on this class. For the inverted 
sections students identified 6.2 ± 0.5 hours 
per week spent on the class. For the four 

Daily quiz averages (95% confidence interval) for inverted class in 2013 (full 
credit for attempt) compared to identical quizzes given to the 2014 class where 

Overall 

Top 1/3 

Middle 1/3 

Bottom 1/3 

previous years of the lecture version of the 
course the students reported that they spent 5.8 ± 0.6 hours per 
week outside of class, an average time that was shown to be 
statistically the same as for the inverted course using the t-Test 
even though there can be errors in students self-reporting data. 
When taking an inverted course and other lecture courses at 
the same time the students believe the inverted course takes 
much more time than their lecture courses. However, in real
ity they may not be spending any different amount of time 
outside of class on their material for the inverted class. Their 
time is spent differently and one might say more effectively 
to achieve higher exam scores based upon the course material. 
More of the student time is spent on the video lectures and 
comprehending the material and less time on the homework 
and studying for exams. 

Holding Students Accountable: Afterreviewing the litera
ture on the inverted classroom it appears that students must 
be held accountable for the material presented outside of 
class. The viewing and comprehension of the material must 
somehow affect their course grade. This was accomplished 
in this study by having the students take a IO-minute quiz 
based upon the assigned videos every day. The quizzes were 
closed book but a hand-prepared one-page sheet of notes was 
allowed. The students had 33 quizzes throughout the 14-week 
course and were allowed to drop their 10 lowest scores assum
ing they missed fewer than two classes (unless excused for 
illness or other reason). As an experiment in week 6 (about 
halfway thought the course) in the 2013 inverted sections the 
students were given full credit for the 3 quizzes as long as 
they attempted the quiz no matter what they actually scored 
on the quiz; they were made aware of this change prior to 
the assignment of the videos. Results are shown in Table 5. 

In the2013 versionoftheinvertedclass, when students were 
given full credit for attempting the quiz they performed sig
nificantly worse when compared to the rest of the quizzes they 
took when the quiz scores counted. This was even observed for 
the high-performing students. The identical quizzes for week 
6 were given to the two sections of the inverted course in 2014 
( 52 students); however, the quiz scores counted in their grade 
and when this occurred the students performed significantly 
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quiz grades counted. 

2013 Quiz Average 2014 Quiz Average 2013 Quiz Average 
credit for attempt graded quizzes graded quizzes 

Week6 Week6 Weeks 1-5, 7-14 

50 ± 3.1 80 ± 1.6 82 ± 1.8 

68 ±3.7 94 ± 1.4 92 ± 1.4 

59 ±3.7 81 ± 1.4 84 ± 1.9 

23 ± 6.9 66 ±3 .7 69 ± 4.3 

higher when compared to their 2013 counterparts. In 2013 
there were on average 1,025 videos accessed during a typical 
non-exam week (excluding week 6). 

This corresponded to 172 student accesses per video or 
each student accessing each video three times on average. 
During week 6 there were only 435 videos accessed and 
there were 22 students (39% of the class) that did not access 
any videos that week. During all the other weeks there was 
never a student observed to not access videos. These results 
clearly show that the students must be held accountable for 
the inverted material before they come to class. 

Effect of Frequent Quizzing: A common criticism of the 
inverted classroom in the way it was implemented in this study 
focuses on the daily quizzing, and it is postulated that it is 
this change in the course that improves the student learning 
and not the inverted method. In 2011, during the traditional 
lecture version of this course there were 73 students in two 
sections and the students were told at the beginning of the 
course that at the end of a lecture it was possible they would 
be given a IO-minute quiz based upon the day's material. They 
would be allowed to use their notes taken that day as well as 
a calculator during the quiz. Twenty quizzes were actually 
given during 2011. The quiz average for 2011 based upon 20 
quizzes was 86% while for inverted sections based upon 33 
quizzes it was 80%. The students did perform slightly better 
on the quizzes in 2011 than in the inverted course and if an 
examination of just the quiz scores was the only method for 
evaluating the inverted classroom one could conclude that 
there was no difference in student performance or even that 
the students in the traditional lecture class retained informa
tion better and performed better on the material. However, 
when examining the exam scores shown in Figure 1 and 
Table 2 itis clear that the inverted class performed better than 
the lecture class even if the lecture class was given frequent 
assessments to facilitate the students learning the material. 
Therefore it is the inverted part of the course and its imple
mentation and not the frequent assessment that increases 
student performance. It is possible that the mere action of 
students having to summarize the notes for the quiz could 
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tional SO-minute class did not contain 
50 minutes of lecturing as there were 
always some active-learning activities 
built into the lectures and these were 
maintained to keep the content deliv
ery identical between the inverted and 
lecture courses. Each video also had 
quiz question( s) associated with it and 
the performance of the class on each 
question was tracked. Results of the 
student quiz scores based upon video 
length is presented in Figure 2. 

All of the quiz questions addressed 
learning objectives associated with 
knowledge, comprehension, and ap
plication. The videos covered these 
learning objectives as well as those 
related to analyzing, synthesizing, and 

6 8 10 12 14 16 18 20 22 24 

Video Length (min) 
evaluating. Many of the higher-level 

Figure 2. Average quiz score (95% confidence interval) tracked to video length con
taining the material for the question. There were 64 videos for the course and some 

videos had multiple questions associated with them. 

learning objectives were also covered 
in the example problems provided to 
the class. There was no partial credit 
given on quiz responses. Students 

also lead to improved performances and this is part of the 
method of implementing an effective inverted classroom that 
goes beyond just the recording oflectures. The ability for the 
students to watch the lectures when they want and as many 
times as they want, along with their frequent interaction with 
the instructor in the class while working on problems, helped 
increase their knowledge, understanding, and application of 
the course material. The daily quizzing in the inverted course 
helped to facilitate a level of comprehension of the material 
before the class so that it could be applied to problems and 
situations quickly during class time. The students could even 
go back and access the videos during the class while working 
on problems and often were observed doing so. 

Video Length: Lectures were prepared for each class and 
were broken into 1-4 videos per day keeping major topics and 
problems in one video. Videos were then grouped into length 
categories by 2-minute intervals. The set of videos for each 
day was matched to the set of lectures that would have been 
given that day in the traditional lecture course. If a lecture 
included a break for students to work on a problem/question 
that break was provided in the video by asking students to 
pause the video and work on the problem. There was no moni
toring of how long students actually spent on the problem. 
The time a student would spend working on a problem was 
not included in the measured video length. The problem/ ques
tion was generally reviewed in the video by the instructor, as 
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tended to test better on materials as
sociated with shorter videos. There was a drop off in student 
understanding and applying thermodynamic concepts if they 
were presented in videos longer than 15 minutes. 

After reviewing these results it was questioned whether the 
longer videos contained topics that were a different degree 
of difficulty or addressed higher levels oflearning objectives 
on Bloom's scale even though the quiz questions only ad
dressed the lower levels. Therefore the set of learning objec
tives written for the course was examined. There were 168 
learning objectives previously written. These were initially 
developed in 2001 and edited for three years. Since 2004 
they have remained the same for the course and have been 
provided verbatim to the students in all classes at the start of 
the course. The verb in each learning objective was analyzed 
and matched to a learning outcome in Bloom's cognitive 
domain using the work of Huitt[21 i as a guide to help classify 
the objectives. Each objective was grouped into either the 
lower three levels or higher three levels. Of the 168 learning 
objectives, 81 % of them were in the lower levels while the 
remainder was classified in the higher levels. 

There were 64 videos for the course presented over 33 
days of lectures. Each video addressed multiple learning 
objectives. The 32 higher-level learning objectives were 
traced to 12 videos, each being longer than 15 minutes. 
There were only three other videos longer than 15 minutes 
that did not address higher-level learning objectives. The 
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quizzes only asked questions related 
to lower-level learning objectives 
even though the video lectures cov
ered material across all levels. Two 
conclusions could be drawn from the 
learning objective analysis. First, for 
better student comprehension, top
ics addressing lower-level learning 
objectives should be separated from 
the higher-level ones when preparing 
the lecture videos. It appears students 
would get wrapped up in the higher
level skill acquisition and not grasp 
the lower-level skills as well when 
both were presented together. The 
other conclusion would be to shorten 
the video lengths to below 15 minutes 
without having to separate the dif
ferent levels of learning objectives. 
These conclusions would need to be 
verified as the data cannot definitively 
support either one, but suggest them 
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as possibilities. 

Video Access: The online system 
was able to track when students ac
cessed videos. There was no correla-

Figure 3. Average quiz score (95% confidence interval) tracked to number of times 
a video was accessed. Data are a composite for all 64 videos. 

tion between the time or day when the students accessed the 
videos and their quiz scores. There was a correlation between 
how many times a video was accessed and the average quiz 
score on the material related to that video (Figure 3). The 
data were collected up until the quiz time. Students did ac
cess videos after the quiz when doing problems, reviewing 
materials, and studying for exams but those accesses were 
not included in this data. 

The results in Figure 3 provide information to the instructor 
about what material is difficult for the students to compre
hend without having to test the students. One could examine 
material in videos that were accessed more than twice for this 
course and assume students need additional instruction on this 
material. In fact, the instructor could, in future offerings of 
the course, monitor the video access up until the time of class 
and enter class with some prior knowledge about where the 
students are struggling and provide instantaneous instruction 
on that material via a mini lecture, an example problem, or 
other means. 

CONCLUSION 
Students in an inverted class tended to perform better on 

exams than their counterparts in a traditional lecture course. 
Students with lower exam scores saw the biggest improve
ment in their performance with the bottom third of the class 
increasing their average exam score by seven points. The 
method of implementation of the inverted course is important 
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and several factors were found to be required for improved 
student performance. Students must be held responsible for 
material presented outside of class by video. This was ac
complished by daily quizzing. Videos needed to be kept short 
as videos longer than 15 minutes were found to be not as ef
fective in transferring knowledge as shorter ones. Tracking 
student access of the online material can also provide data to 
the instructor on student learning prior to formal assessment. 
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Ar:omprehensive laboratory course is an important com
ponent for adequately preparing engineering students 
or future careers in industryYl The University of 

Delaware (UD) Department of Chemical and Biomolecular 
Engineering (CBE) has recognized the importance of such 
a course and has committed significant resources and effort 
towards continuous improvement. Chemical Engineering 
Laboratory I, more commonly known as Junior lab or J-lab, 
is offered to students in the Spring semester of their junior 
year, and seeks to reinforce ChE fundamentals, technical 
writing, oral presentation, teamwork, leadership skills, and 
safety practices. Five experiments focused on chemical 
kinetics, fluid mechanics, thermodynamics, heat and mass 
transfer, and engineering instrumentation provide the con
nection with the theory taught in the core ChE courses. This 
article provides an overview of the Junior lab taught at UD 
and a detailed analysis of the recently introduced chemical 
kinetics experiment. 

CHEMICAL ENGINEERING LABORATORY I 

The Junior lab provides the first opportunity for un
dergraduate students to apply the knowledge and skills 
acquired from coursework to actual chemical engineering 
experiments. The undergraduate lab provides a comprehen
sive and well-developed program that can lead to significant 
academic growth for the students. The UD CBE department 
dedicates significant resources for the Junior lab. A team of 
four professors, four graduate teaching assistants (TAs ), and 
two laboratory technicians operate, maintain, and work to 
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continuously improve the laboratory. The laboratory consists 
of five different experiments: fundamentals of measurement 
(FOM), heat exchange (HEX), vapor-liquid equilibrium 
(VLE), fluid mechanics (FLO), and chemical kinetics (KIN). 
The FOM laboratory introduces students to the operation of 
basic temperature, pressure, and flow measurement devices. 
The lab also provides students with background on analog 
and digital data acquisition and control hardware and an 
introduction to Lab View® computer programming. The FLO 
experiment features a series of pipes and instrumentation to 
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study flow in the laminar, transition, and turbulent regimes. 
The VLE experiment consists of four ebulliometers for 
measuring infinite dilution activity coefficients to calculate 
binary phase behavior. [ZJ The HEX experiment features tube 
and tube, shell and tube, and plate and frame heat exchangers 
for evaluating and comparing heat transfer correlations. The 
KIN experiment measures the reaction order and activation 
energy for the iodination or bromination of acetone reaction. 
A detailed description of the KIN experiment is provided in 
the next section. 

All students start by running the FOM experiment, which 
is focused on understanding the principles and operation for a 
variety of temperature, pressure, and flow measuring devices. 
The instruments are mounted on portable racks that can be 
moved between the laboratory and classroom. The FOM ex
periment provides students with a thorough understanding of 
engineering instrumentation before they need to use it in the 
four additional experiments (FLO, VLE, HEX, KIN). Students 
select two out of the four remaining experiments to complete 
during the rest of the semester. The experiments are based on 
the core chemical engineering classes that serve as prerequi
sites for the lab: CHEG341 (Fluid Mechanics), CHEG231 and 
CHEG325 (Thermodynamics), CHEG342 (Heat and Mass 
Transfer), and CHEG332 (Chemical Kinetics). 

To complete three experiments with approximately 80 to 
100 students within a 13-week semester requires a rigorous 
schedule be followed. The lab is split into three cycles with 
each cycle lasting approximately four weeks (and the oral/ 
video presentations lasting one week). At the beginning of 
a cycle, the laboratory groups, typically consisting of four 
students, each elect a group leader. The group leader is respon
sible for division of labor, organization of the group, assign
ment submission, and student-teacher correspondence. Anew 
group leader is elected for each cycle so that all students have 
the opportunity to lead an experiment or an oral presentation. 

Given such a demanding schedule, professors, TAs, and 
students utilize Sakai[3l for exchanging course informa
tion. Sakai provides professors and TAs the ability to post 
resources, schedule meetings, send out messages, announce 
assignment deadlines, and provide grades, all of which are 
archived and easily accessible by the students. In addition, 
students are able to electronically submit draft and final reports 
via Sakai to eliminate the need for hard copy submissions. 
The electronically submitted reports provide users with a 
confirmation email, which includes the attached files and 
time of submission. TAs grade draft reports and the professors 
grade the final reports. Due to the short time frame between 
experiments, the professors and TAs aim for a two- to three
day turnaround on their comments and grades. This provides 
students with important feedback before beginning the next 
experiment. Significant improvement in report writing and 
lab performance is often seen from the first to third cycle. 

During the first week of the semester, faculty and TAs provide 
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lectures on topics such as instrumentation, statistics, error 
analysis, and how to write an effective engineering report. 
The first week of each cycle features a prelab lecture given 
by the assigned professor for the experiment and a prelab 
tour given by the TA so that students can become familiar 
with the laboratory equipment. Instructional videos of ex
periments are also available online for students to watch and 
see the equipment in operation. [4l A prelab meeting is held 
with the assigned faculty member and TA for each experi
ment. The prelab meetings are one to two hours and include 
a 20-minute presentation by the students to the professor and 
TA as a demonstration of their preparedness for the upcoming 
lab. The prelab meetings provide the faculty member time 
to thoroughly cover the theory for the experiment and any 
safety concerns for the lab to ensure all students understand 
the hazards. The prelab meeting also provides the opportunity 
for the students to ask in-depth questions. The professors 
assigned to each experiment meet individually with all groups, 
which is a significant time commitment, but ensures that the 
students are well prepared for the lab. 

During the second week, the students work in the lab as or
ganized groups and each experiment can be completed within 
the allotted 4-hour time period. The third week provides time 
for analysis and report writing. The report is due two weeks 
after the groups' completion of the in-lab experiments. The 
average report consists of approximately 20 pages with a 
supplemental appendix. Students are allowed to submit a 
rough draft of their report to the TA up to 72 hours before 
the report deadline so that the TA can provide comments on 
data analysis and report writing. 

The first cycle is identical for all groups, with every group 
completing the FOM lab. Cycles two and three vary between 
groups, with each group completing two of the four possible 
remaining labs. The fourth cycle is a presentation on one of 
the completed experiments. Each group is given the option 
of either creating an instructional laboratory video or giving 
a professional oral presentation. The videos are presented 
during a video night at the end of the semester, with the best 
videos receiving awards. The best videos are also used to help 
instruct the next year's students on the operation of the equip
ment and how to successfully complete each experiment.[4l 

The oral presentation is given in a television studio at UD, in 
front of the Junior lab professors and TAs. The other student 
groups are also invited to attend. The presenters have access 
to an "Oral Communication Fellow," usually a senior com
munications major, to assist them in the design and delivery 
of the presentation. Following a period of questions after 
the presentation, the students are provided a DVD copy of 
their presentation, and asked to write a critique of both their 
speaking skills and overall presentation quality. 

In 2014, 92 students were emolled in the Junior lab, and 
these students worked in groups to complete three of the five 
labs over the course of the semester. The students were given 
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Timeline Group 1 

WEEKI Prelabs 

WEEK2 FOMin-lab 

WEEK3 Data Analysis 

WEEK4 Final Report 

WEEKS Prelabs 

WEEK6 FLO in-lab 

WEEK7 Data Analysis 

WEEKS Spring Break 

WEEK9 Final Report 

WEEK 10 Prelabs 

WEEK 11 KIN in-lab 

WEEK 12 Data Analysis 

WEEK 13 Final Report 

WEEK 14 

TABLE 1 
Junior laboratory schedule in 2014 

Group 2 Group3 

Cycle 1 

Prelabs Prelabs 

FOMin-lab FOM in-lab 

Data Analysis Data Analysis 

Final Report Final Report 

Cycle2 

Prelabs Prelabs 

KIN in-lab VLE in-lab 

Data Analysis Data Analysis 

Spring Break Spring Break 

Final Report Final Report 

Cycle 3 

Prelabs Prelabs 

FLO in-lab HEX in-lab 

Data Analysis Data Analysis 

Final Report Final Report 

Oral & Video Presentations 

Group4 

Prelabs 

FOMin-lab 

Data Analysis 

Final Report 

Prelabs 

HEX in-lab 

Data Analysis 

Spring Break 

Final Report 

Prelabs 

VLE in-lab 

Data Analysis 

Final Report 

CHEMICAL 
KINETICS 
EXPERIMENT 

The growing num
ber of students in the 
UD CBE department 
required another experi
ment be added to the 
Junior lab course. In 
2013, we added a KIN 
experiment in combina
tion with the FLO, VLE, 
and HEX experiments. 
In the KIN lab, the un
dergraduate students run 
either the iodination or 
bromination of acetone 
reaction. During Spring 
2014 the students studied 
the iodination of acetone. 
The reaction is shown in 
Eq. (1) and uses HCl as 
a catalyst. The following 

the option of creating their own laboratory groups, and these 
groups needed to be determined before the semester began. 
During the previous semester students take a fluid mechanics 
course that also utilizes four-person groups for its projects, 
and students are encouraged to use this as a test run for their 
Junior laboratory group. The result was 23 groups complet
ing a total of 69 experiments. The scheduling used during the 
Spring 2014 semester can be seen in Table 1. 

sections will describe in 
detail the critical elements for the KIN lab. 
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Ac+I, • Acl+HI 

H,O 

( 1) 

Apparatus and safety 

The kinetics laboratory is equipped with two identical reac
tors. An example of one of the reac
tor setups can be seen in Figure 1. 
The I-liter glass reactor (fabricated 

Figure 1. Image of reactor setup 
in laboratory with the following 
equipment labeled: Spectropho
tometer (1), Sipper Pump (2), 
Reactor (3), Impeller (4), Circu
lating Water for Temperature 
Regulation (5), Sampling and 
Return Needles (6), Thermo
couple (7), Impeller Motor (8), 
Syringe Port (9), Waste Beaker 
(10), Impeller Speed Control 
(11), Impeller Speed Readout 
(12), Thermocouple Readout 
(13), Water Bath (14), Computer 
Monitor (15), Keyboard (16), 
Computer Mouse (17), Spec
trophotometer Dust Cover (18), 
Secondary Container (19). 
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by Ace Glass) is mounted on the wall for easy access and 
improved visibility. Each reactor includes a drain spout to 
empty the reactor, an outer jacket for temperature control, 
and three ports located on the top of the vessel. A glass bea
ker inside a secondary container is placed under the drain 
spout to prevent chemical spills and to collect waste after 
each run. The impeller extends into the reactor through the 
central top port and is powered by a motor through a flexible 
coupling system. A tachometer displays the impeller speed 
through an LCD display on the control panel. A sipper pump 
(Jenway, 632002 SIPPER) uses peroxide-cured silicone 
tubing (Cole Parmer, Masterflex) to transport the chemical 
samples through one of the outer top ports to a flow cell. 
Absorbance readings are collected using the Jenway 6300 
spectrophotometer at a continuous, specified rate during the 
experiment. The spectrophotometer software provided by 
Jenway (63-Zero version 1.10.2207.27293, Jenway) allows 
for real-time monitoring and data collection. The two reactor 
setups allow for the completion of the laboratory in a 4-hour 
period, and ensure that if one reactor malfunctions, students 
have a backup reactor to complete the experiment. In total, 
each reactor setup cost about $10,000 when the experiment 
was constructed in 2012. 

The chemicals (HCl, acetone, and iodine-water solution) 
are weighed on analytical balances inside a chemical fume 
hood. Several graduated cylinders (30, 50, 100, 1000 mL) 
are available for students to weigh acetone and water, and 
10 mL plastic syringes (BD Luer-Lok™) with detachable 
needles (18 gauge, BD PrecisionGlide) are used for volu
metric measurement of HCl and iodine water solution. The 
graduated cylinders and syringes are all weighed on mass 
balances (OHAUS Scout Pro SPE2001) to obtain the most 
accurate weights. 

During the prelab meeting, the faculty members assigned to 
the experiment ask the students a series of safety questions to 
make sure they are aware of all the experimental hazards. In 
addition, all students are required to take a mandatory I-hour 
safety training course before entering the lab. Students must 
also thoroughly cover all aspects of safety during their prelab 
presentation. Specifically for the kinetics experiment, the 
concentrations of the iodine ( or bromine) and HCl used are 0.1 
N and 1 N, respectively. The dilute nature of these chemicals 
is a designed safety feature for this laboratory. In addition to 
the mandatory safety training, all students must wear personal 
protective equipment (splash goggles, lab coat, nitrile and 
Chloroflex™ gloves, closed-toe shoes, and long pants) and 
dispense hazardous chemicals in a ventilated chemical fume 
hood. Students are required to read and become thoroughly 
familiar with the chemical Safety Data Sheets (SDS) and cal
culate amounts that if spilled could exceed allowable exposure 
limits (AEL) and flammability limits such as lower and upper 
explosivity limits (LEL and UEL). The laboratory is also 
equipped with a safety shower, eyewash station, and spill kit. 
OSHA-certified waste disposal containers are provided for the 
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reactor products, wash solutions, and solid waste such as paper 
towels. The waste jugs are located in secondary containers for 
spill protection. A sharps bin is available for disposal of used 
syringe needles. Plastic transfer trays are used to minimize 
safety risks when moving syringes around the laboratory and 
syringes have protective covers. Needles are removed using 
a special tool to prevent finger pricks. Glass funnels are used 
when pouring large volumes of reagents such as water and 
acetone into the reactor to reduce the possibility of spills. 
Finally, in lab long hair is tied back and loose clothing, such 
as ties and jewelry, are removed to prevent contact with the 
rotating agitator shaft. Process safety management is a constant 
theme throughout Chemical Engineering Lab I, with the other 
experiments having equally strong safety features in place. 
Finally, adjunct professors from industry often participate or 
teach experiments in Junior lab and reinforce the importance 
of maintaining a strong safety culture. 

Methodology and data analysis 

The reaction mechanism for the iodination of acetone can 
be written in three elementary steps. The first step [Eq. (2)] 
is an equilibrium reaction between acetone (Ac) and the acid 
(HCl) to form the protonated acetone intermediate (AcH+ ). 
The second step [Eq. (3)] is the slow step to form the enol 
intermediate (Ac*). The fast step [Eq. (4)] between the Ac* 
and the iodine ( or bromine) produces the iodoacetone ( or 
bromoacetone ). The rate-determining step is the slow step 
and the rate equations for each step can be written in order to 
determine the overall rate expression for the reaction, which 
is shown in Eq. (5). The reaction is first order in acetone and 
HCl and zero order in iodine (or bromine). 

Ac+Hp+ ~Acff +H,O(equilibriumstep) (2) 
k_ , 

Acff + H
2 
0 ~Ac' + H

3 
o+ ( slow step) ( 3) 

Ac' +I, ~Acl+Hl(faststep) (4) 

r = k (T) · Aca~, · I~~o · HCI"F' ( 5) 

Students are taught how to use the method of initial rates [Eq. 
(6)] to solve for the rate constant and orders of reaction[5,6l: 

r, _ k1 (T) · [ Ac f · [I, t · [HCI); 

~ k 2 (T) · [ Ac J: ·[I,]: · [HCIJ: 
(6) 

where r is the reaction rate, k is the rate constant, [Ac], [1
2
], 

and [HCl] are reactant concentrations, and a,~' andy are 
the orders of reaction, and the subscripts 1 and 2 denote two 
individual reactions. 

The iodination (and bromination) of acetone reaction is a 
color change reaction. The water, acetone, and HCl solution 
are added in order and the mixture is colorless. Once the 
iodine ( or bromine) is added the reaction mixture changes to 
a yellowish-brown color and the reaction begins. The final 
product iodoacetone (or bromoacetone) is colorless so a 

Chemical Engineering Education 



spectrometer can be used to measure the change in color from 
yellow-brown to clear. The spectrometer measures the change 
in intensity of the iodine at a wavelength of 510 nm (450 nm 
for bromine). Concentration is obtained from absorbance data 
using the Beer-Lambert Law: 

A=Ebc (7) 

where A is absorbance, £ is the molar absorption coefficient, 
b is the sample path length, and c is the molar concentra
tionFl Calibration standards are prepared by the TA and a 
calibration curve can be constructed to determine Eb, which 
over the range of iodine concentrations measured remains 
essentially constant. 

During the prelab meeting, students will provide a detailed 
analysis of their methodology and experimental plan for 
obtaining the kinetic parameters. Typically, students perform 
one baseline experiment and then vary the concentration of 
one component at a time while holding the others constant 
including temperature which results in seven to 10 experi
ments. These experiments are typically run by two of the four 
students in one of the reactor setups. 

The activation energy for the reaction can be determined 
using the Arrhenius equation: 

::..s. 
k(T) =AeRT (8) 

where k is the reaction constant, A is the Arrhenius parameter, 
Ea is the activation energy, R is the ideal gas constant, and Tis 
the temperature. [SJ Typically, the other two students in the group 
will also run the baseline experiment in the second reactor and 
focus on changing the temperature of the reaction while keeping 
the concentrations constant in order to determine the activation 
energy. Students usually run three to five experiments at tem
peratures from about 298 K to 308 K. Changing temperature can 
take longer than changing concentrations so having a second 
reactor allows all four students to run experiments and finish 
within the 4-hour time period. The key to high-quality measure
ments is maintaining a constant concentration or temperature 
depending on which variables students plan to keep fixed and 
understanding the impact of any deviations in the detailed error 
analysis for the order and activation energy. 

Conceptually, the ideas are simple; however, the biggest 
problem students encounter with the initial rates method 
involves the difficulties in keeping reactant concentrations 
constant when preparing their solutions, and keeping tempera
ture constant when performing each of the reactions. Each 
group of students must determine a value and an uncertainty 
for the orders of reaction for iodine, acetone, and hydrochloric 
acid, as well the Arrhenius parameter and activation energy. 
Students who are well prepared with good lab skills and who 
analyze their data in lab typically obtain excellent results. 

Iodine concentration data as a function of time is shown in 
Figure 2. The spectrometer is turned on before any iodine is 
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Figure 2. Concentration of iodine as a function of time. 

2~------------------~ 

• 

,._c 
~ 0 
C 

-1 

• 

• 
-2 ,__ _ _.__ _ __.__ _ __,_ _ __,_ _ __. __ ..__.,__ _ __.__ _ _, 

-2 -1 0 

ln([HCl]/ [HCl]n) 

2 

Figure 3. Application of initial rates method used to 
determine the order of reaction for HCl when used as a 

catalyst. The trend line was fit through the intercept {0,0) 
with a slope of 0.956. 

added so the initial baseline concentration (or absorbance) is 
zero. When the iodine is added, the concentration immediately 
increases as shown and the reaction begins. As the reaction 
progresses the iodine concentration steadily decreases to 
produce iodoacetone. The change in iodine concentration as a 
function of time can be fit using linear regression to determine 
the rate of reaction. As shown in Figure 2, a typical reaction 
takes about 15 to 20 minutes (900 - 1200 seconds) so 12 
to 16 experiments can be completed in a 4-hour lab period. 

To determine the reaction order for HCl, the concentration 
of iodine and acetone along with the temperature must be kept 
constant with respect to the initial baseline experiment. This 
simplifies Eq. (6) so that the rate constant (k) and the acetone 
and iodine concentrations cancel out. Next, Eq. (6) can be 
linearized by taking the natural log of both sides. Figure 3 is a 
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Figure 4. Application of the Arrhenius Equation to 
determine kinetic parameters. 
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Figure 5. Sensitivity of experimentally determined 
kinetic parameters to percent changes in their value in a 
CSTR reactor. The values of E

0
, A, a, ~' and y used were 

86.22 kJ/mol, 8.68·1010 Ll(mol s), 0.99, -0.04 and 0.99, 
respectively. 

plot of the ratio of the rates versus the ratio of the HCl con
centrations where the slope is the reaction order of interest 
for HCl. The same procedure is repeated for determining the 
orders for acetone and iodine ( or bromine). Again, the method 
appears simple, but in practice how close the students maintain 
the concentrations and temperature they plan to cancel out 
determines how well they can obtain the theoretical orders 
for the reaction while minimizing their uncertainty. 

To determine the activation energy and the Arrhenius 
parameter for this reaction, the rate constant k must be de
termined as a function of temperature assuming either the 
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theoretical or the experimentally determined orders. Eq. (8) 
can be linearized and ln(k) can be plotted versus the inverse 
of the absolute temperature as shown in Figure 4. The acti va
tion energy can be calculated by multiplying the slope of the 
trend line by the gas constant, R. The Arrhenius parameter 
can then be determined by taking the exponential value of 
the vertical intercept. 

Non-linear regression can also be applied to solve the 
reaction orders simultaneously using all the rate data. The 
data has to be good quality and an initial guess for the orders 
provided based on the theoretical orders for acetone, HCl, and 
iodine (or bromine) of 1.0, 1.0, and 0. In some cases if the 
temperature-dependent data is also high quality the activation 
energy and Arrhenius parameter can also be determined along 
with the orders. In 2013, the use of non-linear regression was 
not mandatory; however, many students were able to develop 
a model and make comparisons with the initial rates method. 
In 2014, students were provided background on non-linear 
modeling and required to include this analysis in their final 
report. All groups were able to successfully model their data 
using non-linear regression and make comparisons with the 
initial rates method. Students typically employed Microsoft 
Excel for the linear regressions, and either MATLAB or Mini
Tab for the non-linear regressions. [9.loJ In most cases when the 
data were of high quality the results using both methods were 
similar to within the experimental uncertainty. 

ASPEN modeling 

Students were taught the basics of ASPEN Plus, so that 
they could model the iodoacetone reaction and perform 
a sensitivity analysis. [llJ Video tutorials were prepared 
using Camtasia® software so students could watch and 
learn online how to create a reactor ASPEN model.[4l The 
videos can be run simultaneously while students create 
their own model in a separate ASPEN window on the 
computer. This method of teaching engineering software 
has been popular with students at UD because they can 
watch the videos on their own as many times as necessary 
to learn the fundamentals while performing the exercises. 
Most groups chose the CSTR model (RCSTR) to evalu
ate the effect of changing kinetic parameters such as the 
reaction orders for acetone ( a ), 1

2 
( ~ ) and HCl ( y ), 

activation energy (E) and Arrhenius parameter (A) on the 
production of iodoacetone as shown in Figure 5. 

As expected the reaction order for iodine has no effect on 
the production of iodoacetone (i.e., zero order), increasing 
the reaction order for acetone increases the production of 
iodoacetone (i.e., [acetone]> 1.0), and increasing the HCl 
reaction order decreases the production of iodoacetone (i.e., 
[HCl] < 1.0). The activation energy (E) and/or temperature 
have the largest effect on the production of iodoacetone, 
which is expected since both are within the exponential as 
shown in Eq. (8). 
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A few groups also modeled the reactor using the batch 
ASPEN model (RBATCH), which provided the change in 
iodine concentration as a function of time. A good fit between 
the experimental and model data was obtained as shown in 
Figure 6. This provides students with a model comparison of 
their time-dependent concentration data. 

Students use their ASPEN models to estimate the reactor 
size and operating conditions necessary for commercial-scale 
production of iodoacetone ( or bromoacetone ). This is the first 
opportunity students get to use ASPEN to model an experi
ment and although they only have time to go to lab once to 
run this experiment, they can use their models to expand upon 
the effect of changing operating conditions such as reactor 
temperature and volume or operating a continuous flow reac
tor versus a batch reactor. In other words, the students can run 
additional experiments using their ASPEN models without 
having to return to the laboratory. 

Assessment and experiences 

The average kinetic parameters obtained for the KIN 
experiment in 2013 and 2014 are provided in Table 2. The 
bromination of acetone in 2013 was run by 13 groups (52 
students) and the iodination of acetone in 2014 was run by 
12 groups (48 students). In both years, students came close 
to obtaining the theoretical orders for the halogen (1

2 
or Br

2
) 

of 0, the acetone of 1.0, and the catalyst (HCl) of 1.0. The 
activation energy (E) for the bromination of acetone was 
about 84.1 ± 2.0 kJ/mol, which is in good agreement with 
reported literature values (86.7 ± 0.5 kJ/mol)Y2l The activa
tion energy and Arrhenius factor were expected to be similar 
for both reactions as shown because the rate limiting step is 
not a function of the halogen [see Eq. (3)]. 

Students are encouraged to be creative in Junior lab. During 
their prelab meetings with the faculty member and TAs other 
experiments and modeling are discussed that the group might 
try if time allows. A few examples in 2014include one group 
performing a mixing experiment to evaluate the speed of 
mixing on the rate of reaction and another group performing 
a basic heat transfer analysis on the temperature difference 
between inside the reactor versus inside the spectrometer 
cuvette cell. In some cases these additional experiments 
have improved the design of the experiment. For example, a 
group brought to our attention the fact that the cooling/heat
ing jacket around the reactor did not completely envelop the 
1 liter fill volume recommended for each experiment. The 
group determined if the reactor were filled to approximately 
0.6 liters the temperature was easier to maintain and control; 
however, the reduced volume did lead to larger experimental 
errors when preparing reactant concentrations because smaller 
masses for each reactant must be weighed. 

CONCLUSIONS 
The undergraduate Junior laboratory at the University of 
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Figure 6. Comparison of experimental batch reactor data, 
and data generated by ASPEN. The black dots represent 
the experimental data and the solid line represents the 

ASPEN model. 

TABLE2 
Average values of experimentally determined kinetic 

parameters from all groups in 2013 and 2014 

2013 2014 
Bromination Iodination 

Halogen 
0.097±0.020 0.002±0.065 

Order 

Acetone 
0.943±0.031 1.010±0.049 

Order 

HCI Order 0.960±0.026 1.020±0.039 

A 
8.26-1011±6.17· 1011 8.60·1011±2.72·1011 

[L/(mol s)] 

E 
a 84.1±2.0 88.5±1.3 

[kJ/mol] 

Delaware has evolved over several decades and each year 
continues to implement improvements based on student feed
back. Students have responded very positively to the Junior 
laboratory when surveyed at the end of the course. As part 
of the survey, students were asked to rate whether or not the 
following three ABET objectives were achieved: 

( 1) Plan an optimum set of experiments that meet well
defined objectives; 

(2) Recognize and properly use laboratory safety proce
dures. Identify major hazards in an experiment. Collect 
data, analyze and interpret experimental measurements, 
and compare to existing theories, and; 

(3) Learn to communicate results and conclusions 
effectively through both written reports and oral 
presentations. 

During the Spring 2014 semester, 70 out of 92 students 
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responded to our survey. On a scale of 1 to 5, with 1 being 
very dissatisfied and 5 being very satisfied, these questions 
received average scores of 4.53, 4.75, and 4.59, respectively. 

Many students also take a special interest in Junior lab after 
completing the course and want to know what they can do to 
improve the lab for the future. Students have assisted instruc
tors during the summer and winter sessions with many up
grades including the design, construction, and documentation 
for the KIN experiment and modifications and calibrations 
to the VLE, H_,Q, HEX, and FOM experiments. Currently a 
group of students is studying the iodination of 2-butanone 
and another student is evaluating other strong acids that can 
catalyze the iodination reaction as future kinetic experiments. 

Chemical Engineering Laboratory I features an informa
tive instrumentation experiment and four unique labs each 
directly relating to a core course in the ChE curriculum. The 
KIN experiment has been successfully demonstrated for both 
the iodination and brornination of acetone. ASPEN modeling 
provides the opportunity for students to run additional experi
ments on the computer outside of laboratory time with results 
that are comparable to their laboratory data. 

Many students describe the Junior lab as one of the most 
memorable courses they take during their undergraduate 
education at UD. The course prepares students to not only 
connect the theory from core courses with actual experiments, 
but also to work together efficiently in teams, to have the op
portunity to lead a project, to learn how to effectively write 
and present engineering reports, and to operate equipment 
safely. The Junior lab provides a comprehensive learning 
environment to help prepare students for future careers as 
chemical engineers. 
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Engineering educators and employers value and priori
tize communication skills as evidenced by desired stu
dent learning outcomes and job descriptions defining 

new positions; however, developing and assessing such skills 
in an engineering program is challenging. ABET's criteria for 
accrediting engineering programs comprises General Crite
rion 3, student outcomes, including the ability to effectively 
communicateYl Effective oral and written communication 
outcomes frequently appear in higher education course syllabi 
and industry job requirements. Employer feedback, however, 
indicates new graduates lack communication skillsPl 

In an Association of American Colleges and Universities 
(AACU)-sponsored study, employers prioritized communica
tion skills: "More than three in four employers say they want 
colleges to place more emphasis on helping students develop 
five key learning outcomes, including: critical thinking, com
plex problem solving, written and oral communication, and 
applied knowledge in real-world settings."[2

J Furthermore, 
they believed company success depends on innovation and 
recognize that employees face increasingly complex problems 
requiring broader skill sets; therefore, employers prioritized 
"critical thinking, communication, and complex problem
solving skills ... when making hiring decisions." 

Although educators and employers value and prioritize 
communication skills, developing and assessing such skills in 
a higher education engineering course is difficult. In addition, 
engineering courses include rigorous science, math, and engi
neering curricula, but rarely require students to reflect, write, 
and articulate how new learning connects to prior experiences 
and transfers across or to new contextsYl Therefore, students 
do not connect learning from assignment to assignment, 
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course to course, and course to experience, such as an intern
ship. Even when students demonstrate communication skills 
through formal assessments, they may be unaware of their 
thought processes and unable to articulate what they know 
and how they solve problems, a critical engineering skill.[4.5l 
Incorporating technical writing into engineering courses and, 
more specifically, incorporating multiple reflection opportuni
ties, enhances the student's ability to communicate within the 
discipline. Requiring students to go further and draw together 
experiences through a reflective portfolio gives them an op
portunity to describe how and why they know what they know. 

Reflective ePortfolios can develop students' commu
nication skills by requiring multiple writing assignments 
integrated into engineering curricula.[6l Lorenzo and lt
telson defined an ePortfolio as "a digitalized collection of 
artifacts, resources, and accomplishments" that showcases 
a student's work and provides opportunities for metacog
nitive, reflective, critical, creative, and logical thinking.[7l 
In addition, ePortfolios address the six areas employers 
identified for higher education emphasis in student learn
ing: critical thinking and analytical reasoning; complex 
problem solving and analysis; written and oral commu
nication; knowledge and skill application in real-world 
settings; locating, organizing, and evaluating information 
from multiple sources; and innovation and creativityYl 
Furthermore, 80% of employers indicated an ePortfolio 
would be helpful in the hiring process to demonstrate student 
knowledge, skills, and experience. 

The purpose of this 

THE COURSE AND REFLECTIVE 
ePORTFOLIO ASSIGNMENT 

To develop effective communication skills, Texas A&M 
University's chemical engineering department requires CHEN 
301, Engineering Workplace Writing, a technical communica
tion course (see <https://sites.google.com/site/tamuchen301/ 
home>). [9l The instructor provided students, typically juniors 
and seniors, the following welcome, which connects communi
cation learning outcomes to discipline-specific ABET outcomes 
and broader university undergraduate learning outcomes: 

Engineering Workplace Writing integrates best-use practices 
of technical communication instruction including high-impact 
learning activities while also meeting university student learn
ing outcomes. The course stresses the principles of rhetoric, 
i.e., understanding the audience and purpose of communica
tion in dif.!erent workplace contexts, in order to effectively 
prepare and deliver the message. You, the student, will practice 
the essentials of technical communication while addressing a 
variety of communication challenges, thus reinforcing com
munication, critical thinking, lifelong learning, and collabora
tion outcomes as stated in the TAMU Undergraduate Learning 
Outcomes and ABET Program Educational Outcomes /91 

As the culminating course assignment, chemical engineer
ing students created a ChemE-folio, hereafter referred to as 
a reflective ePortfolio (see <https://sites.google.com/site/ 
chemefolioassignment/home> )D0l to house a collection of 
their work representing academic accomplishments as well as 
academic and career goals. Using an ePortfolio template (see 

, three-year qualitative 
case study was to in
vestigate the use of 
reflective ePortfolios 
in an undergraduate 
chemical engineering 
course.Threeresearch 
questions guided the 
study: a) How do re
flective ePortfolios 
affect chemical en
gineering students' 
perceived learning?, 
b) Why are chemical 
engineering students 
motivated to create 
reflective ePortfoli
os?, and c) What are 
chemical engineering 
students' preferences 
(likes and dislikes) 
in creating reflective 
ePortfolios?[3l 

Chemical engineering department 

undergraduate technical communication course 

with reflective ePortfolio assignment 
-- - --

~ ~ Designed using Yancy's instructional best practices 
Organized for reflective ePortfolios[121 

around ABET-

L inspired u 
program-level 
outcomes and 

university I 
learning Multiple 

outcomes for reflection and Guiding Instructor Clearly defined 
undergraduates writing questions as feedback rubric(s) 

opportunities prompts 

I Ll J J .. .J 

Figure 1. CHEN 301, Engineering Workplace Writing, a technical communication course. 
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<https://sites.google.com/site/chemefoliotemplatespring 
2013/> ),l1 1l students selected relevant chemical engineering 
outcomes and customized the reflective ePortfolio based on 
their unique skills and accomplishments. In addition to ABET
inspired program-level outcomes and the university's learning 
outcomes, Yancey's best practices for reflective ePortfolios 
guided the design (see Figure 1). According to Yancey, instruc
tional best practices forreflective ePortf ohos include a) multiple 
reflection and writing opportunities, b) guiding questions that 
prompt student identification of what they are learning and why 
it matters, c) instructor feedback on interim reflections, and d) 
a clearly defined rubric with specific expectationsY2l 

First, this course provided multiple reflection and writing op
portunities to reinforce communication competencies assessed in 
the final reflective ePortfolio. For example, course assignments 
required students to nnderstand how rhetorical context influences 
the message, prepare multiple assignments addressing different 
workplace contexts, and reflect on how the assignment context 
influenced the development, organization, etc., of their created 
messages. Furthermore, students prepared and revised reflections 
demonstrating workplace writing processes (e.g., invention or 
defining the problem, planning, drafting, editing, revising) and 
writing competencies (e.g., developing logical arguments sup
ported by adequate evidence, effective paragraph development, 
professional writing style, conventions, and document design). 

Second, the course used guiding questions that prompted 
students to reflect on their broader learning across the 
engineering curriculum (see Table l)Y 2l For example, the 
reflective ePortfolio assignment, organized by university 
and ABET learning outcomes, used guiding questions to 
prompt student responses demonstrating chemical engi
neering skills. For students to make sense of projects and 
experiences beyond the communication course, guiding 
questions scaffolded learning from lower- to higher-order 
thinking. Related to engineering projects, for example, 
lower-level thinking skill questions asked students about 
what they did (including when, where, and how) followed 
by higher-level thinking questions asking why it matters 
and to whom. 

Third, the instructor provided feedback to students on their 
reflections, including written and voice comments on writing 
strengths and weaknesses. For example, student feedback 
included how effectively theirreflective ePortfolios provided 
well-developed short essays supported by clear, substantial, 
relevant evidence, communicated through coherent para
graphs and a professional writing style. In addition, students 
received feedback in class through large group discussions 
on their low-stakes reflections, introducing or reinforcing key 
writing skills. Fourth, the instructor created clearly defined 
rubrics with specific expectations: to provide constructive 

TABLE 1 
Examples of reflective ePortfolio reflective writing prompts for chemical engineering students 

Where, in what context, was this project completed? Was it part of a course? Internship? Co-op? 

What were the purposes of the project, as a whole? 

What was the problem or topic your project addressed? Was a project description (or problem) stated, or were you 

What was the context? 
required to identify the problem and describe it yourself? 

What were you required to do to complete the project? How did you prepare for the project? What tasks or steps did 
you complete? Did you create a management plan? 

What did the project requirements assume that you already knew? Were there pre- requisites regarding terminology, use 
of equipment, safety standards, etc.? 

Did the project require you to design something to address the problem? 

Did your recommendation, plan, or design require you to compare options? 

Did your project require you to determine the resources needed to produce a given product or service? 

Did your research require you to read, understand, and incorporate information from technical sources such as peer-
reviewed journals? Which ones? 

What did you do? Did your research require documentation? Did you comply with established guidelines? 

Did your research require you to use databases in your discipline? Which ones? 

Did your research require you to network with professionals whose expertise would help you solve a problem, compare 
options, recommend a best solution? 

Did you present any of the information in a graphical form? What was the purpose(s) of these graphics? 

Did this project require you to maintain a level of confidentiality? 

What did you learn (equipment, skills, safety, time management, collaboration, patience) by completing this project? 

What did you learn? 
What challenges did you face to complete the project? Did anything unexpected happen? 

How did you overcome the challenges? Provide details. 

Did you receive feedback from your instructor or supervisor? If so, what did he or she say? 
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feedback on essential writing competencies and to direct the 
development of the ePortfolio. Writing competencies ad
dressed in the rubric included content development according 
to the audience, purpose, and context; organization; design; 
graphics; style; and convention. ePortfolio development ad
dressed in the rubric included the required portfolio sections 
(e.g., overview or cover letter, resume, academic interests, 
experiences and skills, university and ABET-related learning 
outcomes). 

LITERATURE REVIEW 
According to Davis, Davis, Leiffer, McCormack, Beyerlein, 

Khan, and Brackin, engineers must reflect on what they know, 
how they learned it, and why it matters in order to problem 
solve and to transfer learning to new contexts_[l3J Therefore, 
this literature review focuses on reflection's central role in 
engineering students' professional skill development, pro
fessional identity development, and integrated learning. In 
addition, this section reviews the role of ePortfolios within 
integrated learning curricula and engineering education. 

First, reflection is central to professional skill development. 
Research in engineering undergraduate curricula emphasizes 
the importance of reflection in developing professional skills, 
particularly in capstone courses where students complete 
design projects requiring skill sets they will use as practic
ing engineersY3l However, students tend to focus on project 
completion, not on how and why they problem solve the way 
they do. Therefore, the National Science Foundation (NSF) 
funded a project to create Integrated Design Engineering 
Assessment and Learning System (IDEALS) modules to 
scaffold formative and summative reflection in a capstone 
course curriculum. While working on capstone projects, 
students moved through professional skill sets, reflecting on 
what works, how it works, and why it works. As a result, they 
made and expressed sound judgments regarding engineering 
standards and constraints as well as sound judgments regard
ing the broader impact of engineering solutions. Assessment 
examples from programs using the IDEALS modules "illus
trate student reflection on past experiences, relating causes and 
effects, making decisions on actions to achieve goals, taking 
necessary actions, showing new understandings emerging 
from experiences, and taking control of thoughts in order to 
be more constructive."[13l 

Second, reflection is central to professional identity devel
opment. Light, Chen, and lttelson emphasized the importance 
of reflection to students' individual professional development, 
team contributions, and overall professional responsibility_l5l 
Eliot and Tums analyzed post-surveys from professional 
portfolio workshops to investigate engineering undergraduate 
identity-related impacts and processes and identified internal 
and external frames of reference for professional identity 
constructionY4l The internal frame of reference focused on 
students' "emerging realization of their own values and 
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interests as professional engineers," and the external frame 
of reference focused on students' understanding of future 
employers' expectations. Last, Magolda and King as well as 
Light, Chen, and Ittelson advocated that self-authorship, in 
which students organize, connect, and evaluate information, 
facilitates identity development. [l 5,5l 

Beyond making connections between information, learn
ers also need to think through how that information helps 
them to know and understand the world-in other words, to 
understand how their existing knowledge provides a frame
work for their understanding, how their values shape those 
frameworks, and how the relationships they engage in provide 
alternate perspectivesYl 

Third, reflection is central to integrated learning. Reflec
tion encourages students to build "across the curriculum and 
co-curriculum, from making simple connections among ideas 
and experiences to synthesizing and transferring learning to 
new, complex situations within and beyond the campus."[16l 
Based on cognitive research by Ambrose, Bridges, DiPietro, 
Lovett, and Norman, Brent and Felder identified five instruc
tional strategies. [l7,13J In their fourth strategy, helping students 
learn to function like experts, they encouraged engineering 
educators to require students to "reflect on what they learned 
and what they will do differently in the future. When you first 
ask them to strategize and reflect, explain why you are doing it 
and give several good and bad examples of both processes. "[18l 
To develop mastery, students must acquire component skills, 
practice integrating them, and know when to apply what they 
have learned. 

In addition, creating reflective ePortfolios supports integrated 
learning. Continuing with Brent and Felder instructional strate
gies, engineering educators can design reflective ePortf olios with 
explicit learning goals, objectives, outcomes, and expectations 
(strategy two) and scaffold complex tasks (strategy three)Y8l 
In addition, ePortf olios can use structured reflective pedagogy, 
asking students to outline their problem-solving steps, explain 
their thinking (metacognition), describe encountered problems, 
and identify most helpful learning aspects. [l9J 

Last, reflective ePortfolios support engineering education. 
Recent research on the use of ePortfolios in engineering edu
cation includes studies of knowledge construction, identity 
development, creative behaviors, prior educative experience, 
and lifelong learning skills awareness and development. [14-20 23l 
Additional research examined learning portfolios as a col
laborative learning application and an assessment tool_l24

-
26l 

For example, Dunsmore, Tums, and Yellin analyzed mechani
cal engineering undergraduate portfolios to investigate how 
students construct their understanding of engineering.[2oi 

They concluded students perceive engineering practice as real
world knowledge, but knowledge acquired through school 
as not integral to such practice. Rojas analyzed construction 
engineering and management graduate portfolios to exam
ine collaborative learning in engineering_l24l The instructor 

Chemical Engineering Education 



positively viewed the teaching and learning experience and 
concluded students "look at the virtual portfolio as a symbol 
of their achievements, and therefore, they develop a sense of 
pride that inspires them throughout the semester." In addition, 
the portfolios provided benefits to prospective students in 
evaluating the skill set they would learn, to incoming students 
in benchmarking expected work quality and scope, and to 
alumni in demonstrating abilities to prospective employers. 

This literature review focused on reflection and ePortfolios 
and situated the study. The next section describes the research 
design. 

METHODOLOGY 
Based on the purpose and research questions, this study 

used a qualitative case study methodology. Qualitative case 
studies research real-life cases bounded by space and timeP7l 

Therefore, this study investigated the use of reflective ePort
folios in an undergraduate chemical engineering course during 
six semesters spanning three academic years. To achieve this 
purpose, we defined the case (see The Course and Reflective 
ePortfolio Assignment section), identified participants, and 
collected and analyzed data. 

TABLE2 

This study's participants included 313 mostly junior and 
senior students in the chemical engineering department at 
Texas A&M University. The students took a technical com
munication course, CHEN 301: Engineering Workplace 
Writing, and created reflective ePortfolios as the course's 
culminating assignment. 

Data collection included anonymous post-course surveys 
initially comprised of seven closed- and open-ended questions 
(six semesters, 2011-2104, n=313), later expanded to eight 
questions (two semesters, 2013-2014, n=228). This study used 
data from four questions: a) Do you believe that reflecting 
(i.e., writing about your knowledge, skills, and experiences) 
in the ChemE-folio has enhanced your learning within your 
degree program? If so, how?, b) What did you like most about 
creating your ChemE-folio?, c) What did you like least about 
creating your ChemE-folio?, and the question added for the 
final two semesters, d) What motivated you to complete your 
portfolio to the best of your ability (spend time on it)? Data 
analysis included reviewing the study' s purpose and research 
questions and using Creswell's qualitative case study proce
dures (see Table 2)_[27l 

FINDINGS 

Qualitative case study data analysis and representation applied to this study 

This study investigated the use 
of reflective ePortfolios in an un
dergraduate chemical engineering 
course. Guided by the research 
questions and based on the data, 
this study identified themes related 
to chemical engineering students 
creating reflective ePortfolios: 
perceptions of learning, motiva
tions, and preferences (see Table 
3, following page). This section 
discusses the findings using student 
quotes as illustrations. 

Qualitative Case Study 

Create and organize data 
Organize data 

files 

Read and memo 
Read text, make margin 
notes, form initial codes 

Describe data 
Describe the case and 

using codes and 
context 

themes/categories 

Classify data Establish themes using 
into codes and categorical categoriza-
themes/categories tion 

Interpret data and de-
Interpret data velop generalizations of 

what was learned 

Present case using nar-
Represent data rative, tables, and/or 

figures 
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This Study 

Organized the anonymous student feedback 
survey responses about the reflective 
ePortfolio assignment by question, specifi-
cally student reflection, motivations, and 
combined likes/ dislikes 

Read survey responses in their entirety for 
an overall sense of the data 

Focusing on specific questions, read all 
responses 

Made notes about initial codes 

Drafted an overview of the course and 
reflective ePortfolio assignment to provide 
context 

Sorted related survey question responses 

Assigned codes 

Grouped related or overlapping codes 

Established themes 

Verified each other's sorting, coding, and 
themes 

Identified major themes, based on greatest 
numbers of survey responses 

Used the literature to interpret data and 
generalize findings 

Presented the case 

Represented the findings using participant 
quotes, tables, and figure 

Student perceptions 
of learning 

The first analyzed survey ques
tion asked, "Do you believe that 
reflecting (i.e., writing about your 
knowledge, skills, and experiences) 
in the ChemE-folio has enhanced 
your learning within your degree 
program? If so, how?" 

Survey responses indicated 67% 
of students believed reflecting 
very likely or likely enhanced their 
learning with regard to the chemical 
engineering program (see Table 4, 
following page). In addition, this 
analysis includes data from 13% 
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of students who responded unsure, but narratively provided 
evidence of enhanced learning through reflective ePortfolios. 
Findings included that students a) connected reflection and 
learning, b) connected learning to real-world application, c) 
connected learning to future employability, d) learned about 
themselves, and e) enhanced communication skills. First, 
students described how they connected reflection and learn
ing. For example, one student professed new understanding 
of ABET outcomes: 

"Yes! I honestly never look at ABET outcomes, but looking 
and reflecting on them helped me understand why professors 
do some of the things they do for our classes; also helped 
reiterate why employers ask certain questions." 

Another student wrote, 

"Yes, it helped me to understand the purpose and impor
tance of my classes." 

Second, students connected the knowledge and skills they 
were learning to how they would apply such knowledge and 

TABLE3 

skills in the real world. One student shared, 

"Writing my ChemE-folio required me to slow down and 
take time to reflect on my academic (and other) undergradu
ate experiences. This reflection has helped me to better 
understand where I will apply what I have learned as well 
as its value." 

Third, students connected learning to future employabil
ity in two ways. First, reflection supported critical thinking 
about how classroom and work experiences connect and why 
resulting skills would be useful following graduation. One 
student summarized, 

"By reflecting on my qualities, I gained a better understand
ing of what values engineers should possess to succeed." 

In addition, for many students, analyzing gained knowledge 
and skills increased confidence and reaffirmed career choice: 

"It has showed me that I have tools to succeed. It has 
made me more confident in my ability to excel in chemical 
engineering." 

Major themes emerged from undergraduate chemical engineering 

Second, reflection helped stu
dents prepare for interviews with 
potential employers. Some students 
used their ePortfolio reflections in 
job interviews, for example, 

reflective ePortfolio surveys 

Survey Question Major Themes 

Connected reflection and learning 

Do you believe that reflecting (i.e., writing Connected learning to real-world application 
about your knowledge, skills, and experiences) 

Connected learning to future employability 
in the ChemE-folio has enhanced your learning 
within your degree program? If so, how? Learned about themselves 

Enhanced communication skills 

Extrinsic Intrinsic 
What motivated you to complete your portfolio • Future • Self-reflection 
to the best of your ability (spend time on it)? • Employability • Pride 

• Course grade • Fun 

Reflection 
What did you like most about creating your 

Future employability 
ChemE-folio? 

Creativity or creating the deliverable 

What did you like least about creating your Time 

ChemE-folio? Technology or tool 

TABLE4 

"It made it much easier to 
talk about myselj in my recent 
interview. I just mentioned each 
reflection point briefly." 

Specifically, students thought 
through how specific skills relate 
to future work in chemical engi
neering and how reflecting in their 
ChemE-folios better prepared them 
for job interview questions. 

Fourth, students learned more 
about themselves, including values, 
attributes, and how experiences 
shaped them. For example, one 

Students' percentage responses to survey question: Do you believe that reflecting (i.e., writing about your knowledge, skills, 
and experiences) in the ChemE-folio has enhanced your learning within your degree program? 

Semester Very likely Likely Not sure Unlikely Highly unlikely Course responses 

2011 Fall 10 16 9 2 1 38 

2012 Spring 15 16 12 1 3 47 

2012 Fall 10 16 8 1 0 35 

2013 Spring 14 12 6 3 0 35 

2013 Fall 20 21 9 7 5 62 

2014 Spring 15 44 31 5 1 96 

Total responses 84 125 75 19 10 313 

27% 40% 24% 6% 3% 100% 
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student described how reflection enhanced learning: 

"I believe it has helped me learn about myself, and how 
to improve aspects about me .... This ultimately will help 
enhance learning within my degree program." 

Another student responded, 

"By reflecting on my qualities, I gained a better understand
ing of what values engineers should possess to succeed." 

Last, students reported reflective ePortf olios enhanced com
munication skills, including effectively expressing themselves 
in writing. One student stated, 

"My writing skills did get better, that's for sure," 

and another commented, 

"I feel that I have improved my communication ability 
from this assignment, and I have a better grasp of new 
technology." 

In contrast, 9% of students believed reflecting unlikely 
or very unlikely enhanced their learning with regard to the 
chemical engineering program (see Table 4). In addition, this 
analysis includes data from 11 % of students who responded 
unsure, but narratively provided evidence of no enhanced 
learning through reflective ePortfolios. For example, some 
responses indicated students did not feel they were far 
enough along in their chemical engineering program and, 
therefore, could not see how reflection yet influenced their 
learning. 

Student motivations 

The second analyzed survey question asked, "What moti
vated you to complete your ChemE-folio to the best of your 
ability (spend time on it)?" 

Students indicated extrinsic and intrinsic motivations. 
Extrinsically, students first identified future employability 
as motivation. Specifically, creating reflective ePortfolios 
prepared students for interviews and provided evidence of 
knowledge, skills, and accomplishments. For example, one 
student responded, 

"I was motivated by the fact I could use the portfolio to help 
present my credentials and set myself apart from other job 
candidates. It was nice to have a finished product I could 
use after the class ended." 

Second, students identified the course grade, of which the 
reflective ePortfolio comprised 25%, as the primary mo
tivation. In addition to the grade, some students identified 
motivations prior to or during the creation of their reflective 
ePortfolios. One student shared, 

"At first I was motivated to get a good grade, but as I 
went through it I began to envision seeing the folio come 
together." 

Other students acknowledged future use, 

"I wanted to be able to use the ChemE-folio in the future. I 
would not have spent the time if it was just for the grade," 
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"At first I was motivated to get a 

good grade., but as I went through it 

I began to envision seeing the folio 

come together." 

-Student feedback 

and 

"Either I was going to do a bad job and not use the ChemE
folio again, or do a really good job so I could use it. I chose 
the latter." 

In contrast to extrinsic, student intrinsic motivations were 
more self-reflective. For example, one student described, 

"The fact that the ChemE-folio is a direct reflection of who I 
am. I want it to be clear, accurate, honest, professional, and 
aesthetically pleasing." 

Other students expressed pride in their work, especially 
when they saw the reflective ePortfolio coming together. 
For example, 

"I want to be proud of my work." 

and 

"It looks good and felt good to see the fruits of my labor." 

Last, fun motivated a few students; as one student shared, 

"It was jun to do it and I was motivated to do it well since I 
plan on keeping it for a while." 

Student preferences 

The third analyzed survey question asked, "What did you 
like most about creating your ChemE-folio?" 

Students generally liked creating reflective ePortfolios 
and specifically liked the reflection, preparation for future 
employability, and creativity or creating the deliverable. 
First, students most liked the reflection, and findings included 
closely related and overlapping aspects of reflection, such 
as thinking about self, reminiscing about the past, reflecting 
and writing about experience, thinking about learning, and 
learning about self. For example, students wrote, 

"The ChemE-folio made me think about my experiences and 
how to present them," and "It made me sit down and reflect 
on my past experiences, especially on how they could apply 
to a job application." 

Second, students most liked how reflective ePortfolios 
prepared them for future employability, including job inter-
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views and providing a job search tool. Generally, one student 
acknowledged, 

"The ChemE-folio got me thinking," and asked, "What do 
I really have to offer employers? What can I talk about in 
an interview? [I] liked being able to reflect on my academic 
career, and what I had done at Texas A&M." 

Specific to job interview preparation, one student shared, 

"I liked putting what I have [accomplished] on paper and 
writing it out. It made me think of what I would say instead 
of stuttering through an interview with only points." 

Other students most liked the reflective ePortfolio as a job 
search tool, 

"It was like creating an online super resume and it is easy 
to update and track every changing experience and qualifi
cation." 

Similarly, 

"I liked that it can be used for career purposes and gives 
me an advantage against other applicants." 

Third, students most liked creating a reflective ePortfolio 
or using their creativity. Several students described creating 
reflective ePortfolios as "fun" and enjoyed the "creativity" 
in and "freedom" to design a visual representation of their 
expenences. 

In contrast, the last analyzed survey question asked, 'What 
did you like least about creating your ChemE-folio?" 

Students identified time and the technology or tool as 
dislikes. First, many students least liked the time required to 
create their reflective ePortfolios, for example, 

"The heavy time commitment; To create a high quality, 
robust portfolio takes time," and "Very lengthy and takes a 
lot of time to think and write." 

Second, a few students least liked the technology or tool. 

Chemical en · eenn students 

Overall, chemical engineering students who created reflective 
ePortfolios believed such reflection enhanced their learning 
with regard to the chemical engineering program. They con
nected reflection and learning, further connected learning to 
real-world application and future employability, learned about 
themselves, and enhanced communication skills. Connection to 
future employability motivated students to create their reflective 
ePortfolios, in addition to the course grade, pride in work, and 
fun. Student preferences in creating their reflective ePortf olios 
divided into likes (reflection and future employability), and 
dislikes (time required to create such a large project) and, to a 
lesser extent, the technology or tool used for creation. 

DISCUSSION OF THE FINDINGS 

The purpose of this three-year qualitative case study was to 
investigate the use of reflective ePortfolios in an undergradu
ate chemical engineering course. Student motivations to create 
reflective ePortf olios included future employability, the course 
grade, pride in work, and enjoyment. Student preferences 
divided into likes (reflection and future employability), and 
dislikes (time required to create such a large project), and, to 
a lesser extent, the technology or tool. Influenced by such 
motivations and preferences, chemical engineering students 
created reflective ePortfolios, perceived enhanced learning, 
and connected their learning to job knowledge and skills, 
future employability, and professional identity (see Figure 2). 

First, chemical engineering students connected their learn
ing to job knowledge and skills. Creating reflective ePort
folios scaffolded student reflection on their learning, which 
they connected to job knowledge and skills. This finding 
reinforces Davis, Davis, Leiffer, McCormack, Beyerlein, 
Khan, and Brackin's conclusion that engineers must reflect 
on what they know, how they know it, and why it matters to 
problem solve and transfer learning to new contextsY3l For 

Job knowledge & skills 

Created 
reflective 
ePortfolios 

Perceived 
enhanced 
learning 

Connected their 
learning to 

Future employability 

Professional identity 

Figure 2. Study findings. 
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example, students connected ABET-inspired program course 
learning outcomes to course content and then connected these 
outcomes to internship experiences. Furthermore, students 
connected the knowledge and skills they were learning to 
real-world applications. As Brent and Felder concluded, to 
develop mastery, students must acquire component skills, 
practice integrating them, and know when to apply themY8l 

In addition, some students enhanced communication skills 
through their reflections by striving to be clear and concise, 
yet descriptive, while demonstrating knowledge and experi
ences in meaningful ways. 

Second, chemical engineering students connected their 
learning to their employability. Creating the chemical engi
neering reflective ePortfolios scaffolded student reflection on 
their learning through writing, which they connected to future 
employability. Students felt better prepared for job interviews 
because they reflected on their knowledge gained from 
coursework and experiences, such as capstone projects, stud
ies abroad, or internships. Furthermore, they described how 
understanding course content and resulting knowledge and 
skills applied to future chemical engineeringjobs. This finding 
is important because ABET student outcomes reference the 
ability to effectively communicate in program accreditation 
standards, and job descriptions often reference such standards, 
and employers prioritize critical thinking, problem solving, 
and communication skills when making hiring decisionsY-2l 

In addition, students reported reflective ePortfolios provided 
an effective job application and interviewing tool. ePortf olios 
address the six areas employers identified for higher education 
emphasis in student learning: critical thinking and analytical 
reasoning; complex problem solving and analysis; written 
and oral communication; knowledge and skill application in 
real-world settings; locating, organizing, and evaluating infor
mation from multiple sources; and innovation and creativity. [3l 

Furthermore, 80% of employers indicated an ePortf olio would 
be helpful in the hiring process to demonstrate students' 
knowledge, skills, and experience. 

Last, students connected learning to their professional 
identity. Creating the chemical engineering reflective ePort
folios scaffolded student reflection on their learning, which 
they connected to their professional identity as chemical 
engineers. Students learned about themselves and desired 
portfolios that professionally and personally reflected them. 
Guided reflection helped students develop self-authorship and 
identity by prompting them to ask what they know and how 
they know it. [5l Eliot and Tums found students constructed 
professional identities by realizing their engineering-related 
values and interestsY4l Last, students develop professional 
identity through self-authorship, by organizing, connecting, 
and evaluating information.[5,15l 

In summary, students believed creating reflective ePort
folios enhanced their learning with regard to their chemical 
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engineering program. Specifically, influenced by motivations 
and preferences, chemical engineering students created reflec
tive ePortfolios, connecting their learning to job knowledge 
and skills, future employability, and professional identity. 

IMPLICATIONS AND FUTURE RESEARCH 

This study investigated the use of reflective ePortfolios in an 
undergraduate chemical engineering course and offers impli
cations for theory, policy, and practice as well as suggestions 
for future research. First, the study contributes to the reflec
tion, integrative learning, and reflective ePortfolio literature 
generally and within engineering and chemical engineering 
contexts. In addition, the findings contribute to literature on 
student learning, employment preparation, and professional 
identity both generally and in a chemical engineering context. 

Second, this study contributes to higher education policy 
and engineering education policy. For example, ABET 
requirements could expand the accreditation criteria to ex
plicitly include reflective writing and integrative learning 
exemplified through reflective ePortfolios. ABET reviewers 
could more clearly see the connection and achievement of 
program learning outcomes in student reflective ePortfolios. 
In addition, higher education institutions and engineering 
colleges and programs can institute cross-curricula reflec
tive ePortfolios to enhance student job knowledge and skill 
acquisition, future employability, and professional identity 
development. Furthermore, incorporating reflection through
out engineering curricula will scaffold the development of 
communication skills from students' first year through their 
entire college careers. 

Last, this study contributes to instructional practice gener
ally in higher education and more specifically in engineer
ing and chemical engineering. For example, instructors can 
integrate reflective ePortfolios in course-level instructional 
design to scaffold student reflection and learning and to re
inforce writing skills. In addition, they can assist students in 
strategically selecting what artifacts to include in reflective 
ePortf olios and prompt reflection and learning. Furthermore, 
instructors can provide reflective ePortfolio feedback to mo
tivate and support student development in writing and assist 
with making connections to learning in the discipline. Finally, 
instructors can model reflection in their teaching to exemplify 
and reinforce the value of reflection to students. 

Based on the findings, chemical engineering students cre
ated reflective ePortfolios, perceived enhanced learning, and 
connected their learning to job knowledge and skills, future 
employability, and professional identity. For future research, 
we recommend adding more discipline-specific reflection 
questions to course components and the reflective ePortfolio 
assignment to enhance students' understanding and the as
sessment of engineering conceptual knowledge. 
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SIMPLIFY UNCERTAINTY ANALYSIS 
WITH EXCEL MACROS 

RICHARD A. DAVIS 

University of Minnesota Duluth • Duluth, Minnesota 55812 

Estimating and reporting reliability in experiments and 
calculations is an important part of engineering design 
and analysis. Reporting results from calculations and 

experiments without some estimation of reliability may in
validate our results. To illustrate, if we report a volume from 
designing a chemical reactor without taking into account the 
uncertainty in the design parameters, we risk under sizing a 
cooling system, which can have catastrophic consequences 
for exothermic runaway reactions. One measure of reliabil
ity comes from uncertainty analysis. Chemical engineering 
students may learn simple concepts of experimental error and 
uncertainty analysis in physics and chemistry labs. Their first 
impressions and experiences with uncertainty are not typi
cally positive. In some cases, this is their first exposure to 
statistics. Students find the process tedious, labor intensive, 
and sometimes irrelevant in the context of their limited sci
ence and engineering experience. When we bring up the topic 
of uncertainty analysis in our engineering instructional labs, 
students groan in anticipation of the laborious, monotonous 
calculations. 

To reinforce the principles of uncertainty analysis and 
provide students with tools for uncertainty calculations that 
help to alleviate their anxiety, we have incorporated un
certainty analysis earlier in our program in a one-semester 
required course on computational methods for engineering 
problem solving. Our students typically take this course in 
the second year of our program, about midway through their 
chemistry, physics, and engineering lab sequences. Prior to 
our computational methods course, students receive a basic 
introduction to descriptive statistics and uncertainty in their 
chemistry and physics courses. Most students in the course 
have also completed another course on statistical design of 
engineering experiments. 
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In our computational methods course, we introduce students 
to concepts of random and systematic uncertainty in mea
surements, degrees of freedom, propagation of uncertainty, 
and expanded uncertainty (confidence intervals). We outline 
steps for uncertainty analysis and develop spreadsheet tools 
to simplify the implementation. We use a simple, hands-on 
classroom demonstration to generate experimental data and 
help students experience the differences between uncer
tainties in analog and digital measuring instruments. The 
exercise involves calculating the density of an object from 
replicated measurements of dimensions and weight. The 
students first perform the steps of uncertainty analysis in an 
Excel worksheet to experience the calculations "by hand." In 
a follow-up class exercise, students create an Excel macro that 
calculates the expanded propagation of uncertainty according 
to the conventional Guidelines for Analysis of Uncertainty 
in Measurements (GUM)Yl The macro incorporates basic 
programming methods of loops, logical statements, input 
and output, user functions, and subroutines. Students finish 
the course with a deeper understanding and appreciation of 
their responsibility for reporting reliability of results in terms 
of uncertainty. They also move on to other courses equipped 
with tools for simplifying the implementation of uncertainty 
analysis for most situations they will encounter in their un
dergraduate experience. 

Richard Davis is professor and head of chemical engineering at the 
University of Minnesota Duluth. He received his B.S.and Ph.D. degrees 
in chemical engineering from Brigham Young University and the Uni
versity of California Santa Barbara, respectively. He teaches courses 
in computational methods and unit operations. His research interests 
include modeling and simulation of mineral processing, air pollution 
control, and separations. 
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UNCERTAINTY ANALYSIS 
In an interactive lecture, we present the well-known prin

ciples of uncertainty analysisY4 l We also discuss case stud
ies to promote the value of uncertainty analysis, including a 
qualitative example of a nuclear reactorYl For brevity in this 
paper, we skip theories of uncertainty analysis that are readily 
available in the literature and outline the steps for students 
to follow when calculating the propagation of uncertainty 
through their engineering calculations. The reader is encour
aged to review the literature for background information on 
uncertainty analysis. [3l The analysis presented here is limited 
by the assumptions of normally distributed random errors in 
replicated measurements with no bias or correlation between 
independent variables. We also assume that systematic errors 
are uniformly distributed between the limits of precision in 
the measurement. Students learn to reduce bias and correla
tion between independent variables by careful calibration of 
instruments and randomization of experiments. 

Eq. (1) represents the functional relationship between in
puts, x (e.g., experimental measurements), and the output, y: 

y=f(x" x,, ... ) (1) 

The function, f, represents any combination of calculation 
steps that incorporate the input values from experimental 
measurements x needed for obtaining y. The question we 
answer with uncertainty analysis is how the uncertainties in 
the input variables propagate through the function to give an 
uncertainty in the output. IBtimately, we want to know y with 
some degree of confidence: 

y=f(x" x,, ... )±Uy (2) 

where U represents the expanded uncertainty, or confidence 
y 

interval for the calculated value of y. 

Uncertainty in the values of the input variables comes 
from a variety of sources that may include measurement 
mistakes, systematic errors due to our inability to take precise 
measurements, and random errors that are the results of our 
inability to control the environment of the experimentY-4l 
We use descriptive statistics of mean and standard deviation as 
the basic building blocks for predicting the value of replicated 
measurements and their corresponding uncertainty from ran
dom errors. We recommend a conservative calculation for the 
uncertainty from systematic errors according to the precision of 
the instruments of measurement. Unfortunately, there is no good 
way to quantify unknown mistakes in uncertainty analysis. We 
should take steps in our experimental design and data collec
tion to minimize the possibility for mistakes. For our analysis, 
we follow the Guidelines for the Analysis of Uncertainty in 
MeasurementsYl The following steps of uncertainty analysis 
are illustrated with a simple hands-on classroom exercise: 
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1. Begin with a model of the uncertainty in the experimental 
inputs from the combined effects of random and system
atic errors: 

where x is the expected value for x calculated from the 
mean value of n replicated measurements: 

- 1" X=-.L.,X 
n 

and ux is the combined uncertainty due to random (uR) 
and systematic (uz) errors in the measured values: 

(3) 

(4) 

(5) 

2. Assume random errors are normally distributed and use 
the standard error in Eq. ( 6) for the random uncertainty in 
terms of the standard deviations, and the sample size, n: 

Students discover that they may reduce the random uncer
tainty in Eq. (6) by taking more measurements. However, 
this revelation is tempered by Eq. (5) when they realize 
that systematic uncertainties are always present for any 
measurement due to the limitations of precision in our 
instrumentation. 

(6) 

3. Assume that systematic (fixed) errors are uniformly dis
tributed between the limits of readability of the instrument 
of measurement, ±0, for a probability density junction 
p = 1/(20) when x-8:S:x :S:x+8, andp = 0 otherwise. 
Calculate the variance for the fixed uncertainty in the 
measurement: 

u' = xr (x-x)' 8' 
z x-8 28 3 

or 

(7) 

(8) 

Eq. (7) represents a conservative estimate for the fixed 
error by assuming an equal probability for error over the 
range of readability of the instrument. 

4. Use the law of propagation of uncertainty (ignoring pa
rameter correlation) for calculating the standard uncer
tainty in the output in terms of the combined uncertainties 
of the inputs calculated from Eq. ( 5): 

Uy = .Jf,( CUx )
2 (9) 

where uY is the standard uncertainty in the output y from 
Eq. (]). The parameter c is the sensitivity coefficient, de
fined as the partial derivative of the junction with respect 
to x evaluated at the mean value of measurement x: 

~ e-
x 

(10) 
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5. Finally, calculate the expanded uncertainty in y, symbol
ized here with a capital UY, to give a level of confidence 
for the interval of uncertainty by multiplying the standard 
uncertainty in Eq. (9) by the 95% coverage factor, or 
Student t-statistic: 

u =+t u 
y - 95%, Vy y (11) 

We use the conventional 95% coverage, but are certainly 
free to use any level. The evaluation of the coverage 
factor from the t-distribution requires the degrees of free
dom, vi We obtain an estimate for the degrees of freedom 
for the pooled variances in Eq. (9) from the Welch-Satter
thwaite formula.m 

u4 
V =-~----'-y-~ 

y L (c·uJ' 

vx 

(12) 

The degrees of freedom, vx,jor each variable in Eq. (12) are 
calculated individually from the Welch-Satterthwaite for
mula applied to Eq. ( 5) assuming infinite degrees of freedom 
for systematic errors, and n-1 degrees of freedom for the 
random value: 

(n-l)u: 

u~ 
(13) 

The ubiquitous spreadsheet software Excel is primed to 
carry out these analysis steps with relative ease using built-in 
statistical functions and custom macros.[6l We illustrate the 
implementation of the analysis with a simple exercise that 
students complete in a single class period using inexpensive 
materials and basic measuring instruments. A second follow
up class period is used to guide students in programming Excel 
macros designed to simplify and automate the analysis in an 
Excel worksheet. 

HANDS-ON LEARNING EXERCISE 

the circumfer
ence and area. [7l 

In our wood 
block exercise, 
however, stu
dents use com
binations of ana
log and digital 
instruments for 
measurement. 
By extending the 
exercise to a den
sity calculation, 
we allow for two 
different types of 
instruments that 

D 
+-+ 

L 

1/w 
Figure 1. Schematic of wooden 

block with length L, width W, and 
hole diameter D. 

must be treated differently in uncertainty analysis. 

Students first derive an expression for the density of the 
block from the ratio of the mass to volume in terms of mass 
(m), length (L), width (W), and diameter (D). 

ill 
p= V (14) 

V=W[Lw-n~'] (15) 

Students form teams with a minimum size of three mem
bers. Each team member is provided with a similar block 
of wood, an inexpensive plastic ruler for measuring length 
dimensions in two-unit systems of inches and centimeters, and 
a portable digital scale for measuring the mass in grams, as 
shown in Figure 2. The ruler serves as a simple example of an 
analog instrument. Students must visually interpolate between 
the graduation marks on the scale for a measurement reading. 
We have a brief discussion of the issues of reading values 
from scales using different examples of analog instruments 
in our labs including liquid thermometers, titration pipettes, 

(a) (b) 

A simple classroom experiment was devised 
to allow students to generate data with random 
and systematic errors for calculating the den
sity of wood from the dimensions of rectan
gular wooden blocks with a cylindrical hole 
drilled through their centers, as shown in the 
schematic of Figure 1. The small wood blocks 
were rough cut from the same piece of wood, 
with slight deviations from the mean values 
of each dimension to introduce noise into the 
experimental data. This example extends the 
simpler uncertainty exercise proposed by 
Yates, who distributed sheets of paper with 
hand-drawn rectangles to chemistry stu
dents for measuring dimensions to calculate 

Figure 2. (a) Analog ruler for measuring length dimensions. The precision 
in the graduation marks is 0.1 cm or 1116 in. The readability is ±0.05 cm 

or ±1132 in (0.03125 in). (b) Digital scale for measuring mass in grams. The 
precision is 0.1 gm, with a readability of ±0.05 gm. 
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A B C D E 

1 Team L/in W/cm D/cm m/gm 

2 1 1.8125 2.65 1.12 18.4 

3 2 1.8125 2.75 1.15 19.4 

4 3 1.78125 2.6 1 18.7 

5 4 1.8125 2.85 1.1 18.8 

6 5 1.78125 2.7 0.9 18.6 

7 6 1.78125 2.7 0.9 19.2 

8 7 1.75 2.71 0.96 18.4 

9 8 1.8125 2.6 1.1 19.8 

10 9 1.8125 2.7 0.95 18.6 

11 10 1.8125 2.75 1 18.9 

12 11 1.84375 2.7 1.1 18.9 

13 12 1.8125 2.75 0.95 18.7 

Figure 3. Student-derived experimental data for wooden block dimensions. 

TABLE 1 
Excel formulas for calculating measurement uncertainty in length. 

Use similar formulas for the other measurements. 

Variable Symbol Cell Worksheet Formula Result 

Average 
L B14 =AVERAGE(B2:B13) 1.8021 in 

Length 

Number of 
B15 = COUNT(B2:B13) 12 n 

measurements 

DoF (n-1) of 
DoF B16 = B15-1 11 

Average 

Standard 
B17 = STDEV(B2:B13) 0.0243 in 

Deviation 
s 

Random 
B18 = B17/SQRT(B15) 0.0070 in 

Uncertainty ¾ 

Readability 0 B19 = 1/32 0.03125 in 

Systematic 
¾ B20 = B19/SQRT(3) 0.0180 in 

Uncertainty 

Combined 
B21 = SQRT(B 18 + B20) 0.0194 in 

Uncertainty ux 

Combined 
B22 

= (B15-l)*(B21/ 
635 

DoF 
V 

B18)"4 

that interpolates the signals for the 
user. We build on our discussion 
of how to incorporate uncertainty 
from examples of digital meters in our 
labs, including conductivity meters, 
refractometers, thermocouple digital 
thermometers, pressure gauges, flow 
meters, and humidity meters, to name a 
few. The readability of a digital instru
ment for use in Eq. (8) is determined 
from the least significant digit. The 
precision and readability of the digital 
balance scale is 0.1 gm, for a uniform 
systematic uncertainty of ±0.05/,)3 gm. 

All student teams pool their mea
surement results and record the values 
in an Excel worksheet, like Figure 3. 
Although this is a team-based exercise, 
each individual student creates a copy 
of the Excel worksheet for personal 
reference and use later in the program 
and future lab courses. Students calcu
late the combined uncertainty in each 
variable using worksheet functions. 
To illustrate, we refer to the data for 
the measurement of length (L) of the 
block listed in column B on the Excel 
worksheet, shown in Figure 3. Table 1 
contains a summary of the measure
ment uncertainty calculations includ
ing the Excel formulas and worksheet 
functions for L. By mixing dimension 
of inches with centimeters we also 
illustrate how numerical derivative 
approximations in terms of the input 
values handle the challenge of unit 
conversions in uncertainty analysis. 

The volume and density of the wood 
are calculated from the average values 
for the dimensions and mass in Eqs. 
(14) and (15). The length units of 

Bourdon-tube pressure meters, rotameters for fluid flow rates, 
manometers, and barometers. The readability of an analog 
instrument is subject to our comfort level in determining the 
precision of our interpolation between the graduation marks. 
The precision of the graduation marks on the ruler is 0.1 cm 
on one side and 1/16 in on the other, but students report the 
readability of the ruler as ranging from ±0.05 cm down to 
±0.025 cm or 1/32 in (depending on a student's confidence 
in his or her ability to interpolate the scale). 

inches are converted to centimeters 
in the volume calculation. Figure 4 shows the results in the 
Excel worksheet. The uncertainty analysis uses these values 
for evaluating the derivatives in the sensitivity coefficients. 

The electronic balance is an example of a digital meter 
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The analytical formulas for the sensitivity coefficients are 
listed below: 

CL= i~ =-m(~ J (16) 

c =~=-m[-1-+ LW] 
w aw WV V' 

(17) 
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clp rcDWm 
C ------

D - clD - 2V' 

C =~=_!_ 
m elm V 

(18) 

(19) 

The results for c using the average values of the variables are 
shown in row 23 of the Excel worksheet in Figure 5. 

G 

The epsilon term refers to a named cell on the worksheet that 
contains a small perturbation value of0.0001 usedinEq. (20). 

By using absolute worksheet cell references for the average 
values of the variables, we can fill the formula in Eq. (21) 
across the row of cells in the worksheet for each variable. 
Then, we simply change the addition of the perturbation value 
for each variable in tum to get the complete set of sensitiv-

H 

Unlike the simple linear de
rivative results of the perimeter 
and area of a rectangle in the 
uncertaintyexerciseofYates,Pl the 
derivative formulas for density in 
terms of mass and block dimen
sions are nonlinear, and prone to 
formulation errors in a worksheet 

1 V/cm 
3 =C14 *(CONVERT(B14, "in", "cm")*C14-Pl()*(D14"2)/4) 

2 p/(gm/cm3) =E14/Hl 

Figure 4. Wood block volume and density formulas evaluated at the average values 
for the experimental measurements of L, W, D, and m. 

calculation. At this juncture, it is important to remind the stu
dents that uncertainty analysis is by its own nature "uncertain." 
High-precision calculations for the sensitivity coefficients are un
necessary. We can take our first step toward simplification of the 
general process of uncertainty analysis by introducing first-order, 
finite difference approximations for the sensitivity coefficients: 

c. =~= p(x, +£)-p(x,) 
' ax, £ 

(20) 

A 

1 Team 

14 Xave 

15 n 

16 DoF 

17 s 

18 UR 

19 0 

20 Uz 

21 Ux 

22 V 

23 c analytical 

ity coefficients. The values in rows 23 and 24 compare the 
results from the analytical formulas to the finite-difference 
approximations where we observe good agreement. Finite
difference derivative approximations become important 
for obtaining good sensitivity coefficients for complicated 
calculations that involve multiple mathematical operations 
between the inputs to the output. For working with more 
complicated problems, we help the students write a VBA 

B C D E 

L/in W/cm D/cm m/gm 

1.8021 2.71 1.02 18.9 

12 12 12 12 

11 11 11 11 

0.0243 0.0690 0.0900 0.4163 

0.0070 0.0199 0.0260 0.1202 

0.03125 0.025 0.025 0.050 

0.0180 0.0144 0.0144 0.0289 

0.0194 0.0246 0.0297 0.1236 

635.36 25.61 18.84 12.31 

-0.3582 -0.4616 0.0835 0.0320 

where £ is a small value used to 
perturb the average value of a vari
able in the formula for density. The 
perturbation value must be small rela
tive to the magnitude of the variable. 
In our exercise, students find that a 
value of £ = 104 is sufficiently small 
to yield good values for the sensitiv
ity coefficients of each variable. We 
use the VBA user-defined function in 
Figure 6 for evaluating the density 
from the dimensions to simplify the 
calculations in a worksheet. We use 
the following worksheet formula 
to illustrate the calculation of the 
sensitivity coefficient relative to the 
wood block length measurement 
using finite difference derivative ap
proximation: 

24 c finite difference -0.3582 -0.4616 0.0835 0.0320 

25 c macro -0.3582 -0.4616 0.0835 0.0320 

Figure 5. Measurement uncertainty and sensitivity coefficients for the wood 
density exercise, evaluated in an Excel worksheet. 

B24-(DENS($B$14+epsilon, $C$14, $D$14, $E$14)-DENS($B$14, $C$14, $D$14, $E$14)) / epsilon (21) 

Public Function DENS(L, W, D, m) 
With WorksheetFunction 

DENS= m / (.Convert(L, "in", "cm") *WA 2 - W * .Pi() * (D / 2) A 2) 
End With 
End Function 

Figure 6. VEA user defined function for calculating the density of a wood block. 
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macro like the listing in Figure 7 to automate the evaluation 
of the sensitivity coefficients. 

Students create their macros in the same workbook that 
contains their worksheet for uncertainty analysis of the 
wood density calculations. The macro employs input boxes 
for selecting the ranges of data and writing the results on 
the worksheet. The algorithm cycles through the variables 
perturbing the average values one at a time to calculate the 
derivative approximation. The average value of the variable 
is reset to its original cell contents before perturbing the next 
variable for partial derivative evaluations. By default, Excel 
worksheets automatically recalculate the value of the density 
function for each small change in the variables. Be sure to 
tum on automatic calculations if it is not previously set in 
the Excel worksheet. 

With the sensitivity coefficients, we now have all of the 
information needed to calculate the propagation of the un
certainty in the measurements for the variables (L, W, D, and 
m) through the calculation of density. First, we calculate the 
standard uncertainty from the law of propagation of uncer
tainty. Figure 8 shows the values for the product of the sensi

dent in identifying which variable(s) contribute most to the 
uncertainty in y. We find that the contribution from the width 
measurement in column C is larger than the other variables 
by atleastanorderof magnitude. We can take steps to reduce 
the uncertainty in the width by taking more measurements, 
or using a higher precision ruler. We report the density with 
standard uncertainty as 

p = 0.603± 0.014 gm/cm 3 (standard uncertainty) (22) 

Note that the uncertainty is rounded up. Some practitioners 
recommend the retention of just one significant figure in the 
uncertainty, rounded up to P=0.61±0.02 gm cm3• 

Finally, students calculate the expanded uncertainty for a 
95% confidence interval. We need the degrees of freedom 
from the Welch-Satterthwaite formulas in Eqs. (12) and (13). 
Table 2 summarizes the worksheet formulas and functions 
for calculating the propagation of uncertainty and coverage 
factor. Note how we rounded the result for the combined 
degrees of freedom down to the nearest integer value for a 
conservative value of the coverage factor. It is important to 
help students learn to match the precision in their reported 

TABLE2 
tivity coefficient 
and combined 
uncertainty re
quired by Eq. 
(9). 

Excel worksheet formulas for calculating the propagation of 
uncertainty in the wood density exercise. 

Variable Symbol Cell Worksheet Formula Result 

B28 
The results for 

the square of the 
product (c ·u)2 

guide the stu-

Standard Uncertainty 

Degrees of Freedom 

Coverage Factor 

Expanded Uncertainty 

UV 

vv 

t 

UV 

=SQRT(SUMSQ(B26:E26)) 0.014 gm/cm3 

B30 =ROUNDDOWN((B28"4)/(SUM(B29:E29)),0) 58 

B31 =TINV(0.05,B30) 2.002 

B32 = ROUNDUP(B28*B31,3) 0.029 gm/cm3 
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Public Sub dfdx() 
' Get sensitivity coefficients from finite difference derivative approximations 

' Get input from the worksheet 
With Application 

Set x .InputBox(Type:=8, prompt:="Select range of average variables:") 
Set f .InputBox(Type:=8, prompt:="Select cell with function result:") 
Set c .InputBox(Type:=8, prompt:="Select range for sensitivity coefficients:") 

End With 

' Specify number of variables, perturbation factor & save function value 
n = x.Count: eps = 0.0001: finit = f 

' Loop through variables to calculate sensitivity coefficients 
For j = 1 Ton 

temp x(j) .Formula ' save worksheet formula for average variable j 
x(j) x(j) + eps ' perturb value of variable j in the worksheet 
c(j) (f - finit) / eps ' calculate the sensitivity coefficient for variable j 
x(j) temp ' replace value/formula of variable j in the worksheet 

Next j 
End Sub 

Figure 7. VEA macro for calculating sensitivity coefficients in an Excel worksheet. 
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result to the precision in the uncertainty. We now have the 
expanded uncertainty for wood density: 

p=0.61±0.03 grn/cm3 (95% confidence) (23) 

or 

p=0.61 gm/cm3 ±5% (95% confidence) (24) 

Figure 9 shows the Excel worksheet re
sults for expanded uncertainty in density. 

JITTER MACRO 

1 

26 

27 

28 

A 

Team 

C·Ux 

(c•ux) 
2 

Uy 

in Figure 11 shows the absolute and relative expanded, stan
dard, and maximum standard uncertainties. In addition, the 
output includes the sensitivity coefficients and contributions 
from each variable to the propagation of uncertainty. We 
see that variable 2, corresponding to width, contributes ap
proximately 65% of the uncertainty and should be a target for 
refining the experiments to reduce uncertainty in our density 

B C D E 

L/in W/cm D/cm m/gm 

-0.007 -0.011 0.002 0.004 

4.81E-05 l.29E-04 6.16E-06 l.56E-05 

0.014 

A macro named JITTER that automates 
the complete analysis for uncertainty 
propagation is provided to the students_[4l 

The macro incorporates the VBA code Figure 8. Excel worksheet calculation of standard uncertainty. 
from the student-generated macros from 

A B C D E 

1 Team L/in W/cm D/cm m/gm 

29 (c-ux}4/v 3.64E-12 6.48E-10 2.0lE-12 l.98E-11 

30 Vy 58 

31 t 2.002 

32 Uy 0.029 

the class exercises. To use the macro, 
students must set up a worksheet with 
a cell containing the final value of the 
function ultimately calculated from the 
average values of experimental inputs. 
In addition, the worksheet must include 
ranges of values for the average variables, 
random uncertainties, readability, and 
degrees of freedom. In most cases, the 
degrees of freedom for averaged values 
are the number of replicated experiments, 
less one (n-1 ). An example of a different 

Figure 9. Excel worksheet with results for expanded uncertainty in density. 

number of degrees of freedom is the use of least
squares regression parameters, such as the slope or 
intercept of a line, where the degrees of freedom are 
the number of regression data points less two. The 
macro uses input boxes to prompt the user for the 
required information. The input boxes displayed in 
Figure 10 show the cell and range addresses used 
for the wood density exercise with the density 
calculated in Cell B34 on the worksheet. 

The JITTER macro output for our class exercise 

Click on FUNCTION cell, f(x): 

$B$34I 

Figure 11. 
Results 

from 
macro JIT

TERforthe 
propaga

tion of 
uncer

tainty in 
the wood 

density 
exercise. 

Select range of STANDARD (RANDOM) UNCERTAINTIES, ::l::u_r: 

J$B$18:$E$18 

Select range of READABILITIES, ::i::d: 

J$B$19:$E$19I 

Ugs% = ± 2.8E-02 =± 4.7% 

Umax =± 2.5E-02 =± 4.1% 

u=± 1.4E-02 =± 2.3% 

t95% = 2.00 DoF = 58 

-3.58E-01 2 24.2% C1 = (c·u1) = 

-4.62E-01 2 64.8% C2 = (c·u2) = 

C3 = 8.35E-02 (c·u3)2 = 3.1% 

3.20E-02 2 7.9% C4 = (c·u4) = 

.. 1L~ 
Select range of AVERAGE (MEAN) VARIABLES, x: 

J$B$14:$E$14I 

Select range of mean DEGREES of FREEDOM: 

J$B$16:$E$16 

Click on the first OUTPUT cell: 

J$C$34I 

Figure 10. JITTER macro input boxes with worksheet ranges for wood density exercise. 
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calculation. An Excel workbook with the data and calcula
tions for the example exercise, as well as the general-purpose 
JITTER macro, is available for download from the author's 
website (<www.d.umn.edu/~rdavis/cee> ). 

RESULTS 
Students develop tools in these exercises that are applicable 

to a wide variety of problems involving uncertainty analysis in 
their remaining coursework, but particularly in our program's 
unit operations lab courses. Armed with an understanding of 
the basic assumptions and data requirements, students may 
use other software tools for uncertainty analysis available 
freely on the Internet or commercially. 

We evaluate our students' ability to transfer their skill with 
the formulas and Excel tools for uncertainty analysis by an 
exam question where they are allowed to use their Excel 
worksheets and macros from the class exercises. We find that 
over 90% of the students are consistently able to transfer their 
uncertainty analysis skills from the class exercise to correctly 
analyze the uncertainty in the exam problem. 

We also see improvements in uncertainty analysis conducted 
by students in our lab courses. Evidence includes an increased 
discussion and application of analysis of uncertainty in lab 
reports with more appreciation for reporting reliability of ex
perimental results. Students are also careful to include estimates 
of uncertainty in all final reported values. Although we warn 
the students that they will need these tools in courses later in 
the program, a few students have a habit of compartmentalizing 
their learning. Once they are finished with the computational 
methods course, they do not automatically make the connection 
of applying the analysis later in the program. However, when 
we provide them with a copy of the wood density exercise, they 
are able to quickly relearn and apply these skills. 

In one particularly complicated lab analysis, students use 
the macro to estimate the uncertainty in the calculation of 
chemical equilibrium constants. Experimental measurements 
of volume and mass to calculate reagent concentration and 
extent of reaction are fed into a worksheet set up to perform 
a complex series of stoichiometric mass conservation calcula
tions to arrive at a value of the equilibrium constant. These 
calculations may be spread across multiple worksheets. 
Propagating the uncertainty through these involved series of 
calculations by hand is tedious and prone to mistakes. The 
JITTER macro efficiently performs the analysis requiring 
little effort setting up the worksheets for the macro inputs. 
The students also appreciate the additional VBA programming 
skills developed as part of this exercise and report using this 
additional skill in academic and industrial settings. 

CONCLUSIONS 
A simple hands-on active-learning exercise provides stu

dents with experience collecting and analyzing experimental 
data with random and fixed uncertainties. The exercise uses 
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data collected from analog and digital instruments that give 
the students experience interpreting fixed uncertainties from 
readability. Students create an Excel worksheet that serves 
as a template of the steps for calculating the propagation 
of measurement uncertainty in engineering analysis. This 
worksheet template, coupled with VBA macros, gives the 
students powerful tools for including measures of reliability 
in their calculated results. By making the process simple, 
relatively easy, and painless, students who formerly avoided 
uncertainty analysis are now more willing and able to conduct 
proper uncertainty analysis. Similar tools may be developed 
in other computational platforms, such as Matlab or Python, 
as needed by a department to meet the needs of its constitu
ents. We elected to focus on Excel based on the feedback we 
receive from our own graduates who report using Excel with 
macros as their primary computational software. 

NOMENCLATURE 
c = sensitivity coefficient 

D = diameter, cm 
f = relationship between input variables and output variable 

L = length, cm 
m = mass, gm 
n = number of replicated measurements 
s = sample standard deviation 
t = coverage factor, or Student's t-statistic 

UY = expanded uncertainty in the output value y 
~ = random uncertainty or standard error 
ux = combined uncertainty in measurements 
uY = standard uncertainty in the output value y 
u

2 
= systematic uncertainty degrees of freedom 

V = volume, cm3 

v x = degrees of freedom 
v Y = degrees of freedom for pooled variances in expanded 

uncertainty 
W = width, cm 
x = input variable from experimental measurements 
y = output value calculated from input values 
o = readability 
E = perturbation in x 
P = density, gm/ cm3 

REFERENCES 
1. Kirkup, L., and B. Frenkel, An Introduction to Uncertainty in Measure

ment, Cambridge: Cambridge University Press (2006) 
2. Taylor, J.R., An Introduction to Error Analysis, Sausalito: University 

Science Books (1982) 
3. "Uncertainty of Measurement Results," NIST, October 2000. [ online]. 

Available: <http://physics.nist.gov/cuu/Uncertainty/index.html> [Ac
cessed 15 July 2011] 

4. Coleman, H.W., and W.G. Steele, Experimentation, Validation, and 
Uncertainty Analysis for Engineers, 3rd Ed., Hoboken: Wiley (2009) 
pp. 183-185 

5. Morgan, M., and M. Henrion, Uncertainty: A Guiel to Dealing with 
Uncertainty in Quantitiatic Risk and Policy Analysis, Cambridge: 
Cambridge University Press (1990) 

6. Davis, R.A., Practical Numerical Methods for Chemical Engineers 
Using Excel with VEA, 3rd Ed., San Bernardino: CreateSpace, 2015 

7. Yates, PC., "A Simple Method for Illustrating Uncertainty Analysis," 
78(6), 770 (June 2001) 0 

Chemical Engineering Education 



~b=i curriculum ) ---------------

SPREADSHEET PROCEDURE 
FOR SIMULATING SETPOINT TRACKING 
IN SISO BY DYNAMIC MATRIX CONTROL 

LARRY K. JANG AND ROGER C. Lo 

California State University • Long Beach, CA 90840-5103 

The objective of this work is to present a spreadsheet tool 
that illustrates an ideal case of dynamic matrix control 
(DMC) calculations. The ideal case presented in this 

work is a hypothetical single-input-single-output DMC con
trol system for setpoint tracking, in the absence of disturbance 
and mismatch between the measured and predicted process 
variable, at various move suppression coefficients. Students 
in an undergraduate process control class who followed the 
procedure to build the spreadsheet would gain a good basic 
understanding of DMC. 

A BRIEF OUTLINE OF DYNAMIC MATRIX 
CONTROL METHOD 
Dynamic matrix: prediction of future process 
response based on present and future control 
moves 

Industry has widely accepted control strategies based on 
model predictive control (MPC), primarily in multiple-input
multiple-output processes. The first known industrial appli
cation of linear MPC was known as dynamic matrix control 
(DMC). Initially, DMC was introduced for the single-input
single-output (SISO) cases. [ll The development of DMC and 
its recent status has been reported in the literature_l2l 

Moving horizon control is a key feature of dynamic matrix 
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control. This type of controller employs a model internal to 
the controller architecture to predict the process variable for 
nr steps into the future based on control moves for nr steps in 
the past. The future process response predicted from the past 
control moves is called "free response."[3l Then, the algorithm 
calculates the predicted error (setpoint-free response, with 
model mismatch and disturbance taken into consideration) 
for future nr steps, followed by an optimization scheme to 
calculate the present and future control moves needed to 
minimize or suppress the net error (predicted error-future 
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University and Ph.D.from University of Southern California, all in chemical 
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miniaturized high-throughput chemical/biological assays, and portable 
instruments for environmental analysis and monitoring. 
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process response due to the present and future control moves). 
Once the computation is done, only the first calculated control 
move is implemented and the algorithm moves one time step 
ahead. The free response is predicted and new control moves 
are calculated again for this new time step. The procedure of 
predicting the future free response, calculating the present and 
future control moves to suppress error, and implementing the 
first calculated control move is carried out as time moves on. 

The first crucial step in implementing DMC in a SISO case 
is to obtain information about how the process responds to a 
step change in the controller output. This procedure is very 
much like the traditional approach of finding the dynamic 
model of a process by making a step change in the controller 
output (in the manual mode) and observing the response of 
the process variable, followed by fitting the response curve 
to the model chosen (such as the first-order-plus-dead-time 
(FOPDT) model). With the model parameters (such as process 
gain, first-order time constant, and dead time), an engineer 
may use well-established tuning rules, such as Ziegler-Nichols 
method, Cohen-Coon method, and Internal Model Control 
(IMC) method, to find appropriate tuning parameters for a 
proportional-integral-derivative (PID) feedback controller. 
However, instead of fitting response data to a particular model, 
the DMC method calculates the coefficients of the system's 
step response model (SRM)_[ll 

Assuming that the system is initially at steady state and the 
initial value of the process variable is 0, the coefficient can 
be defined as follows: 

Coefficient of SRM = a. = ~ 
' lm(t

0
) 

( 1) 

where ~u(t
0

) is the magnitude of step change made (and 
held constant) in the controller output at t = t

0 
and y(t) is the 

response of the process variable at t = ti. We may consider 
the t/s as discrete times of choice and/or sampling times. In 
DMC applications, at least 10 discrete time steps are needed 
between t

0 
and tss (time to reach the next steady state). The 

number of time steps taken to reach steady state is called 
model horizan (denoted as min this work). If the controller 
output changes from the previous value by the magnitudes 
of ~u(t

0
), ~u(t

1
), ... , ~u(tnc

1
), at present and future times (t = 

t0, tl' .. ' tncl) and held constant thereafter, we may predict the 
response of the process at any future time ti (i = 1, 2, ... , nr) by 
the principle of superposition. The effect of a control move 
made at t

0 
would take ti time steps to reach ti. Likewise, the 

effect of a control move made at t
1 
would take ti-l steps to reach 

ti, and so forth. Since the effect is additive, we have Eq. (2). 

y( t,) = a,iiu( t0 )+ a,_,iiu( t, )+ ... (for n, terms), (2) 

Assuming that one is making 12 steps of prediction ahead 
(i.e., the prediction horizan n = 12) based on the subsequent 

p 

control moves for 5 steps (at t
0

, tl' t
2

, S, and t
4

) and held con-
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stant thereafter (i.e., the control horizon nc = 5), Eq. (2) may 
be rewritten in the matrix form [Eqs. (3) and (4)]: 

y(t1) al 0 0 0 0 t.u(t0) 
y(tz) a2 a1 0 0 0 

t.u (t1 ) 
y(t3) a3 a2 a 1 0 0 t.u(t 2) (3) 

au a 10 ag aa a7 
t.u(t 3) 

y(t12) a 12 au a10 ag aa 
t.u (t 4) 

[y h2 x 1 = [Ah 2 xs [.1u (present and future )]5 x i (4) 

The first term on the right-hand side of Eqs. (3) and (4) 
([A]

12
x

5
) is called the dynamic matrix. Note that the pres

ent and future control moves ~u(t
0
), ... , ~u(t

4
) are not 

known a priori. We need to use the procedure below to 
calculate them. 

FREE RESPONSE: PREDICTION FOR 
FUTURE PROCESS RESPONSE BASED ON 
PAST CONTROL MOVES 

Free response is defined as the predicted process response 
for t > t0 (at tl' t2, ... , tnr) based on the past control moves 
(~u(tnr), ~u(tnr+ 1), .... , ~u(t)) if no further controller outputs 
arechangedatt

0
, tl' t

2
, .... Theeffectofthecontrolmovemade 

at t 
1 

would take 2 steps to reach tl' 3 steps to reach t
2

, ••• , and 
so forth. Likewise, the effect of the control move made at t 

2 

would take 3 steps to reach tl' 4 steps to reach t
2

, ... , and so 
forth. Therefore, for a system in which n = 12, we would 

p 

obtain the prediction vector [yr]
12

x
1 
for the free response (due 

to past control moves only) as 

[

p(t ,) y (L12)] [all 
yp(t2) y(L 12) a,. 

. = . + . 

. . 

p(t ,2) y(L ,2) ai. 

:: l ::t:l] 
a,. a,3 t.u(t_ 1 ) 

(5) 

or 

where 

a, 3 a 3 

"'] a14 a4 a3 
[ Ap h2 X12 = 

a2• a1• a;J 

where y(tnr) is the value of the process variable at the begin
ning of prediction n steps in the past. For a system at initial 

p 

steady state, the process variables at the beginning of predic-
tion during moving horizon control {y(tnr), y(tnr+ 1), ... , y(t)} 
are all zero for t < t

0
• 
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If the setpoint profile Ysr fort> t0 is known, we may define 
the free-response error vector as 

L
(t1) j [ sp (t1) 

E(t2) Ysp (t2) 
. - . -
. . 

(t12 ) sp(t12) 

(7) 

or 

(8) 

To reduce or suppress the free-response error, DMC must 
instruct the final control element to make control moves for 
ne steps at the present and future time steps (t

0
, tl' t

2
, ... , tne-

1
). 

Calculation of present and future control moves 

If the controller makes control moves of ~u(t
0
), ~u(t

1
), 

~u(t
2
), ~u(t), and ~u(t

4
) for ne steps(= 5 in this work), we 

may anticipate that such present and future control moves 
would cause the process to respond by the magnitudes given 
by Eqs. (3) and (4). Therefore, the free response error may 
be reduced due to the present and future control moves, 
resulting in an effective or net error expressed as a net error 
vector [NE] 12x 1: 

Net Error = ( Free response error due to 
past control moves LJu(t < t

0
)) -

(Process response due to 
present and future control moves LJu(t ~ t

0
) 

LE(<,) L(<,l a 1 0 : r'l a2 a1 0 
NE (t 2 ) E (t 2 ) 

U3 a2 a 1 0 0 
6 u(t1 ) 

. . 6 u(t2) 

. . 
a11 U10 U9 a a 

· 6 u(t3) 

E(t, 2 ) ( t , 2 ) U7 u(t, ) 
a12 a11 a10 U9 a a 

(9) 

[NE Lx, = [E Lx, - [ A Lxs [ Liu (present and future) L ( 10) 

It can be said that the present and future control moves would 
serve to reduce or suppress the free response error. In Eqs. 
(9) and (10), it is assumed that disturbance does not exist and 
that there is no mismatch between the measured and predicted 
process variable. It is also assumed that the controller does 
not reach saturation and there is no constraint on the control 
moves. To compute the present and future control moves, an 
objective function <I> is defined as 

<I>= r::, {[ NE( t,)]' + A[ Liu( t, )J'} (11) 

where A is defined as the move suppression coefficient. 
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Moving horizon control is a 

key feature of dynamic matrix 

control. This type of controller 

employs a model internal to the 

controller architecture to predict 

the process variable for n steps 
p 

into the future based on control 

moves for n steps in the past. 
p 

Optimization of DMC gives the required present and future 
control moves that will serve to minimize <I> for a given 'A[ 1,3l 

Liu (present andfuture)]5x 1 = 
6 u(tol 
6 u(t1 ) 

6 u(t 2) = ( [Ar )sx12 [Al 12 xs + A [I l sxs)-l [Ar l sx12 [El1 2x1 {l2) 
6u(tJ 
6u(t4 ) 

where [N] is the transpose of the dynamic matrix [A] and [l] 
is a 5X5 identity matrix for ne = 5. Apparently, the greater 
the move suppression coefficient A, the smaller the ~u(t) 
values or a more conservative control action; and vice vers~ 
the control action becomes more aggressive. 

Once the calculation is done, only the first control move 
~u(t

0
) is implemented and the horizon moves one time step 

further. By treating t
1 

as the present time, t
0 

is then one time 
step in the past, and so forth. In the next step of calculation 
at t

1
, the previously calculated ~u(t

0
) would be considered as 

the control move one step in the past. So, its value (and only 
this ~u) should be entered at the bottom of the [~u(past)] 
vector for the past control moves [second term on the right
hand side of Eqs. (5) and (6)]. Then [y ], [E], [NE], and the 

p 

new [ ~u(present and future)] are recalculated at t
1

. The whole 
procedure may be repeated for n steps. 

p 

If there is no mismatch between the measured and predicted 
process response, then the actual process response for future 
steps at tl' t

2
, ... should be the sum of the free response and 
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the process response due to present and future moves [Eq. (13)] 

y[(actual response)l = [y ] + [A] [lm(present and future)] 
2xl P 2xl 12x5 Sxl 

(13) 

However, since only the first control move ~u(t
0
) is implemented at t

0
, we may predict 

the actual process response of y(t
1
) only [Eq. (14)] 

y( t,) = yp ( t,) (predicted at t0 based on y( t12 ) and [ iiu(past )]+ a1iiu( t0 ) (14) 

TABLE 1 

As the control 
horizon moves 

forward, the whole 
calculation repeats. 

As the control hori
zon moves forward, 
the whole calcula
tion repeats. In a 
system where a

1 
= 0 

(due to dead time), 
the actual process 
response y(t

1
) is the 

same as the free 
response y/t1) pre
dicted at t

0 
due to 

past control moves. 

Coefficient of step response model (SRM) used in this work 

a, a2 

0.00 0.948 

all a,2 

1.500 1.500 

a2, a22 

1.500 1.500 

SAMPLE CALCULATION BY 
SPREADSHEET PROCEDURE 

Based on the MPC theory and DMC strat
egy outlined above, the authors developed 
a spreadsheet procedure using data for a 
hypothetical first-order-plus-dead-time 
model with process gain K = 1.5, time 

p 

constant ,: = 1, and deadtime 8 = 1. The 
p p 

SRM coefficients for this process model 
are shown in Table 1 and Figure 1. The size 
of time step ~t = 1 is chosen in this work. 
This process stabilizes in 10 time steps or 
model horizon m = 10. The established 
DMC guidelines recommend that the pre-

a, 

1.297 

aB 

1.500 

a23 

1.500 

ro 1.50 
... 
~ 
c::: 
V) 
,._ 1.00 
0 
+,I 

r:::: 
Q) 

·u a.so = Q) 
0 
U 0.00 

a• as a6 a7 a, a9 aw 

1.425 1.473 1.490 1.496 1.499 1.499 1.500 

a,. a,s a,6 a,7 arn a,9 a20 

1.500 1.500 1.500 1.500 1.500 1.500 1.500 

a24 a25 a26 a27 a2, a29 a,o 

1.500 1.500 1.500 1.500 1.500 1.500 1.500 

0 5 10 

time, t 

Figure 1. Plot of SRM Coefficient ai versus time. 

TABLE2 
Dynamic matrix [A]

12
x5 for prediction horizon nP = 12 and control horizon nc = 5 using the coefficients a, (i = 1, 2, .. , 12) from the SRM. 

0.000 0.000 0.000 0.000 0.000 

0.948 0.000 0.000 0.000 0.000 

1.297 0.948 0.000 0.000 0.000 

1.425 1.297 0.948 0.000 0.000 

1.473 1.425 1.297 0.948 0.000 

1.490 1.473 1.425 1.297 0.948 

1.496 1.490 1.473 1.425 1.297 

1.499 1.496 1.490 1.473 1.425 

1.499 1.499 1.496 1.490 1.473 

1.500 1.499 1.499 1.496 1.490 

1.500 1.500 1.499 1.499 1.496 

1.500 1.500 1.500 1.499 1.499 
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TABLE3 
Matrix ([N] [A]+ A [ I])·1 [AT] for move suppression coefficient A= 3.0 

0.000 0.160 0.127 0.071 0.033 0.012 0.004 

0.000 -0.091 0.087 0.085 0.050 0.020 0.009 

0.000 -0.044 -0.127 0.065 0.070 0.031 0.017 

0.000 -0.018 -0.059 -0.140 0.046 0.033 0.028 

0.000 -0.007 -0.026 -0.073 -0.172 -0.026 0.028 

diction horizon n exceeds the model horizon by 20% or 50% (n ~ 12-15 
p p 

) and that the control horizon ne = 0.5 m ~ 5_[ll Since the purpose of this 
module is to illustrate the concept of DMC without using Visual Basic 
(or other sophisticated software), the authors choose n = 12 and n =5 

p e 

for illustrating the procedure. 

With nr = 12 and ne =5, the dynamic matrix [A] 12x 5 based on the SRM 
coefficients (Table 1) is given in Table 2. By following the standard matrix 
operations in Excel for transpose, multiplication, and addition, the matrix 
([N ][A]+ A[ I]) 1 [N] for A= 3.0 is calculated and summarized in Table 
3. The matrix [Ar]

12
x

12 
(for predicting the free response of the process) 

is given in Table 4. Note that the elements of [Ar]
12

x
12 

should be entered 
according to Eq. (6), where the values of the elements are from Table 1. 

To initialize the calculation, it is assumed that the system is at steady 
state at t

0 
and that the process variable and the past control moves are 

both zero for t < t
0 

for at least nr steps in the past. The spreadsheet shown 
in Table 5 (following page) illustrates the calculation for the time step at 
t
0

. The following procedure was used to create Table 5: 

( 1) Column G is created to count the past and present time steps -12, 
-11, ... , -1, 0. Column His created to count the present and future 
time steps 0, 1, 2, ... , 12; 

(2) Assign 0.00 values to Q65-Q77 for present and past values of pro
cess variable; 

(3) Highlight cell 165 and perform "=$Q65 "(the beginning process 
variable (t

12
) for prediction of free response). Highlight cell 166, 

perform "= 165," and copy downward. In this manner, elements in 
Column 1 have the y(t

12
) value; 

(4) Assign 0.0 to 165-176 (for past control moves [£Ju(past)]; 

(5) Highlight cell K-65-K76 and perform matrix multiplication [AP] 
[£Ju (past)] ( =MMULT($E$37:$P$48,J65:176),jollowed by the 
combined key stroke, control+shift+enter, in Excel, where [AP] is 
located in the cells E37-P48 and [£Ju(past)] is located in the cells 
165-176. The$ sign is needed to fix the column number and the row 
number for [AP] when copying the content of Table 5 down below. 
However, the cell positions for [ £Ju(past)] do not need the $ sign in 
front of the column number or the row number; Excel will automati
cally reference to the appropriate cell positions when the content of 
Table 5 is copied downward; 

(6) Add Column 1 and Kand put the results in L65-L76, that gives 
(future) free response of process variable due to past control moves; 

(7) Assign setpoint of 1.00 to M65-M76, assuming that there is a 
unit step change of 1.000 occurring at t/ and calculate the free 
response error [E] (Column N) by subtracting Column Lfrom Col
umn M; 
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"'1: "'1: "'1: ""! ""! ""! ""! ""! - - - - - - - -
°' °' 0 0 0 0 0 0 

~ ~ 0 0 0 0 0 0 
'fl 'fl 'fl 'fl 'fl 'fl - - - - - - - -

°' 0 0 0 0 0 0 0 

°' 0 0 0 0 0 0 0 
"'1: ""! ""! ""! ""! ""! ""! ""! - - - - - - - -
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
""! ""! ""! ""! ""! ""! ""! ""! - - - - - - - -
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
'fl 'fl 'fl 'fl 'fl 'fl 'fl 'fl - - - - - - - -
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
""! ""! ""! ""! ""! ""! ""! ""! - - - - - - - -
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
""! ""! ""! ""! ""! ""! ""! ""! - - - - - - - -
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
""! ""! ""! ""! ""! ""! ""! ""! - - - - - - - -
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
""! ""! ""! ""! ""! ""! ""! ""! - - - - - - - -
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
'fl 'fl 'fl 'fl 'fl 'fl 'fl 'fl - - - - - - - -
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
'fl 'fl 'fl 'fl 'fl 'fl 'fl 'fl - - - - - - - -
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TABLES 
Calculation of [Au (present and future) ]

5
x

1 
to be carried out at t

0
, t" .. ,t

4 
based on free response of process variable yP (t

1
, t

2
, 

..... , t
12

) and past Au ( t_
12

, t_ll'" .. t_J Note that only the first of the present and future Au (0.410) is actually carried out at t
0

• 

~ Yil ti) 
(CUM, coum, 

Jl.uf.pilst) ["'-1 1• (ll'ff &!(mow&. w-& 0 now& -& •12 ., .. [El -;{nm] 

63 !)ii~ flrnl£• lillM[pffi~ •fif!!ll™I) Muo•I pn:) 

'•IM&<opledib.mwards~ =~ '=IM.KM 
·=MM-

0 ... 110 
·=lfiS.otk" 

S4 -n 1 o.oJ w $E$7 

615 0.000 O.lilllll o.ooo I .L.000 1.0001 O.U6 \ 0\000 0.000 

~ ·tl 2 0..000 (1.000 0.000 0.000 J.000 1.000 0..06,! 0..000 

k:::i .JO 3 n.ooo 11.ooJ O.liliiO 0.000 !..000 1.000 
MlB \ 

D..000 

c:::::i ~ 4 0.000 0.000 0.000 0.000 L..000 1.000 0-001 0.000 
~ ~ ~ 0.000, 0.000 0.000 0.000 .l.000 1.000 0.000 

• MMULTIS 
.7 6 n.ooo 11..00;l 0.000 0.000 J.000 1.000 ES.'l8$$:!l2 D..000 

~ NM:li76l 
i'1 ,II 1 n.ooo 11..CDJ O.lilllll a.ODO UJ!ID 1.000 D..000 
:12 ~ ~ 0.000 0.000 O.lilllll 0.000 J.IIOD 1.000 0.000 
:1J .. !j 0..000, 0.000 0.000 0.000 J.000 1.000 0..000 
1'4 ,3 !O 0.(1(11) o..coo 0.000 0..000 UIOO 1.000 0.000 

.,z u tLO!l!J 0.000 0.000 0.000 I-OOII l-000 0.000 
1( -t u 0.000 0.000 O.QllO 0.000 J.000 1,000 0.000 
71 0 0...10 0.000 

1!.. -~ , ·=M TI$U,t7:S~MI 

TABLE6 
Calculation of Au to be carried out at t

1
, t

2
, •• , t

5 
based on predicted process variable yP (t

2
, t

3
, ••••• , t

13
) and past Au ( t_

11
, t_

8
, ••• t

0
). 

Only the first of the present and future Au (0.176) is actually carried out at ti° Important cell operations are explained in the text. 

C D f G H I 

'=1M•1 yl!)lj] 
co.,m.. count. 

]. oow& DOWS. •ll 

l>'SI M111"41-----

·-3d~ 1 •~ 

. 11 2 0..000 I 

·-•~10 ! rum --, A 0..000 

ct 5 0.000 
·zm ., ~ o..ooo 

,fi , rum 
-$ I 0.000 .. ' 0.000 
.i LO 0..000 

' l !! 0..000 
-1 .12 0.000 
0 11 0.000 

(8) Highlight cell 064-068 and perform matrix 
multiplication according to Eq. (12), where 
the([ATJ[A]+ Jc [I]) 1 [N](for A=3.0) is given 
in Table 3. Again, in the matrix multiplication 
"=MMULT($E$28:$P$32,N65:N76)," E28-P32 is the 
matrix [AT] [A]+ Jc [ I]) 1 [NJ and its column number 
and row number must be fixed by placing the $ sign 
in front of them. However, the cell positions in the [E] 
vector do not need the$ sign. The cells 064-068 are 
the predicted control moves to be made at t

0
, tr .. ,t

4
• 

But only the first one (064, with calculated value of 
0.410) will be actually implemented; 

(9) Highlight cell 177 and assign "= 064." In this way, the 
present Llu ( tj is entered to the bottom of Column J; 

(10) Highlight cell P65 to calculate the actual process 
variable y(next) or y(t) according to Eq. (14) to show 
the effect of the present control move Llu(t/ In the au-
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Jl.u!pastj ,..... y1 jfrl>i! [I;] 
illJ.llnewJ r[nm) '/1r>OWS. 

[6u0>H0] ff!-] 
~ .. lu1.l,lfel pu,i 

0..000 
rum 
0..000 
0.000 
0..000 

rum 
0..000 
0.000 
0..000 
0-o:,;I 

0..000 
o.,110 

0.17' 

'•QH 

ll..176 

0,319, o.m l.000 MU ~ ,1).3!9 (1,000 

O.SJ~ ~~ l.llOO ll.A)!i! ll..01:! 0 .000 
o.585 ~ J,llOO o.,115 0.0W: 0.000 
0.604 0.fO$ 1.000 O.* -0.002 0.000 
0.6U MU I.COO o..m 0.000 
o.~4 0..61,4 J.(1(10 a.~ 0-000 
0.6.15 0.li15 J.(1(1(1 ~ O,QQO 
0.611~ 0.61.S i.000 0.1:&S 111000 
o.61!.5 Mu J.Gw:11) o..m 0.000 
o.m o..«;1,$ J.000 O-l:1$ 0.000 
0.615 0.li15 1.000 ~ .:,_77 .......... O.QQO 
0.615 0.61.S J.000 0.- -tt>pled 0.000 

u ..-d• 0.000 

"aJnjond«>f"" u~l ·--
thors' spreadsheet, the coefficient of SRM a

1 
is located 

at cell E7. 

To perform the calculation for the moving horizon control, 
the cells in Table 5 are copied and pasted somewhere else 
on the spreadsheet for calculations at the next time step at 
t
1

. The pasted cell needs revision before the final outcome 
(Table 6) is obtained: 

( 1) Highlight the cell G82 and perform "= G65 + l" 
and copy downward. The count for now and past 
will be advanced by 1 from corresponding cells of 
Table 5. Do the same for H81-H93 and cell 180; 

(2) Highlight Q94 and perform"= P65." Doing so 
will put the y(next) calculated at t

0 
as the value of 

the process valuable y( now) at t
1

; 

(3) Highlight Q93,perform "= Q77," and copy the 
formula upward. In this manner, the process vari-
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TABLE7 
Calculation of [Au(present and future)] to be carried out at t

2
, t

3
, •• , t

6 
based on predicted process variable yP (t

3
, t

4
, ••••• , t

14
) 

and past Au ( t.10' t_9, ••• tJ This section is the result of copying the cells in Table 6 and pasting it somewhere below. 

D F G H I K M N 0 p ll R 
ii'6 y(jl t 

QQ<JA't,. C<;l!llll'!, 
LA,,l Yp, llree 

u(naw 
2.(1()1) IMIW& IMIW& •10.000 ll(i;ia~!J 'l',p IEI & ~~Kl} :roow& ~~4) 

,1 !)1st fulure I ulPHtU ,,esponse) 
f1m1rd 

!Ill 2 0,064 

~ ·10 3 0,000, 0.000 O.ffi o.m 1.000 MO! o.01e o.m ().(1()1) 

:100 -9 4 0.000, 0.000 IUIB o.sn 1.000 0.1U 0.003 0.000 ·I 101 .,a s 0.000, 0 ,•000 o.85S o,,ss:; 1,000 O,VIS -0.002 0.000 

102 •'1 6 0.000 0.000 ().:87() 0.870 1,000 0.130 ,(1,002 Ohl')() 

103 "' ' 0.000, 0.000 IUl'7(; 0.1m: .1.000 0.124 0.000 
104 .5, 8 0.000, 0,000 IUl7ll 0,818 1.000 0,122 0.000 
105 -4 9 0.000 0.000 OJi.79 O.S79 'l ,000 0.121 0.000 
:106 ,3 10 0.000, 0.000 IUl'l'9 0,.1179 1.000 0.121 0.000 
:107 -2 u O,OO(I, 0 .. 000 IUl79 01879 11000 0,121 0.000 

108 •l 12 o.OOQ 0,000 o.87' o,,s1li 1,000 O,lll 0.000 
109 0 u 0.000 0.410 (1.,879 0.979 i.000 0.1-H ().(10() 

no 14 0.000, 0.17~ 11..879 01879 1.000 0.12I 0..000 

11.l 2 0,064 cu~ 
12 

U3 f@I 

eoum, totJnt, ,. 
o.,;.; '~ J• 

(now 
Cho'lbddol --3 -· .-JO - 5 -~p 

TABLES 
Results fort= 12. Additional column S267-S281 displays the cumulative controller output u. 

0 G II I I I Ml N 0 
z~ 10 23 1Ml00 0,000 1,000, 1.000 1,000 0.000 
284 i1 0.000 
2~ 
2116 yfPt - (c.lJII, 

&uC..,.,t} lo.1J~tj] 
y, tll\e!!' lllnow ll.000 now& ..,,..& 0.000 'f,.. m 

2~7 ~,1 Mlort rt~l)OM!!') &.M-1 

2SS 12 ,0.000, 

z~ 0 H 0.000 0.410 J.000 1.000 J.0011 0.000 0.000, 
270 1 ]4 0.000 0.17& J..000 l .000 l .000 0.000 o.coo 
271 n 0.00f,I 0~ ,bOOf,I ,L-000 J.00f,I O.oQQ O.IXIO o.~19 0.6'5(1 

272 :16 0..000 oms 1..000 1-000 J..000 OIOOO ,l).OOQ, o,~ iUU 
273 4 7 D.DQ(I ll.Oln I..DOO 'l..ll!l(I I .DQ(I O,O(IQ 0 .1!,7<1 o.t,?i 
214 5 JS 0.000 -0.001 l .000 Jc.000 J.0011 0•.000 0.9~ 0.670 
27!, (; l!ll 0.000 -0.001 LOOI) J.000 J.000 0.000 0.98! O.l!ol.8 
H!i , 2Q Q.,QOl;I -D.QO! l.oo!I ,1-000 l.oo!I 0•.000 O.'IW o.w 
277 a 21 0.000 0.000 LOOO 1.000 J.000 0.000 UIOl •0.1567 
27S j • 2l O-O(l(I 0.000 l..ll\lf,I J.JX)f,) J..ll\lf,) (l•.(lf,IQ l.l)(ll 0-(,6'1 

219 10 2i 0.000 0.000 J.000 1..000 1.0011 0\000 1.1101 0.667 
280 11 24 0.000 0.000 LOOO 1-000 J.000 0.000 1.000 o..&&7 

·1 211 12 0.000 i,o,x, 0.64i7 
282 
~~ -· 11.mdill) -5 _, 

°'"" u 
_, 

able calculated in the time step before will move 
up one position; 

(4) Highlight 193,perform "= 177" (the bottom 
of l column in Table 5), and copy the formula 
upward. In this manner, the L1u(past)jrom the 
previous table will move up by one position; 

( 5) The users will then see the revised result of cells 
081-085. Finally, Highlight 194 and perform 
"= 081" to enter the present control move just 
calculated. 
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Once Table 5 and Table 6 are established, the content of 
Table 6 can be copied and pasted somewhere down below 
without any further revisions because the relationships be
tween two successive tables are already established. The result 
of calculations at t

2 
is given in Table 7. If the contents of Table 

6 are pasted for subsequent time steps, the final results of cal
culations for t

12 
are shown in Table 8. In Table 8, the cell S269 

is highlighted and "= S268+J269" is performed and copied 
downward. In this way, the cumulative controller output may 
be calculated from the control moves since t

0 
(Column J). 
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Figure 2 shows the process response (y), control moves 
at every time step (~u), cumulative controller output (u) 
and setpoint (y . ) for time steps up to n = 12 (Table 8). 

setpomt p 

Once the calculations are done for A= 3, the contents of this 
worksheet may be copied and pasted on several other work
sheets. By simply changing the cell that stores the A value, 
the results for A= 1, 5, 8, and 20 would appear immediately. 
Figures 3 and 4 summarize the effects of moving suppression 
coefficient A on the process variable y as well as cumulative 
controller output u. It is clear that the greater the A value, the 
more conservative the control action and the more sluggish 
m process response. 

DISCUSSION 
This work focuses on setpoint tracking in the absence of 

disturbance for perfectly linear process models. In reality, 
many real-world processes exhibit non-linear behaviors, with 
SRM coefficients (a/s) varying with steady-state conditions. 
Also, it is assumed that there is no process or model mismatch 
between the predicted and measured values of process vari
able at t0• If such a mismatch exists, the magnitude£= Ys/t0) 

- y/t
0
) must be subtracted from every element of the vector 

[E] in Eqs. (7) and (8) to make the prediction more accurate. 

With the model having the first-order-plus-dead-time behav
ior, there are many well-established tuning rules available to 
tune the feedback controller for this process. However, DMC 
offers several benefits. DMC is able to predict the future errors 
and the present and future control moves in order to minimize 
predicted net errors for future steps. This ability of changing 
controller outputs based on the predicted future process condi
tion is absent in traditional feedback control. Or, we may say 
that a DMC system having a very short prediction horizon (n ) 

p 

behaves more like a traditional feedback controller. In this work, 
the authors choose n , m, and n according to recommended 

p C 

guidelines. Because the control action cannot change after the 
control horizon ends, a short control horizon nc results in a large 
initial controller output, but a few careful changes in control 
action. The large control action in a short control horizon might 
overshoot the setpoint. However, as the controller continues 
to execute, the process variable will eventually settle around 
setpoint. On the other hand, a long control horizon produces 
a small initial controller output but more aggressive changes 
in control action. These aggressive changes in control action 
in a long control horizon can result in oscillation. In general, 
a control horizon of about one-half model horizon is recom
mended. Although a long prediction horizon increases the 
predictive ability of the DMC, the performance of the controller 
may suffer due to the extra calculations required. 

The spreadsheet procedure developed here allows students 
to track step-by-step changes of a moving horizon control 
system with great ease. Interested users may revise this 
spreadsheet by 

( 1) using SRM coefficients obtained from real-world 
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DMC for Setpoint Tracking with 
t..= 3 

Ysetp~ nt 

1.0 -,-----------=------------
= J.. 
0 

y 

= u <l 0.5 -1-,j~----#-----------------

;;.:; 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 
time, t 

Figure 2. Results of calculation for setpoint tracking by DMC 
with move suppression coefficient A =3. Since a

1 
= O in this 

case, y= Yp· 

0,1.2 
>, 

Bf 1.0 
= 0 
~0.8 
Q) 

0:: 
~ 0.6 
Q) 
c.J 
E o.4 
Q. 

al 0.2 .... 
c.J 

i 0.0 

Effect of Move Suppression Coefficient A 
on Process Response in DMC 

A= 3 

A= 20 

'5:: 0.0 5.0 10.0 15.0 

time, t 

Figure 3. Effect of move suppression coefficient A on the 
actual process response y or free response Yp' same for this 

case with a
1 

= 0. 

Effect of Move Suppression Coefficient A 

0_8 ~--·on.Contr.oller__O..utp11t~1-1 _____ _ 
...,. A=l 

~ 0.7 t -c;:=::s;~::=;;~~===;;;;;;;;;~--
0 0.6 --V-+.<'~"'--c.,,"""------,....-.=----------
J.. 

~ 0.5 +-l'-+.--:.~~C--"s;,--------1"--=='-'-~-------

o 
J.. i= :l 0.4 

8 0.3 -W--,#--- -.,,__ ___________ _ 

0.2 f------------------

0.1 +------------------

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 

time, t 

Figure 4. Effect of move suppression coefficient A on 
the controller output u. 
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processes or real plant data; 

(2) removing or changing the amount of dead time to 
explore the effects of dead time on y and u. In the 
absence of dead time, the free response y (next) 

p 

and actual response y(next) will differ by a mag-
nitude of a/ L1u(present), where a

1 
:;r: O; 

( 3) consulting with publications that use more so
phisticated sojtwaref41 once they are confident in 
the basic concept; or 

(4) exploring the effects of using different values 
for various horizans ( model horizan, prediction 
horizan, and control horizan). 

The topic of DMC was covered in our department's process 
control class for the first time in the Fall 2014 semester, as 
suggested by our department's industrial associates. The top
ics covered in this class are listed below: 

• Introduction to the course, control practice, 
elements of typical control systems, design of 
data acquisition using modern software such as 
LabVIEW 

• Case study of process dynamic model: heated 
stirred tank-from energy balance to closed-loop 
control system, and case studies including labo
ratory control experiments 

• Derivation of dynamic models for industrially 
important process units 

• Review of essential mathematical tools ( differen
tial equations and Laplace Transform) 

• Dynamic behavior of first-order systems (first ex
perience of Loop Pro software); Dynamic Matrix 

• Dynamic behavior of second-order systems 

• 

• 

• 
• 

• 

• 

• 

• 

Higher order systems and approximate models 
for poorly understood systems 

Overall transfer Junction of closed-loop feedback 
control systems 

Stability analysis 

Process identification of typical chemical engi
neering processes 

Industrial procedure of controller tuning (pro
cess reaction curve method, continuous cyclic 
response method,frequency response method) 

Industrial procedure of controller tuning ( Inter
nal Model Control (IMC)) 

Advanced Control Methods-Cascade, Feedfor
ward!F eedback, Smith Predictor, Gain Scheduling 

Introduction to Dynamic Matrix Control 
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Besides two hours of lecture each week, this course has a 
Laboratory /Problem (LIP) component that meets three hours 
each week. During the LIP hours, students have opportuni
ties running real-world experiments, performing simulation 
using Loop-Pro software (Workshop 1 through3 below), and 
designing spreadsheet procedures (Workshop 4): 

• Workshop #1: Level control in gravity drained 
tanks 

• Workshop #2: Temperature control in shell-n
Tube heat exchangers 

• Workshop #3: Level control in pumped tanks 

• Workshop #4: Spreadsheet procedure/or Dy
namic Matrix Control calculations 

Although the topic ofDMC and the associated spreadsheet 
workshop were covered toward the end of the semester for 
one lecture and one LIP activity, students had a chance to 
learn the basics of this advanced concept. 

CONCLUSIONS 
1. An easy-to-follow spreadsheet procedure is developed for 

an undergraduate process control class to learn basic aspects 
of moving horizon control in a dynamic matrix controller 
(DMC); 

2. Based on coefficients of step response model (SRM) 
obtained from plant data, a dynamic matrix can be constructed 
foraDMC; 

3. The DMC calculates the present and future control 
moves required to decrease the predicted future errors (and 
steer the process variable toward setpoint) according to the 
rules of DMC and a selected value of move suppression 
coefficient A; and 

4. The greater (smaller) the A value, the more conservative 
(aggressive) the control action. 
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~ 5 ::j department ) _______ ___:_ _____ _ 

Chemical Engineering at • • • 

Lafayette College 

JAMES K. FERRI 

Lafayette College is a small, private college located in 
Easton, Pennsylvania. It emolls approximately 2,400 
undergraduate students, about half of whom are en

gineering and science majors. Founded in 1826, 
Lafayette enjoys a unique connection between 
liberal arts and engineering; a strategic combina
tion that meets the increased demand for science 
and technology as well as providing the creativity 
and insight imparted by the arts and humanities. 

In addition to its strong tradition of liberal arts 
and engineering, Lafayette College is also known 
for its longstanding football rivalry; we hosted the 
150th meeting of Lafayette and Lehigh at Yankee 
Stadium in November 2014. Begun in 1884, 
Lafayette-Lehigh is the nation's most-played 
college football rivalry, and it has been played 
every year since 1897 without interruption- the 
longest streak of consecutive years for any rivalry 
in college football. 

The 150th also marked the kick-off of the capital 
campaign, Live Connected, Lead Change, cel
ebrating the accomplishments of the college and its 
alumni. The college is enabled by an endowment
per-student in the top eight percent of all colleges 
and universities in the country, Lafayette has a 
strong record of achievement in the chemical industries with 
distinguished alumni including John Townsend Baker ( founder, 
J.T. Baker Chemical),Alvin andAndy Deitz (founders, Spectra 
Gases), and Stephen D. Pryor (CEO, ExxonMobil Chemical). 
This alumni base coupled with the strong relationships with 
industry leaders ExxonMobil, Air Products, DuPont, BASF, 
GlaxoSmithKline, and Merck and Company enable Lafayette 
chemical engineers to routinely secure post-graduation job 
placement in these companies, as well in programs for ad
vanced study. In the last five years, graduates have emolled in 
programs at Princeton, Johns Hopkins, Cornell, the University 
of California-Santa Barbara, and the University of Delaware, 
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among others. Since 2010, five Lafayette chemical engineers 
have been awarded National Science Foundation Graduate 
Research Fellowships, and eight since 2003. In a study recently 

reported by PayScale.com, Lafayette boasts a 
seven percent annual return on investment over 20 
years; it is ranked 8th among liberal arts colleges 
in the nation. 

In2016, engineering at Lafayette will celebrate 
150 years; chemical engineering at Lafayette is 
celebrating its centennial in 2015. 

THE HISTORY OF ChE 
AT LAFAYETTE 

The origin of chemical engineering at Lafayette 
can be traced to Dr. Edward Hart. Hart received 
his Ph.D. in chemistry from the Johns Hopkins 
University in 1878, studying with Dr. Ira Remsen. 
Joining the faculty of the chemistry department 
at Lafayette shortly thereafter, Hart immediately 
began inspiring students to pursue opportunities 
in chemical manufacturing. Together with John 
Townsend Baker (B.S., Chemistry, 1882; M.S., 
Chemistry, 1885), Hart founded the partnership of 

Top, above: Edward Hart, co-founder of Baker and 
Hart Chemical and the founder and editor of Analytical 
Chemistry. Hart was the chair of the Industrial and En
gineering Chemistry Division of the American Chemi
cal Society and department head of chemistry before 
becoming the first professor of chemical engineering at 
Lafayette College. 
Bottom, above: Eugene C. Bingham, co-founder of the 
field of rheology and author of Fluidity and Plasticity 
(McGraw-Hill; New York, NY). Bingham was the orga
nizer of the first Plasticity Symposia of the American 
Chemical Society. He was head of chemistry at Lafay
ette College. 

© Copyright ChE Division of ASEE 2015 
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Baker and Hart in 1882, and began the production of refined 
chemicals in a small plant that they constructed together on 
College Hill, several blocks from campus. In 1884, another 
of Hart's students, George PursegloveAdamson (B.S., chem
istry, 1884; M.S., chemistry, 1887) joined their partnership, 
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Top: The Inaugural Chemical Engineering 
Spring Symposium included commissioning 
and ribbon-cutting ceremony of the twin
column distillation plant in the Lafayette Unit 
Operation Laboratory by Stephen D. Pryor, 
CEO, ExxonMobil Chemical. 

Left above: Kevin Ling explores experiential 
molecular bioengineering in the LafChBE Tissue Cultural 
Facility (2012). 

Right above: Student Victor D'Ascenzo, class of 2017, made 
a name for himself-literally- in Lafayette's Introduction to 
Engineering/ChBE module, which teaches the art of engineer
ing small/microfluidic device fabrication. 
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The Chemical and Biomolecular Engineering (ChBE) curriculum at Lafayette College: hierarchical organization. 

which then became known as the Baker and Adamson Chemi
cal Company. It was reckoned that Hart's name was omitted 
from the enterprise because Lafayette College preferred that 
the business activities of its staff remained unpublicized. 
Nonetheless, Hart served as president of Baker and Adamson 
Chemical from its incorporation in 1890 until 1913. Revenues 
in 1890 were $10,000 per month! (The Octagon, May 1960, 
Vol. 43, No. 5) 

Another of Hart's students wasRichardKidderMeade(B.S., 
chemistry, 1899; M.S., chemistry, 1908). Meade founded and 
edited The Chemical Engineer, a journal of practical, applied, 
and analytical chemistry. Perhaps most noteworthy, in a forceful 
editorial first published in October 1905 and re-printed in Octo
ber 1907, titled 'Why not 'The American Society of Chemical 
Engineers'?" Meade argued that" ... mining, civil, electrical, 
and mechanical engineers are organized and each has a strong 
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society ... the chemical engineers must also organize and the 
time is now opportune for the formation of an American Society 
of Chemical Engineers." (The Chemical Engineer, Volume 3, 
1905) A committee of six, including Arthur D. Little, William 
H. Walker, and Richard Meade, was formed to explore the need 
for such a society, and the American Institute of Chemical En
gineers was established in January 1908. Among the 40 charter 
members, George Adamson was a member of the Council of 
the Institute from 1908 until 1911. Also a charter member of 
theAIChE, Hart served on the council from 1911 through 1913. 
The first Finance Committee was comprised of Hart, Adamson, 
and Meade, while Hart was also a member of the publications 
committee. (Volume 1, Transactions oftheAmericanlnstituteof 
Chemical Engineers, 1908) It is significant that these Lafayette 
chemists were at the forefront of the movement to organize the 
AIChE and took such an active part in its early life. 
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At Lafayette, the college catalog for academic year 1915-
1916 first listed a "Course of Study in Chemical Engineering" 
in the summer of 1915. In the following year, Hart stepped 
down as head of the Department of Chemistry to become the 
first professor of the chemical engineering at Lafayette; he 
was succeeded by Dr. Eugene C. Bingham, also an industrial 
chemist. 

The first students of the chemical engineering course of 
study at Lafayette graduated in 1919. The B.S. in chemical 
engineering was first conferred at Lafayette in 1920. In 1921 
Hart published the first textbook in the United States to bear 
the title Chemical Engineering (Chemical Publishing Com
pany; Easton, Pa.). 

As the Program in Chemical Engineering grew, the tradition 
of industrial chemistry was strong at Lafayette under Bing
ham in the 1920s. His milestone text, Fluidity and Plasticity 
(McGraw-Hill; New York, NY) in 1922, first described his 
observations that certain fluids did not flow until the imposed 
shearing stress reached a critical value, the yield stress, i::

0
• The 

first and third Plasticity Symposia of the American Chemical 
Society were hosted at Lafayette in 1924 and 1928, the lat
ter of which spawned the Society of Rheology, organized in 
April 1929 in Columbus, Ohio. Leveraging the connection 
between the humanities and science and technology, the term 
"rheology" was coined at Lafayette by a classics professor 
at the request of Bingham and Marcus Reiner, then frequent 
visiting scientist, to make the subject more approachable. 

An independent Department of Chemical Engineering was 
established in 1938. From 1938 through 1961, chemical en
gineering was led by Dr. E. L. McMillan. During this time, a 
student section of the AI ChE was established ( 1940) and the 
program was first accredited (1956). Other major milestones 
in the department include its merger with the Department of 
Metallurgical Engineering in 1976; the closure of Metallurgi
cal Engineering as a program in 1990; and the expansion of 
the department to include biomolecular engineering in 2008. 
Presently, the department maintains nine faculty positions and 
has more than 150 undergraduates across all class years -the 
fourth-largest degree program at Lafayette. 

CURRICULUM 
Chemical engineers bridge from the molecular sciences to 

the consumer through the creation and optimization of value
added processes and products. The curriculum in the Depart
ment of Chemical and Biomolecular Engineering (ChBE) at 
Lafayette seeks to train undergraduates to not only traverse 
this bridge, but ultimately provide its foundation. As such, 
the plenary curriculum is organized into four hierarchical 
levels: Introduction to Chemical and Biomolecular Processes, 
Chemical Engineering Science, Unit Operations, and Process 
Design. Additionally, the curriculum provides flexibility for 
all ChBE students to fully participate in the Common Course 
of Study (CCS) at Lafayette College. 
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Experiential learning 

Experiential learning is, and always has been, one of the 
hallmarks of chemical engineering education at Lafayette Col
lege. Students at Lafayette have been attracted to the notion of 
applying concept to practice since the days of Edward Hart. 
In the 1970s, Dr. George M. Hoerner, then associate profes
sor of chemical engineering, convened 33-hour (voluntary!) 
laboratory sessions focusing on continuous manufacturing 
of solvent-based products in the Unit Operations Laboratory. 
Shifts began on Friday at 1 p.m. and continued through 10 
p.m. on Saturday with operators ( the inexperienced students) 
and crew chiefs (seniors with previous operating experience), 
while the shift supervisor, Dr. Hoerner, was on-hand the entire 
time with his sleeping bag in a room across the hall. 

Currently, we seek to elaborate the complementary nature of 
theory and practice in our Experimental Design I (CHE312), 
Experimental Design II (CHE322), and Integrated Chemical 
Engineering (CHE412) hierarchy. This three-course sequence 
is composed of hybrid courses that emphasize experiential 
learning, increasing complexity from the bench to the unit 
operation to the pilot plant scale. 

Experimental Design I (EDI) focuses on thermophysical 
properties characterization, such as viscometry, rheometry, 
diffusion, and calorimetry. In addition to illustrative lab 
experiences that utilize a range of bench scale equipment, 
students are exposed to lectures in the systematic empirical 
approach of statistical design of experiments (DOE). In EDI, 
emphasis is placed on full-factorial DOE together with both 
descriptive and inferential statistical tools enabling students 
to parameterize and characterize highly coupled complex 
chemical systems. There is also a focus on integrating labora
tory and writing skill through reports and both oral and poster 
style presentations. 

Experimental Design II (ED2) focuses on the unit opera
tions of chemical engineering, such as fluid and heat transfer 
and multiphase flow, fluid phase equilibrium, and an intro
duction to feedback controlled processes. In ED2, lectures 
on statistical design of experiments are continued with an 
emphasis on fraction factorial and central composite design 
of experiments. The communications emphasis shifts to 
memo-style results reporting and continues to build on oral 
presentation skills. 

Integrated Chemical Engineering (ICE) focuses on inte
grated pilot and industrial scale processes, such as continuous 
gas absorption, stripping, liquid-liquid extraction, distillation, 
and reverse osmosis, as well as experiments demonstrating 
dynamic interacting systems reactors in series, bioreactor 
mass transfer and kinetics, and advanced manufacturing 
processes. In ICE, student learn approaches to safety and 
hazards analysis; working in teams, all students complete 
and document Hazards and Operability Studies (HazOp) 
for a process. Students are assessed on full laboratory and 
HazOp reports, and oral presentations on advanced topics 
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in the chemical process industry such as statistical process 
control; environmental, health, and safety regulations; risk; 
and compliance. 

Pedagogical innovation takes the form of flipped labora
tories to empower students to personally control hands-on 
learning with the overarching goal to enhance student under
standing and operability of chemical engineering processes 
and equipment. A flipped laboratory is a pedagogical model 
that essentially inverts the instructor-to-student passage of 
information regarding operation of key pieces of equipment. 
Students have access to a library of short videos that explain 
standard operating procedures, common protocols, and 
troubleshooting tips. Students watch the videos for pre-lab 
assignments and can have access to the video protocols with 
them in the laboratory using tablet-style devices. 

The LafayetteChBE YouTube channel (<https://www.you
tube.com/user/LafayetteChBE>) hosts short tutorial videos 
for each major piece of equipment focusing on SOPs, quick 
start and instrument familiarity, and troubleshooting guides. 
Students and faculty can access these videos and learn how 
to operate the equipment. With over 40,000 views on these 
videos, based on an average in-class laboratory class size, we 
are demonstrating impact well beyond our institution. 

Capstone design 

Capstone design is a highlight of the student experience 
in ChBE through the diversity of projects offered. In 2015 
projects feature industry/academy partnerships in conduc
tive plastic process development and characterization in 
cooperation with Zzyzx Polymers and full-density digital 
part materialization through additive manufacturing with the 
ExOne Company. In these projects, students are involved and 
receive first-hand perspectives to the challenges and rewards 
associated with innovation and entrepreneurship in start-up 
enterprises. 

Specializations and electives 

The breadth in ChBE technical electives within the depart
ment enables wide exposure to chemical engineering sub
disciplines. We have created speciality hybrid courses across 
several sub-disciplines including materials and interfaces, 
micro and nanofabrication, molecular bioengineering, and 
energy and the environment. 

One example, CHE 344 Interfacial Phenomena, is an elec
tive course that includes topics such as the thermodynamics 
of surfaces and interfaces, adhesion, intermolecular forces, 
DLVO theory, electrostatic and electrokinetic effects in colloi
dal systems, and characterization techniques such as scanning 
force microscopy, light scattering, and microscopy. The course 
is approximately evenly divided between lectures, lab expe
riences, and seminars in current literature. We use seminar 
and laboratory experiences as didactic opportunities to train 
students in lifelong learning methods. For each weekly two-
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hour seminar or lab experience, self-selected student groups 
identify a topic or method from a list of 15 or so subjects 
designed to complement the lectures. Each group of three or 
four is mentored to develop a hosting strategy to engage the 
rest of the class in a meaningful experience. For seminars, this 
means selecting (and learning how to select) current literature 
and developing study/ discussion questions for the class by se
rial jury-like selection of articles. For laboratory experiences, 
this means setting up rotating stations that enable all students 
in the course to learn sophisticated research techniques such 
as dynamic light scattering and zeta potential measurement, 
axisymmetric drop shape analysis, confocal microscopy, and 
scanning force microscopy while simultaneously mitigating 
the risks associated with new users and expensive equipment 
by pre-training the hosting group. 

The feedback we have received from both students and fac
ulty at Lafayette and in national venues, such as the American 
Society for Engineering Education (ASEE), has been highly 
positive suggesting that our approach would be well received 
in a variety of other venues. 

Individualized learning 

Lafayette ChBE faculty are active in diverse contemporary 
research areas such as energy and the environment, materials 
and interfaces, micro and nanofabrication, molecular bioen
gineering, and pedagogical innovation. 

The eight faculty in the department during the last four 
years have published more than 30 peer-reviewed journal 
publications -many including student co-authors -and 
garnered more than $2M in federally funded research grants 
while hosting more than 100 individual student experiences. 

At Lafayette, individualized learning opportunities take on 
many different forms. Students can participate in the Lafayette 
EXCEL Scholars Program, which enables high-performing 
students to assist faculty members with their scholarship. The 
purpose of the EXCEL Program is to encourage collabora
tion in learning between faculty and students. The work of 
the student must, therefore, be research-oriented and not 
clerical in its primary emphasis. Faculty members supervis
ing EXCEL Scholars receive assistance in accelerating the 
progress of their research efforts. Students can also undertake 
research for credit. The department permits one semester of 
student research toward the chemical engineering elective 
requirements. The highest achieving students often choose 
to undertake a two-semester senior honors thesis in order to 
earn departmental honors. These students are supervised or 
co-supervised by department faculty. 

FACILITIES AND EQUIPMENT 
In 1938, the department was granted an initial fund of 

$10,000 provided by the Trustees of the College to equip the 
Chemical Engineering Laboratory. Much of the equipment 
was designed and installed by senior chemical engineer-
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ing students and Dr. McMillen, 
including heat transfer, filtration, 
fluid flow, drying, air condition
ing, and gas absorption. The utili
zation of students in the construc
tion of simpler laboratory units 
enabled most of the funds to be 
used to purchase commercial pilot 
scale equipment units for distilla
tion, evaporation, and continuous 
vacuum filtration. 

Since 2010, the department 
has acquired new capital assets 
(~$1.7M) associated with ex
periential learning through new 
state-of-the-art instrumentation 
and equipment to help us maintain 
our standing as one of the pre
mier locations for undergraduate 
education including an additive 
manufacturing suite featuring a 
ProMetal 3D printer that enhances 
the capstone design sequence; a 
new Custom Separations Tech-

Assistant Professor Lindsay Soh and students participate in Introduction to 
Engineering!LafChBE: renewable biofuel and the global energy challenge. 

nologies independently operated 
twin-column distillation plant featuring digital controls that 
enhances experimental design and integrated chemical 
engineering courses; a micro/nanofabrication laboratory 
featuring photo and soft lithography as well as a scanning 
electron microscope that has been integrated into our first-year 
engineering design experiences; and a Center for Molecular 
Bioengineering enabled by a Nikon Eclipse Ti-E inverted 
microscope with Cl Plus confocal imaging system, a biaxial 
micromaterials mechanical test frame, and many tools from 
molecular biology helping to meet the growing demand for 
student experiences in molecular bioengineering. 

CO-CURRICULAR PROGRAMS 
In collaboration with the department, the Lafayette Chapter 

of the American Institute of Chemical Engineers (AIChE) has 
helped in the development of upcoming professional chemical 
engineers through out-of-class academic enrichment, student
faculty interaction, and career path support. This co-curricular 
program of student engagement includes many outward facing 
programs such as informal lunchtime talks to inform students 
on opportunities within Lafayette's chemical engineering 
department including course scheduling, study-abroad, and 
research opportunities. Seminars also include presentations 
by professionals to help students explore career opportunities 
in chemical engineering and advanced industrial concepts 
that have not been extensively covered in curriculum. The 
department and AIChE Student Chapter also host regular 
networking and social events to facilitate student, faculty, and 
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alumni interactions. This programming is complemented by 
specific events including off-campus trips, participation in 
college-wide events, and outreach opportunities. There are 
about 30 programmed events per year. 

In March 2014, the department and the Lafayette AIChE 
Student Chapter hosted the inaugural Chemical Engineering 
Spring Symposium, "Engineering re-Connections: Framing 
Future Networks" featuring a celebration of the commis
sioning of the new twin-column distillation plant-bring
ing together more than 150 students, faculty, and alumni 
with representatives from 11 different companies including 
ExxonMobil, Pinnacle Foods, Air Products and Chemicals, 
AstraZeneca, BASF, Dow, and O'Brien & Gere. 

STUDENTS AND ALUMNI 
In 1919, there were six graduates of the Chemical Engineer

ing Program. After the separate department was established 
in 1938, enrollments grew-and in 1959, it was reported that 
the freshman enrollment numbered 43 students, with "many 
of the abler men entering the College among this group." 
(Annual Report of the Department of Chemical Engineering, 
1959-1960). 

Lafayette chemical engineers have always been engaged in 
campus life and extra-curricular activities. In academic year 
1967-1968, Lafayette was the host for the AIChE Student 
Conclave. Two papers were read by Lafayette seniors, and 
William Flis received honorable mention for his presenta
tion. The annual report of the department recorded: "In what 
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is becoming almost typical for Lafayette's scholar-athletes, 
[Flis] accomplished this by entering the MAC Track Meet 
preliminary time trials at the University of Delaware on Friday 
afternoon, presenting his paper to the conclave in Easton on 
Saturday morning, and returning to Delaware for the balance 
of the track meet later this Saturday." 

The trend of scholar-athletes has continued across the years. 
David Klaus, a chemical engineer, was the captain of the 
Lafayette basketball team that won the Patriot League tourna
ment in 1999 and went on to play in the NCAA Tournament. 
The Lafayette record for receiving yardage in football, set by 
John Weyrauch in 2003, stood for nearly a decade. Athlet
ics, however, is only one of many extra-curricular activities 
undertaken by ChBEs. 

Due to the strong mentorship from ChBE faculty, many 
Lafayette students have placed in the AIChE Mid-Atlantic 
Student Research Paper competition, including Daniel 
Connolly and Tyler Fruneaux who went on to the national 
competition in 2002 and 2014, respectively. 

The bond between faculty and students has also been a con
stant. During the civil unrest in the late 1960s, Department Head 
Zbigniew D. Jastrzebski recorded, "although the academic year 
has witnessed considerable unrest and some demonstrations 
on the Lafayette campus, our chemical engineering students 
... are in close personal contact with their professors so that 
the spirit of comradeship between faculty and students is well
developed." The same is true today; chemical engineering 
faculty plan, prepare, and host a midnight breakfast for students 
in the department once each semester. 

Between 1919 and 1938, there were 120 graduates of the 
chemical engineering program. The total number of under
graduate students has ranged from as few as six in 1919 to 
144 in 2014. On average 66 percent of ChBE students study 
abroad, while staying on track for graduation in four years. 
Lafayette engineering faculty lead semester-long programs 
tailored to engineering majors in Bremen, Germany, and 
Madrid, Spain. 

Lafayette chemical engineers meet with success beyond our 
campus. There is a 90 percent placement rate for all gradu
ates within 12 months of graduation including a high rate of 
placement among premier employers such as ExxonMobile, 
Air Products and Chemicals, DuPont, BASF, and many oth
ers. Students continuing for advanced study enroll in top 
graduate programs, often supported by prestigious fellowships 
and awards. National Science Foundation Graduate Research 
Fellowship winners from Lafayette ChBE include Lauren Se
fcik (2004), Gabriella Engelhart (2005), Scott Crown (2010), 
Ashley Cramer (2010), Melissa Gordon (2011), and Ashley 
Kaminski (2013). 
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FACULTY AND STAFF 
Having grown from only one professor of chemical engi

neering in 1916, to five tenure track faculty in 1980, Chemi
cal and Biomolecular Engineering (ChBE) at Lafayette now 
has nine tenure-track lines in the department. These include: 

• James K. Ferri, (department head and James T. Marcus 
1950 Professor), Ph.D. chemical engineering, The Johns 
Hopkins University; interfacial phenomena, stability of 
disperse systems, additive manufacturing 

• Lauren S. Anderson, associate professor, Ph.D. biomedi
cal engineering, University of Virginia; tissue engineer
ing, biomaterials, cell-substrate interaction 

• Christopher R. Anderson, assistant professor, Ph.D. 
biomedical engineering, University of Virginia; molecu
lar imaging, protein expression, and controlled drug 
delivery 

• Polly R. Piergiovanni,professor, Ph.D. chemical engi
neering, University of Houston; biochemical engineer
ing, pedagogical innovation 

• James P. Schaffer, professor, PhD. mechanical engineer
ing, Duke University; composite materials, non-destruc
tive evaluation, engineering pedagogy 

• Michael J. Senra, assistant professor, Ph.D. chemical 
engineering, University of Michigan; cold flow proper
ties of petroleum, biofuel crystallization 

• Lindsay Soh, assistant professor, Ph.D. chemical and 
environment engineering, Yale University; sustainable 
energy, biofuel production. 

In addition, the department is presently searching to fill two 
tenure-track faculty positions with a focus in advanced ma
terials and manufacturing, energy and the environment, or 
micro nanofabrication. 

CONCLUDING REMARKS 
As we draw near to the completion of nearly a century of 

chemical engineering at Lafayette, the department continues 
to build on its strong tradition and reputation of excellence. 
We welcome you to contact us to find out more about the 
exciting developments at Lafayette College in ChBE. 
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Random Thoughts ... 

TO FLIP OR NOT TO FLIP 

RICHARD M. FELDER AND REBECCA BRENT 

In traditional teaching, students first encounter new course 
material in class and then apply it to problem solving 
in out-of-class assignments. In afiipped classroom, the 

opposite approach is taken-new material outside class, fol
lowed by application in class. 

Flipping has some attractive features and moderate research 
support, but as with every other teaching method, there are 
good and bad ways to do it. Here are two common bad ones: 

How NOT to flip a classroom 

( 1) Before students come to class, assign them to read 
some of the course text or watch slides or a video of 
a complete lecture. 

(2) Assign new material before class, and then present 
more new material in a lecture. 

What's wrong with those approaches? If you ever assigned 
students a technical reading and expected them to apply the 
content next morning, you've known disappointment. Having 
students sit through a straight online lecture is no better- they 
have little chance of understanding the content without being 
able to ask questions about it or get feedback on their initial 
attempts to apply it. And assigning readings or online lectures 
before class and then giving more lectures in class is not flip
ping anything-it's just doubling the rate of fire-hosing the 
students with information. 

So if those methods of flipping don't work, what does? Ef
fective classroom flipping has two components: interactive 
online presentation of information before class, and active 
learning in class. [l,2J The online materials might include short 
videos, lecture clips, and screencasts; hands-on experiences 
with virtual labs, control rooms, and plants; and quizzes on 
presented material. Each presentation segment should be 
roughly six minutes: when it goes much above that, students' 
attention starts drifting_l3l 

Vol. 49, No. 3, Summer 2015 

Here are several suggestions to consider before flipping 
your class. 

• Don't try flipping until you're comfortable 
with active learning and know how to deal with stu
dent resistance to it. 

Flipping gives students the responsibility for their own 
learning that active learning always imposes, and it also forces 
them to learn on their own before they come to class. Many 
students are not thrilled about either feature of this teaching 
method, and some aren't shy about letting their instructors 
know about it. If you're not prepared for pushback, your first 
flipped classroom experience could be grim for both you 
and the students. If you can, teach for several semesters us
ing active learning in an otherwise traditional course, and if 
student resistance starts becoming uncomfortable, take steps 
to defuse it. [2,

4J When you are confident that you can handle 
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fective university teaching, classroom and 
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public school reform, and effective university 
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Professor Emeritus of Chemical Engineer
ing at North Carolina State University. He is 
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fective college teaching at campuses and 
conferences around the world. Many of his 
publications can be seen at <www.ncsu.edu/ 
effective_teaching>. 
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the resistance, if you still want to flip (not every teacher has 
to), go for it. 

• Have good online lessons with integrated assess
ments in place for every class session you plan to 
flip. 

If slide shows and complete taped lectures are the only 
online resources you have, hold off on flipping until you can 
assemble interactive materials of the kinds we mentioned 
above. Screencasts and simulations suitable for most core 
courses in chemical engineering can be found at <www. 
learncheme.com> and by entering "Tutorial (topic)" or 
"Simulation (topic)" into a search engine, and Koretskyl5l and 
Velegol et al.[6l offer excellent examples of online materials 
and assignments. 

A powerful component of online instruction is quizzes dur
ing and following online lessons, with immediate affirmative 
or corrective feedback on the students' responses_[7,sJ The 
quizzes should not just be simple tests of factual information 
but should include assessments of deep understanding of the 
online material, such as the conceptual questions found in the 
AIChE Concept Warehouse (<http://jimi.cbee.oregonstate. 
edu/concept_warehousel> ). 

• Make class sessions mainly activities that build on 
previous online lessons. 

Structure the sessions using active learning techniques, 
especially thinking-aloud pair problem solving for working 
through complex problems. [2,

9J Be flexible during the sessions, 
paying careful attention to what the students are doing, and 
be prepared to intervene with a mini-lecture when common 
stumbling blocks and misunderstandings arise. 

• When you decide to flip, get help if you can, and 
start gradually. 

If you have colleagues who have successfully flipped their 
classrooms or a campus center for teaching and learning that 
provides consulting assistance, call on them for guidance. 
Instead of trying to flip an entire course, identify a small por
tion of the course that you feel enthusiastic about teaching 
and for which good online materials are available, and try 
flipping only that portion. Learn from that experience and 
continue expanding your use of the method in subsequent 
course offerings. 

• Consider flipped flipping. 

In a flipped class, the basic material is presented in online 
modules and some or all of the application is done in a subse
quent class. Another approach is to introduce new material via 
active/interactive exploration in class, then send the students 
out to view the screencasts and work through the tutorials 
online. Researchers at Stanford University refer to this ap
proach as the "flipped flipped classroom," and have found it 
superior to flipping in many respectsY 0l 
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Jensen et alY 1l carried out a well-designed study in which 
students' performance and attitudes in a flipped classroom 
and a flipped flipped classroom were compared. No signifi
cant between-section differences were found in the students' 
learning gains or in their attitudes about their instruction. The 
authors concluded that the key to the effectiveness of both 
approaches is the extensive use of active student engagement 
(which has been repeatedly shown to be superior to straight 
lecturingl12l) in both the online and in-class instruction. 

In short, flip your class if you want to, observing the pre
cautions we suggested-and if you don't want to flip, don't 
flip. As long as you keep students actively engaged in both 
flipped classrooms (new material out of class, problem solving 
in class) and nonflipped classrooms (vice versa), you should 
see the learning you're looking for. 
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